Pose Estimation of a Container with Contact Sensing Based on Discrete State Discrimination
Abstract
:1. Introduction
- We propose a manifold particle filter to estimate the discrete state when the robot hand is positioned inside or outside the concave object.
- Improved estimation efficiency is achieved by selecting actions according to the estimated discrete states.
2. Problem Definition
2.1. Conditions
2.2. Object Property and Basic Strategy of Contact Motion
2.3. Notation
3. Estimation of Aperture Based on Discrete State Recognition
- Particle set with weight and discrete state .
- -
- Set of particles representing object pose:
- -
- Set of weights corresponding to particles:
- -
- Set of discrete states corresponding to particles:
- Non-existence region of object .
3.1. Particle Filter Update for Non-Contact Observation
Algorithm 1 Particle filter for non-contact information processing without state transition |
Input: Particle sets and and sensor observation (non-contact) Output: Particle sets , and 1: {, } 2: weighted by non-contact model 3: Resample |
3.2. Manifold Particle Filter (MPF) with Discrete State Discrimination
Algorithm 2 Manifold particle filter with discrete state discrimination |
Input: Particle sets , and and sensor observation (contact) Output: Particle sets , and 1: particle sampled from 2: weights calculated by EstimateDensity 3: Resample |
3.2.1. Methods for Updating the Estimated Distribution
3.2.2. Usage of Particle Output
3.3. Exploration Strategy Based on Discrete State
Algorithm 3 Exploration of hand with pose/discrete state estimation |
1: Initialization 2: Set initial particle sets , and based on initial estimation 3: Set initial hand target 4: while true do 5: Descend-hand() 6: if Collision then 7: Update-hand-target( ) 8: Update distribution by MPF 9: else 10: repeat 11: Contact-action( ) 12: Update distribution by MPF/PF 13: if then 14: Update-hand-target( ) 15: break 16: end if 17: until Estimation-convergence( ) 18: end if 19: Raise-hand( ) 20: end while |
4. Experiment
4.1. Condition
4.2. Preliminary Experiment for Building the Contact Model
4.3. Results
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PF | Particle Filter |
MPF | Manifold Particle Filter |
DSB | Discrete State-Based |
SD | Stay-Down |
LR | Lift-Random |
References
- Changhyun, C.; Yuichi, T.; Oncel, T.; Ming-Yu, L.; Srikumar, R. Voting-based pose estimation for robotic assembly using a 3D sensor. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), St Paul, MN, USA, 14–18 May 2012; pp. 1724–1731. [Google Scholar] [CrossRef]
- Choi, C.; Christensen, H.I. 3d pose estimation of daily objects using an rgb-d camera. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 3342–3349. [Google Scholar] [CrossRef]
- Aldoma, A.; Marton, Z.C.; Tombari, F.; Wohlkinger, W. Tutorial: Point cloud library: Three-dimensional object recognition and 6 dof pose estimation. IEEE Robot. Autom. Mag. 2012, 19, 80–91. [Google Scholar] [CrossRef]
- Krull, A.; Brachmann, E.; Michel, F.; Yang, M.Y.; Gumhold, S.; Rother, C. Learning Analysis-by-Synthesis for 6D Pose Estimation in RGB-D Images. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 954–962. [Google Scholar] [CrossRef]
- Xiang, Y.; Schmidt, T.; Narayanan, V.; Fox, D. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. arXiv 2017, arXiv:1711.00199. [Google Scholar] [CrossRef]
- Wang, C.; Xu, D.; Zhu, Y.; Martin-Martin, R.; Lu, C.; Fei-Fei, L.; Savarese, S. Densefusion: 6D object pose estimation by iterative dense fusion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3338–3347. [Google Scholar]
- Sundermeyer, M.; Durner, M.; Puang, E.Y.; Marton, Z.C.; Vaskevicius, N.; Arras, K.O.; Triebel, R. Multi-Path Learning for Object Pose Estimation Across Domains. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 13913–13922. [Google Scholar] [CrossRef]
- Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A Survey on Vision Transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 87–110. [Google Scholar] [CrossRef] [PubMed]
- Anzai, T.; Takahashi, K. Deep Gated Multi-modal Learning: In-hand Object Pose Changes Estimation using Tactile and Image Data. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 25–29 October 2020; pp. 9361–9368. [Google Scholar] [CrossRef]
- Bimbo, J.; Kormushev, P.; Althoefer, K.; Liu, H. Global estimation of an object’s pose using tactile sensing. Adv. Robot. 2015, 29, 363–374. [Google Scholar] [CrossRef]
- Bauzá, M.; Valls, E.; Lim, B.; Sechopoulos, T.; Rodriguez, A. Tactile Object Pose Estimation from the First Touch with Geometric Contact Rendering. In Proceedings of the Conference on Robot Learning, Virtual, 16–18 November 2020. [Google Scholar]
- Donlon, E.; Dong, S.; Liu, M.; Li, J.; Adelson, E.H.; Rodriguez, A. GelSlim: A High-Resolution, Compact, Robust, and Calibrated Tactile-sensing Finger. arXiv 2018, arXiv:1803.00628. [Google Scholar]
