Mutational Analysis of a Highly Conserved PLSSMXP Sequence in the Small Subunit of Bacillus licheniformis γ-Glutamyltranspeptidase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Deletion and Ala-Scanning Mutagenesis
2.2. Protein Expression and Purification
2.3. Enzyme Assays
2.4. Spectroscopic Analyses
2.5. Chemical Denaturation
2.6. Computer Modeling
3. Results and Discussion
3.1. Local Environments Surrounding the Conserved 458PLSSMXP464 Sequence
3.2. Self-Activation and Catalytic Activity of the Wild-Type Enzyme and its Mutants
3.3. Spectroscopic Characterization of the Structural Properties of Enzyme Preparations
3.4. Impact of Mutations on the Spatial Positions of Self-Activating and Catalytic Residues
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oinonen, C.; Rouvinen, J. Structural comparison of Ntn-hydrolases. Protein Sci. 2000, 9, 2329–2337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brannigan, J.A.; Dodson, G.; Duggleby, H.J.; Moody, P.C.E.; Smith, J.L.; Tomchick, D.R.; Murzin, A.G. A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature 1995, 378, 416–419. [Google Scholar] [CrossRef] [PubMed]
- Schmidtke, G.; Kraft, R.; Kostka, S.; Henklein, P.; Frömmel, C.; Löwe, J.; Huber, R.; Kloetzel, P.M. Analysis of mammalian 20S proteasome biogenesis: The maturation of β-subunits is an ordered two-step mechanism involving autocatalysis. EMBO J. 1996, 15, 6887–6898. [Google Scholar] [CrossRef] [PubMed]
- Guan, C.; Liu, Y.; Shao, Y.; Cui, T.; Liao, W.; Ewei, A.; Whitaker, R.; Paulus, H. Characterization and functional analysis of the cis-autoproteolysis active center of glycosylasparaginase. J. Chem. Biol. 1998, 273, 9695–9702. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Kamagai, H. Autocatalytic processing of γ-glutamylpeptidase. J. Biol. Chem. 2002, 277, 43536–43543. [Google Scholar] [CrossRef] [PubMed]
- Boanca, G.; Sand, A.; Okada, T.; Suzuki, H.; Kumagai, H.; Fukuyama, K.; Barycki, J.J. Autoprocessing of Helicobacter pylori γ-glutamyltranspeptidase leads to the formation of a threonine-threonine catalytic dyad. J. Biol. Chem. 2007, 282, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Ditzel, L.; Huber, R.; Mann, K.; Heinemeyer, W.; Wolf, D.H.; Groll, M. Conformational constraints for protein self-cleavage in the proteasome. J. Mol. Biol. 1998, 279, 1187–1191. [Google Scholar] [CrossRef]
- Xu, Q.; Buckley, D.; Guan, C.; Guo, H.C. Structural insights into the mechanism of intramolecular proteolysis. Cell 1999, 98, 651–661. [Google Scholar] [CrossRef]
- Hewitt, L.; Kasche, V.; Lummer, K.; Lewis, R.J.; Murshudov, G.N.; Verma, C.S.; Dodson, G.G.; Wilson, K.S. Structure of a slow processing precursor penicillin acylase from Escherichia coli reveals the linker peptide blocking the active-site cleft. J. Mol. Biol. 2000, 302, 887–896. [Google Scholar] [CrossRef]
- Kim, J.K.; Yang, I.S.; Shin, H.J.; Cho, K.J.; Ryu, E.K.; Kim, S.H.; Park, S.S.; Kim, K.H. Insight into autoproteolytic activation from the structure of cephalosporin acylase: A protein with proteolytic chemistries. Proc. Natl. Acad. Sci. USA 2006, 103, 1732–1737. [Google Scholar] [CrossRef]
