Proteolytic Activity in Meadow Soil after the Application of Phytohormones
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ahemad, M.; Khan, M.S. Pesticides as antagonists of rhizobia and the legume-Rhizobium symbiosis: A paradigmatic and mechanistic outlook. Biochem. Mol. Biol. 2013, 1, 63–75. [Google Scholar] [CrossRef]
- Ahemad, M. Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: A review. 3 Biotech 2015, 5, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Buckley, S.; Allen, D.; Brackin, R.; Jämtgård, S.; Näsholm, T.; Schmidt, S. Microdialysis as an in situ technique for sampling soil enzymes. Soil Biol. Biochem. 2019, 135, 20–27. [Google Scholar] [CrossRef]
- Maddela, N.R.; Golla, N.; Vengatampalli, R. Soil Enzymes: Influence of Sugar Industry Effluents on Soil Enzyme Activities; Springer: Cham, Switzerland, 2019; pp. 19–24. [Google Scholar]
- Vranova, V.; Rejsek, K.; Formanek, P. Proteolytic activity in soil: A review. Appl. Soil Ecol. 2013, 70, 23–32. [Google Scholar] [CrossRef]
- Palaniyandi, S.A.; Yang, S.H.; Zhang, L.; Suh, J.W. Effects of actinobacteria on plant disease suppression and growth promotion. Appl. Microbiol. Biotechnol. 2013, 97, 9621–9636. [Google Scholar] [CrossRef] [PubMed]
- Glick, B.R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 2014, 169, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Goswami, D.; Thakker, J.N.; Dhandhukia, P.C. Simultaneous detection and quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) produced by rhizobacteria from l-tryptophan (Trp) using HPTLC. J. Microbiol. Meth. 2015, 110, 7–14. [Google Scholar] [CrossRef]
- Vejan, P.; Abdullah, R.; Khadiran, T.; Ismail, S.; Nasrulhaq-Boyce, A. Role of plant growth promoting rhizobacteria in agricultural sustainability—A review. Molecules 2016, 21, 573. [Google Scholar] [CrossRef]
- Flores-Núñez, V.M.; Amora-Lazcano, E.; Rodríguez-Dorantes, A.; Cruz-Maya, J.A.; Jan-Roblero, J. Comparison of plant growth-promoting rhizobacteria in a pine forest soil and an agricultural soil. Soil Res. 2018, 56, 346–355. [Google Scholar] [CrossRef]
- Khan, N.A.; Mir, M.R.; Nazar, R.; Singh, S. The application of ethephon (an ethylene releaser) increases growth, photosynthesis and nitrogen accumulation in mustard (Brassica juncea L.) under high nitrogen levels. Plant Biol. 2008, 10, 534–538. [Google Scholar] [CrossRef]
- Cycoń, M.; Lewandowska, A.; Piotrowska-Seget, Z. Mineralization Dynamics of Chlormequat Chloride (CCC) in Soils of Different Textures. Pol. J. Environ. Stud. 2012, 21, 595–602. [Google Scholar]
- IUSS (International Union of Soil Sciences). Working Group WRB: World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Rejsek, K.; Formanek, P.; Pavelka, M. Estimation of protease activity in soils at low temperatures by casein amendment and with substitution of buffer by demineralized water. Amino Acids 2008, 35, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Qureshi, M.A.; Zahir, Z.A.; Hussain, M.B.; Sessitsch, A.; Mitter, B. L-Tryptophan-dependent biosynthesis of indole-3-acetic acid (IAA) improves plant growth and colonization of maize by Burkholderia phytofirmans PsJN. Ann. Microbiol. 2015, 65, 1381–1389. [Google Scholar] [CrossRef]