- Taylor, I.H.; Dong, S.; Rodriguez, A. GelSlim 3.0: High-Resolution Measurement of Shape, Force and Slip in a Compact Tactile-Sensing Finger. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 10781–10787. [Google Scholar] [CrossRef]
- Pfanne, M.; Chalon, M.; Stulp, F.; Albu-Schäffer, A. Fusing Joint Measurements and Visual Features for In-Hand Object Pose Estimation. IEEE Robot. Autom. Lett. 2018, 3, 3497–3504. [Google Scholar] [CrossRef]
- Wang, J.; Wilson, W. 3D relative position and orientation estimation using Kalman filter for robot control. In Proceedings of the 1992 IEEE International Conference on Robotics and Automation (ICRA), Nice, France, 12–14 May 1992; Volume 3, pp. 2638–2645. [Google Scholar] [CrossRef]
- Morency, L.P.; Sundberg, P.; Darrell, T. Pose estimation using 3D view-based eigenspaces. In Proceedings of the IEEE International SOI Conference, Nice, France, 17 October 2003; pp. 45–52. [Google Scholar] [CrossRef]
- Kitagawa, G. Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models. J. Comput. Graph. Stat. 1996, 5, 1–25. [Google Scholar] [CrossRef]
- Álvarez, D.; Roa, M.A.; Moreno, L. Tactile-Based In-Hand Object Pose Estimation. In Proceedings of the Third Iberian Robotics Conference, Seville, Spain, 22–24 November 2017; Volume 694, pp. 716–728. [Google Scholar]
- Zhang, L.; Trinkle, J.C. The application of particle filtering to grasping acquisition with visual occlusion and tactile sensing. In Proceedings of the IEEE International Conference on Robotics and Automation(ICRA), St Paul, MN, USA, 14–18 May 2012; pp. 3805–3812. [Google Scholar] [CrossRef]
- Drigalski, F.; Taniguchi, S.; Lee, R.; Matsubara, T.; Hamaya, M.; Tanaka, K.; Ijiri, Y. Contact-based in-hand pose estimation using Bayesian state estimation and particle filtering. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 7294–7299. [Google Scholar] [CrossRef]
- Drigalski, F.; Hayashi, K.; Huang, Y.; Yonetani, R.; Hamaya, M.; Tanaka, K.; Ijiri, Y. Precise Multi-Modal In-Hand Pose Estimation using Low-Precision Sensors for Robotic Assembly. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 968–974. [Google Scholar] [CrossRef]
- Miyazawa, N.; Kato, D.; Kobayashi, Y.; Hara, K.; Usui, D. Optimal action selection to estimate the aperture of bag by force-torque sensor. Adv. Robot. 2024, 38, 95–111. [Google Scholar] [CrossRef]
- Koval, M.C.; Dogar, M.R.; Pollard, N.S.; Srinivasa, S.S. Pose estimation for contact manipulation with manifold particle filters. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 4541–4548. [Google Scholar] [CrossRef]
- Koval, M.C.; Klingensmith, M.; Srinivasa, S.S.; Pollard, N.S.; Kaess, M. The manifold particle filter for state estimation on high-dimensional implicit manifolds. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 4673–4680. [Google Scholar]
- Yagi, H.; Kobayashi, Y.; Kato, D.; Miyazawa, N.; Hara, K.; Usui, D. Object Pose Estimation Using Soft Tactile Sensor Based on Manifold Particle Filter with Continuous Observation. In Proceedings of the IEEE/SICE International Symposium on System Integration, Atlanta, GA, USA, 17–20 January 2023; pp. 1–6. [Google Scholar]
- Ichiwara, H.; Ito, H.; Yamamoto, K.; Mori, H.; Ogata, T. Contact-Rich Manipulation of a Flexible Object based on Deep Predictive Learning using Vision and Tactility. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 5375–5381. [Google Scholar] [CrossRef]
- Ningquan, G.; Zhizhong, Z.; Ruhan, H.; Lianqing, Y. ShakingBot: Dynamic manipulation for bagging. Robotica 2024, 42, 1–17. [Google Scholar] [CrossRef]
- Hebert, P.; Howard, T.; Hudson, N.; Ma, J.; Burdick, J.W. The next best touch for model-based localization. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 6–10 May 2013; pp. 4673–4680. [Google Scholar] [CrossRef]
- B. Saund, S.C.; Simmons, R. Touch based localization of parts for high precision manufacturing. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 378–385. [Google Scholar] [CrossRef]
- Wang, S.; Wu, J.; Sun, X.; Yuan, W.; Freeman, W.T.; Tenenbaum, J.B.; Adelson, E.H. 3D Shape Perception from Monocular Vision, Touch, and Shape Priors. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1606–1613. [Google Scholar]
- Yi, Z.; Calandra, R.; Veiga, F.; van Hoof, H.; Hermans, T.; Zhang, Y.; Peters, J. Active tactile object exploration with Gaussian processes. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; pp. 4925–4930. [Google Scholar] [CrossRef]
- Kato, D.; Kobayashi, Y.; Miyazawa, N.; Hara, K.; Usui, D. Efficient Sample Collection to Construct Observation Models for Contact-Based Object Pose Estimation. In Proceedings of the 2024 IEEE/SICE International Symposium on System Integration (SII), Ha Long, Vietnam, 8–11 January 2024; pp. 922–927. [Google Scholar] [CrossRef]
- HEBI Robotics. Available online: https://hebirobotics.com/ (accessed on 10 August 2022).