- Keillor, J.W.; Castonguay, R.; Lherbet, C. γ-Glutamyl transpeptidase substrate specificity and catalytic mechanism. Methods Enzymol. 2005, 401, 449–467. [Google Scholar] [PubMed]
- Tate, S.; Meister, A. γ-Glutamyl transpeptidase: Catalytic, structural and functional aspects. Mol. Cell. Biochem. 1981, 39, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Chikhi, N.; Holic, N.; Guellaen, G.; Laperche, Y. γ-Glutamyltranspeptidase gene organization and expression: A comparative analysis in rat, mouse, pig and human species. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1999, 122, 367–380. [Google Scholar] [CrossRef]
- Jaspers, C.; Penniuckx, M. Glutathione metabolism in Saccharomyces cerevisiae: Evidence that γ-glutamyltranspeptidase is a vacuolar enzyme. Biochimie 1984, 66, 71–74. [Google Scholar] [CrossRef]
- Suzuki, H.; Hashimoto, W.; Kumagai, H. Glutathione metabolism in Escherichia coli. J. Mol. Catal. B Enzym. 1999, 6, 175–184. [Google Scholar] [CrossRef]
- Hultberg, M.; Hultberg, B. Glutathione turnover in human cell lines in the presence of agents with glutathione influencing potential with or with-out acivicin inhibition of γ-glutamyltranspeptidase. Biochim. Biophys. Acta 2005, 1726, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Castellano, I.; Merlino, A. γ-Glutamyltranspeptidases: Sequence, structure, biochemical properties, and biotechnological applications. Cell. Mol. Life Sci. 2012, 69, 3381–3394. [Google Scholar] [CrossRef]
- Okada, T.; Suzuki, H.; Wada, K.; Kumagai, H.; Fukuyama, K. Crystal structures of γ-glutamyltranspeptidase from Escherichia coli, a key enzyme in glutathione metabolism, and its reaction intermediate. Proc. Natl. Acad. Sci. USA 2006, 103, 6471–6476. [Google Scholar] [CrossRef]
- Ida, T.; Suzuki, H.; Fukuyama, K.; Hiratake, J.; Wada, K. Structure of Bacillus subtilis γ-glutamyltranspeptidase in complex with acivicin: Diversity of the binding mode of a classical and electrophilic active-site-directed glutamate analogue. Acta Crystallogr. D Biol. Crystallogr. 2014, 70, 607–614. [Google Scholar] [CrossRef]
- Lin, L.L.; Chen, Y.Y.; Chi, M.C.; Merlino, A. Low resolution X-ray structure of γ-glutamyltranspeptidase from Bacillus licheniformis: Opened active site cleft and a cluster of acid residues potentially involved in the recognition of a metal ion. Biochim. Biophys. Acta 2014, 1844, 1523–1529. [Google Scholar] [CrossRef]
- West, M.B.; Chen, Y.; Wickham, S.; Heroux, A.; Cahill, K.; Hanigan, M.H.; Mooers, B.H.M. Novel insights into eukaryotic γ-glutamyltranspeptidase 1 from the crystal structure of the glutamate-bound human enzyme. J. Biol. Chem. 2013, 288, 31902–31913. [Google Scholar] [CrossRef] [PubMed]
- Okada, T.; Suzuki, H.; Wada, K.; Kumagai, H.; Fukuyama, K. Crystal structure of the γ-glutamyltranspeptidase precursor protein from Escherichia coli. Structural changes upon autocatalytic processing and implications for the maturation mechanism. J. Biol. Chem. 2007, 282, 2433–2439. [Google Scholar] [CrossRef] [PubMed]