- Márquez, G.; Alarcón, M.V.; Salguero, J. Differential responses of primary and lateral roots to indole-3-acetic acid, indole-3-butyric acid, and 1-naphthaleneacetic acid in maize seedlings. Biol. Plant. 2016, 60, 367–375. [Google Scholar] [CrossRef]
- Gómez, D.A.; Carpena, R.O. Effect of 1-naphthaleneacetic acid on organic acid exudation by the roots of white lupin plants grown under phosphorus-deficient conditions. J. Plant Physiol. 2014, 171, 1354–1361. [Google Scholar] [CrossRef] [PubMed]
- Frick, E.M.; Strader, L.C. Roles for IBA-derived auxin in plant development. J. Exp. Bot. 2017, 69, 169–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Xing, S.; Ma, H.; Du, Z.; Ma, B. Plant growth-promoting rhizobacteria affect the growth and nutrient uptake of Fraxinus americana container seedlings. Appl. Microbiol. Biotechnol. 2013, 97, 4617–4625. [Google Scholar] [CrossRef] [PubMed]
- Holik, L.; Vranová, V.; Rejšek, K. Effect of auxins on the native proteolytic activity of forest soils. J. Plant Nutr. Soil Sci. 2019, 182, 244–251. [Google Scholar] [CrossRef]
- Ouyang, L.; Pei, H.; Xu, Z. Low nitrogen stress stimulating the indole-3-acetic acid biosynthesis of Serratia sp. ZM is vital for the survival of the bacterium and its plant growth-promoting characteristic. Arch. Microbiol. 2017, 199, 425–432. [Google Scholar] [CrossRef]
- Duca, D.; Lorv, J.; Patten, C.L.; Rose, D.; Glick, B.R. Indole-3-acetic acid in plant–microbe interactions. Antonie Leeuwenhoek 2014, 106, 85–125. [Google Scholar] [CrossRef]
- Luo, K.; Rocheleau, H.; Qi, P.F.; Zheng, Y.L.; Zhao, H.Y.; Ouellet, T. Indole-3-acetic acid in Fusarium graminearum: Identification of biosynthetic pathways and characterization of physiological effects. Fungal Biol. 2016, 120, 1135–1145. [Google Scholar] [CrossRef] [PubMed]
- Tsavkelova, E.; Oeser, B.; Oren-Young, L.; Israeli, M.; Sasson, Y.; Tudzynski, B.; Sharon, A. Identification and functional characterization of indole-3-acetamide-mediated IAA biosynthesis in plant-associated Fusarium species. Fungal Gen. Biol. 2012, 49, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, G.B.; Sanjeevkumar, S.; Kirankumar, B.; Santoshkumar, M.; Karegoudar, T.B. Indole-3-acetic acid biosynthesis in Fusarium delphinoides strain GPK, a causal agent of wilt in chickpea. Appl. Biochem. Biotech. 2013, 169, 1292–1305. [Google Scholar] [CrossRef] [PubMed]
- Krause, K.; Henke, C.; Asiimwe, T.; Ulbricht, A.; Klemmer, S.; Schachtschabel, D.; Boland, W.; Kothe, E. Biosynthesis and secretion of indole-3-acetic acid and its morphological effects on Tricholoma vaccinum-spruce ectomycorrhiza. Appl. Environ. Microbiol. 2015, 81, 7003–7011. [Google Scholar] [CrossRef] [PubMed]
- Buhrig, W.; Thornton, M.K.; Olsen, N.; Morishita, D.; McIntosh, C. The Influence of Ethephon Application Timing and Rate on Plant Growth, Yield, Tuber Size Distribution and Skin Color of Red LaSoda Potatoes. Am. J. Pot. Res. 2015, 92, 100–108. [Google Scholar] [CrossRef]