- Shokac Cube. Available online: http://touchence.jp/en/products/cube.html (accessed on 10 August 2022).
DSB | |||||
Max | 13 | 91.6 | 17.1 | 12.0 | 55.4 |
Min | 5 | 39.6 | 0.9 | 0.5 | 0.7 |
Ave | 7.9 | 62.9 | 5.1 | 5.9 | 10.9 |
Var | 7.7 | 192.7 | 19.3 | 16.9 | 256.8 |
SD | |||||
Max | 19 | 117.1 | 16.0 | 14.7 | 49.4 |
Min | 5 | 37.3 | 1.6 | 0.4 | 1.8 |
Ave | 13.6 | 77.6 | 6.4 | 7.0 | 14.4 |
Var | 24.8 | 772.4 | 26.4 | 18.5 | 195.7 |
LR | |||||
Max | 21 | 227.1 | 13.3 | 9.8 | 40.5 |
Min | 5 | 58 | 1.0 | 1.7 | 0.7 |
Ave | 10.4 | 123.2 | 6.5 | 5.6 | 13.4 |
Var | 30.6 | 2783.0 | 17.8 | 5.4 | 129.7 |
DSB | |||||
Max | 14 | 116 | 24.4 | 26.1 | 31.6 |
Min | 6 | 55 | 0.3 | 1.7 | 5.6 |
Ave | 8.6 | 80.5 | 8.5 | 10.7 | 16.1 |
Var | 6.6 | 348.25 | 43.8 | 55.32 | 75.3 |
SD | |||||
Max | 27 | 133 | 20.1 | 25.6 | 51.5 |
Min | 9 | 65 | 0.9 | 0.6 | 0.4 |
Ave | 18.9 | 99.9 | 10.5 | 12.7 | 12.7 |
Var | 44.3 | 649.3 | 51.9 | 77.8 | 259.7 |
LR | |||||
Max | 21 | 307 | 16.7 | 25.6 | 28.4 |
Min | 5 | 75 | 1.26 | 1.5 | 1 |
Ave | 10.8 | 150.8 | 7.6 | 7.3 | 10.1 |
Var | 32.4 | 5552.2 | 25.2 | 49.3 | 73.6 |
DSB | |||||
Max | 23 | 183 | 21.8 | 37.9 | 140.7 |
Min | 7 | 68 | 1.1 | 0.7 | 4.4 |
Ave | 13.3 | 108.6 | 10.1 | 9.6 | 48.6 |
Var | 39.5 | 1387.8 | 46.9 | 100.3 | 2365.6 |
SD | |||||
Max | 35 | 183 | 38.3 | 23.3 | 113.2 |
Min | 9 | 60 | 1.2 | 0.9 | 3.1 |
Ave | 17.7 | 99.5 | 9.4 | 9.9 | 44.4 |
Var | 56 | 1191.7 | 128.7 | 53.6 | 1558.4 |
LR | |||||
Max | 29 | 434 | 25.5 | 15.8 | 109.6 |
Min | 6 | 97 | 1.6 | 0.3 | 0.5 |
Ave | 16.9 | 227.5 | 13.8 | 7.8 | 27.6 |
Var | 53.1 | 11121.3 | 41.5 | 16.5 | 1025.9 |
Experiment | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Ave |
---|---|---|---|---|---|---|---|---|---|---|---|
Up/Down times | 6 | 4 | 2 | 1 | 3 | 3 | 4 | 7 | 7 | 7 | 4.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato, D.; Kobayashi, Y.; Takamori, D.; Miyazawa, N.; Hara, K.; Usui, D. Pose Estimation of a Container with Contact Sensing Based on Discrete State Discrimination. Robotics 2024, 13, 90. https://doi.org/10.3390/robotics13060090
Kato D, Kobayashi Y, Takamori D, Miyazawa N, Hara K, Usui D. Pose Estimation of a Container with Contact Sensing Based on Discrete State Discrimination. Robotics. 2024; 13(6):90. https://doi.org/10.3390/robotics13060090
Chicago/Turabian StyleKato, Daisuke, Yuichi Kobayashi, Daiki Takamori, Noritsugu Miyazawa, Kosuke Hara, and Dotaro Usui. 2024. "Pose Estimation of a Container with Contact Sensing Based on Discrete State Discrimination" Robotics 13, no. 6: 90. https://doi.org/10.3390/robotics13060090
APA StyleKato, D., Kobayashi, Y., Takamori, D., Miyazawa, N., Hara, K., & Usui, D. (2024). Pose Estimation of a Container with Contact Sensing Based on Discrete State Discrimination. Robotics, 13(6), 90. https://doi.org/10.3390/robotics13060090