- Lyu, R.C.; Hu, H.Y.; Kuo, L.Y.; Lo, H.F.; Ong, P.L.; Chang, H.P.; Lin, L.L. Role of the conserved Thr399 and Thr417 residues of a recombinant Bacillus licheniformis γ-glutamyltranspeptidase as evaluated by mutational analysis. Curr. Microbiol. 2009, 59, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Pica, A.; Chi, M.C.; D’Ischia, M.; Chen, Y.Y.; Lin, L.L.; Merlino, A. The maturation mechanism of γ-glutamyltranspeptidases: Insights from the crystal structure of a precursor mimic of the enzyme from Bacillus licheniformis. Biochim. Biophys. Acta 2016, 1864, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.P.; Liang, W.C.; Lyu, R.C.; Chi, M.C.; Wang, T.F.; Su, K.L.; Hung, H.C.; Lin, L.L. Effects of C-terminal truncation on the autocatalytic processing of a recombinant γ-glutamyltranspeptidase from Bacillus licheniformis. Biochemistry-Moscow 2010, 75, 919–929. [Google Scholar] [CrossRef] [PubMed]
- Chi, M.C.; Lo, Y.H.; Chen, Y.Y.; Lin, L.L.; Merlino, A. γ-Glutamyl transpeptidase architecture: Effect of extra sequence deletion on autoprocessing, structure and stability of the protein from Bacillus licheniformis. Biochim. Biophys. Acta 2014, 1844, 2290–2297. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Lo, H.F.; Wang, T.F.; Lin, M.G.; Lin, L.L.; Chi, M.C. Enzymatic synthesis of γ-L-glutamyl-S-allyl-L-cysteine, a naturally occurring organosulfur compound from garlic, by Bacillus licheniformis γ-glutamyltranspeptidase. Enzyme Microb. Technol. 2015, 75–76, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Chi, M.C.; Lo, H.F.; Lin, M.G.; Chen, Y.Y.; Lin, L.L.; Wang, T.F. Application of Bacillus licheniformis γ-glutamyltranspeptidase to the biocatalytic synthesis of γ-glutamyl-phenylalanine. Biocatal. Agric. Biotechnol. 2017, 10, 278–284. [Google Scholar] [CrossRef]
- Lee, Y.C.; Chi, M.C.; Lin, M.G.; Chen, Y.Y.; Lin, L.L.; Wang, T.F. Biocatalytic synthesis of γ-glutamyl-L-leucine, a kokumi-imparting dipeptide, by Bacillus licheniformis γ-glutamyltranspeptidase. Food Biotechnol. 2018, 32, 130–147. [Google Scholar] [CrossRef]
- Lin, L.L.; Chou, P.R.; Hua, Y.W.; Hsu, W.H. Overexpression, one-step purification, and biochemical characterization of a recombinant γ-glutamyltranspeptidase from Bacilllus licheniformis. Appl. Microbiol. Biotechnol. 2006, 73, 103–112. [Google Scholar] [CrossRef]
- Lin, M.G.; Chi, M.C.; Chen, Y.Y.; Wang, T.F.; Lo, H.F.; Lin, L.L. Site-directed mutagenesis of a conserved Asn450 residue of Bacillus licheniformis γ-glutamyltranspeptidase. Int. J. Biol. Macromol. 2016, 91, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Tate, S.S.; Meister, A. γ-Glutamyl transpeptidase from kidney. Methods Enzymol. 1985, 113, 400–419. [Google Scholar] [PubMed]
- Greenfield, N.J. Analysis of circular dichroism data. Methods Enzymol. 2004, 383, 282–317. [Google Scholar] [PubMed]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: Boston, MA, USA, 2006; pp. 529–575. [Google Scholar]
- Arnold, A.; Bordoli, L.; Kopp, J.; Schwede, T. The Swiss-Model workspace: A web-based environment for protein structure homology modelling. Bioinformatics 2006, 22, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, Y.; Fujii, J.; Taniguchi, N. Significance of Arg-107 and Glu-108 in the catalytic mechanism of human γ-glutamyl transpeptidase. J. Biol. Chem. 1993, 268, 3980–3985. [Google Scholar] [PubMed]
- Ikeda, Y.; Fujii, J.; Taniguchi, N.; Meister, A. Human γ-glutamyl transpeptidase mutants involving conserved aspartate residues and the unique cysteine residue of the light subunit. J. Biol. Chem. 1995, 270, 12471–12475. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, Y.; Fujii, J.; Anderson, M.E.; Taniguchi, N.; Meister, A. Involvement of Ser-451 and Ser-452 in the catalysis of human γ-glutamyl transpeptidase. J. Biol. Chem. 1995, 270, 22223–22228. [Google Scholar] [CrossRef]
- Ikeda, Y.; Fujii, J.; Taniguchi, N. Effects of substitutions of the conserved histidine residues in human γ-glutamyl transpeptidase. J. Biochem. (Tokyo) 1996, 119, 1166–1170. [Google Scholar] [CrossRef]
- Minami, H.; Suzuki, H.; Kumagai, H. A mutant Bacillus subtilis γ-glutamyltranspeptidase specialized in hydrolysis activity. FEMS Microbiol. Lett. 2003, 224, 169–173. [Google Scholar] [CrossRef]
- Lo, H.F.; Lin, L.L.; Chen, P.J.; Chou, W.M. Site-directed mutagenesis of the conserved Thr407, Asp433, and Met464 residues in the small subunit of Escherichia coli γ-glutamyltranspeptidase. Indian J. Biochem. Biophys. 2007, 44, 197–203. [Google Scholar]
- Ong, P.L.; Yao, Y.F.; Weng, Y.M.; Hsu, W.H.; Lin, L.L. Residues Arg114 and Arg337 are critical for the proper function of Escherichia coli γ-glutamyltranspeptidase. Biochem. Biophys. Res. Commun. 2008, 366, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.H.; Ong, P.L.; Chen, S.C.; Lin, L.L. Contribution of Ser463 residue to the enzymatic and processing activities of Escherichia coli γ-glutamyltranspeptidase. Indian J. Biochem. Biophys. 2009, 46, 281–288. [Google Scholar] [PubMed]
- Chi, M.C.; Lin, M.G.; Chen, Y.Y.; Lin, L.L.; Wang, T.F. Functional role of the conserved glycine residues, Gly481 and Gly482, of the γ-glutamyltranspeptidase from Bacillus licheniformis. Int. J. Biol. Macromol. 2018, 109, 1182–1188. [Google Scholar] [CrossRef] [PubMed]
- Bindal, S.; Sharma, S.; Singh, T.P.; Gupta, R. Evolving transpeptidase and hydrolytic variants of γ-glutamyltranspeptidase from Bacillus licheniformis by targeted mutations of conserved residue Arg109 and their biotechnological relevance. J. Biotechnol. 2017, 249, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.C.; Vaisvila, R. Protein engineering: Single or multiple site-directed mutagenesis. Methods Mol. Biol. 2013, 978, 173–186. [Google Scholar] [PubMed]
- Morrow, A.L.; Williams, K.; Sand, A.; Boanca, G.; Barycki, J.J. Characterization of Helicobacter pylori γ-glutamyltranspeptidase reveals the molecular basis for substrate specificity and a critical role for the tyrosine 433-containing loop in catalysis. Biochemistry 2007, 46, 13407–13414. [Google Scholar] [CrossRef]
- Castellano, I.; Merlino, A. γ-Glutamyl transpeptidases: Structure and function. In SpringerBriefs in Biochemistry and Molecular Biology; Springer: Basel, Switzerland, 2013; pp. 1–57. [Google Scholar]
- Yang, J.C.; Liang, W.C.; Chen, Y.Y.; Chi, M.C.; Lo, H.F.; Chen, H.L.; Lin, L.L. Biophysical characterization of Bacillus licheniformis and Escherichia coli γ-glutamyltranspeptidases: A comparative analysis. Int. J. Biol. Macromol. 2011, 48, 414–422. [Google Scholar] [CrossRef]
- Jaenicke, R.; Bohm, G. The stability of proteins in extreme environments. Curr. Opin. Struct. Biol. 1998, 8, 738–748. [Google Scholar] [CrossRef]
- Krishnan, V.V.; Rupp, B. Macromolecular Structure Determination: Comparison of X-ray Crystallography and NMR. In eLS; John Wiley & Sons, Ltd.: Chichester, UK, 2006. [Google Scholar]
- Schwede, T. Protein modeling: What happened to the “protein structure gap”? Structure 2013, 21, 1531–1540. [Google Scholar] [CrossRef]
Enzyme | Processing Rate (%) | Specific Activity (U/mg) |
---|---|---|
BlGGT | 95.5 ± 3.4 | 14.4 ± 1.9 |
P458A | 98.0 ± 4.8 | 17.8 ± 2.1 |
L459A | 86.0 ± 5.1 | 14.6 ± 1.2 |
S461A | 95.8 ± 3.1 | 30.4 ± 2.4 |
S462A | 83.0 ± 7.2 | 34.1 ± 2.0 |
M462A | 93.0 ± 5.0 | 19.5 ± 1.0 |
P464A | 91.2 ± 2.3 | 6.7 ± 0.3 |
ΔM462 | 8.3 ± 0.7 | NDa |
ΔS460-M462 | 6.3 ± 0.3 | ND |
ΔS461-M462 | 8.1 ± 0.4 | ND |
ΔP464 | 5.2 ± 0.6 | ND |
Enzyme | Km (μM) | kcat (s−1) | kcat/Km (s−1 μM−1) |
---|---|---|---|
BlGGT | 410.3 ± 5.4 | 16.6 ± 1.4 | 40.6 × 10−3 |
P458A | 392.1 ± 1.9 | 16.0 ± 1.1 | 41.1 × 10−3 |
L459A | 449.2 ± 4.7 | 13.6 ± 2.0 | 30.3 × 10−3 |
S460A | 522.3 ± 6.5 | 78.8 ± 9.4 | 151.5 × 10−3 |
S461A | 391.4 ± 4.3 | 58.1 ± 6.2 | 149.0 × 10−3 |
M462A | 438.6 ± 5.2 | 26.8 ± 1.9 | 60.8 × 10−3 |
P464A | 492.4 ± 7.4 | 8.7 ± 0.8 | 17.8 × 10−3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, M.-C.; Lo, H.-F.; Lin, M.-G.; Chen, Y.-Y.; Wang, T.-F.; Lin, L.-L. Mutational Analysis of a Highly Conserved PLSSMXP Sequence in the Small Subunit of Bacillus licheniformis γ-Glutamyltranspeptidase. Biomolecules 2019, 9, 508. https://doi.org/10.3390/biom9090508
Chi M-C, Lo H-F, Lin M-G, Chen Y-Y, Wang T-F, Lin L-L. Mutational Analysis of a Highly Conserved PLSSMXP Sequence in the Small Subunit of Bacillus licheniformis γ-Glutamyltranspeptidase. Biomolecules. 2019; 9(9):508. https://doi.org/10.3390/biom9090508
Chicago/Turabian StyleChi, Meng-Chun, Huei-Fen Lo, Min-Guan Lin, Yi-Yu Chen, Tzu-Fan Wang, and Long-Liu Lin. 2019. "Mutational Analysis of a Highly Conserved PLSSMXP Sequence in the Small Subunit of Bacillus licheniformis γ-Glutamyltranspeptidase" Biomolecules 9, no. 9: 508. https://doi.org/10.3390/biom9090508
APA StyleChi, M. -C., Lo, H. -F., Lin, M. -G., Chen, Y. -Y., Wang, T. -F., & Lin, L. -L. (2019). Mutational Analysis of a Highly Conserved PLSSMXP Sequence in the Small Subunit of Bacillus licheniformis γ-Glutamyltranspeptidase. Biomolecules, 9(9), 508. https://doi.org/10.3390/biom9090508