- Mori, Y.; Miyahara, F.; Tsutsumi, Y.; Kondo, R. Effects of combinational treatment with ethephon and indole-3-butyric acid on adventitious rooting of Pinus thunbergii cuttings. Plant Growth Reg. 2011, 63, 271–278. [Google Scholar] [CrossRef]
- Holik, L.; Vranová, V.; Rejšek, K. The role of cytokinins, ethephon, and chlorocholine chloride in the native proteolytic activity of forest soils. J. Soils Sed. 2018, 18, 1500–1506. [Google Scholar] [CrossRef]
- Adamczyk, B.; Adamczyk, S.; Kukkola, M.; Tamminen, P.; Smolander, A. Logging residue harvest may decrease enzymatic activity of boreal forest soils. Soil Biol. Biochem. 2015, 82, 74–80. [Google Scholar] [CrossRef]
- Mooshammer, M.; Wanek, W.; Hämmerle, I.; Fuchslueger, L.; Hofhansl, F.; Knoltsch, A.; Schnecker, J.; Takriti, M.; Watzka, M.; Wild, B.; et al. Adjustment of microbial nitrogen use efficiency to carbon: Nitrogen imbalances regulates soil nitrogen cycling. Nat. Commun. 2014, 5, 643–648. [Google Scholar] [CrossRef]
- Chen, H.; Li, D.; Zhao, J.; Xiao, K.; Wang, K. Effects of nitrogen addition on activities of soil nitrogen acquisition enzymes: A meta-analysis. Agric. Ecosyst. Environ. 2018, 252, 126–131. [Google Scholar] [CrossRef]
- Sharma, K.; Garg, V.K. Solid-State Fermentation for Vermicomposting: A Step Toward Sustainable and Healthy Soil. In Current Developments in Biotechnology and Bioengineering: Current Advances in Solid-State Fermentation; Pandey, A., Larroche, C., Soccol, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 373–413. [Google Scholar]
- Ponder, F., Jr.; Eivazi, F. Activities of five enzymes following soil disturbance and weed control in a Missouri forest. J. Environ. Monitor. Restor. 2008, 5, 68–76. [Google Scholar] [CrossRef]
Plot | Ct (%) | Nt (%) | C/N | pH H2O | pH 1M KCl | Clay (%) | Silt (%) | Sand (%) |
---|---|---|---|---|---|---|---|---|
Meadow, Ah horizon (haplic Stagnosol) | 4.94 | 0.43 | 11.5 | 4.60 | 3.61 | 18.60 | 26.00 | 55.40 |
Treatment | 0 | 5 | 50 | 100 |
---|---|---|---|---|
1-naphthaleneacetic acid | 78.49 ± 1.29 ab | 81.67 ± 0.21 b | 75.32 ± 1.88 a | 77.44 ± 0.63 ab |
2-naphthoxyacetic acid | 78.49 ± 1.29 b | 79.55 ± 1.29 b | 72.36 ± 1.32 a | 68.76 ± 0.92 a |
Indole-3-butyric acid | 78.49 ± 1.29 c | 63.90 ± 1.53 b | 53.74 ± 1.18 a | 48.45 ± 0.92 a |
Indole-3-acetic acid | 78.49 ± 1.29 a | 77.65 ± 1.29 a | 69.40 ± 0.56 c | 60.72 ± 1.48 b |
6-benzylaminopurine | 78.49 ± 1.29 | 77.86 ± 1.18 | 74.69 ± 0.92 | 74.69 ± 1.06 |
Adenine hemisulfate | 78.49 ± 1.29 ab | 85.48 ± 2.08 a | 83.57 ± 1.88 a | 73.20 ± 1.48 b |
Ethephon | 78.49 ± 1.29 a | 81.88 ± 2.57 a | 81.03 ± 2.60 a | 66.86 ± 2.38 b |
Chlorocholine chloride | 78.49 ± 1.29 b | 70.45 ± 1.27 a | 68.97 ± 1.18 a | 70.24 ± 2.70 a |
Correlation coefficients (p) | ||||
Auxin | ||||
1-naphthaleneacetic acid | 1.0000 | |||
2-naphthoxyacetic acid | 0.5680 | 1.0000 | ||
Indole-3-butyric acid | 0.3673 | 0.8071 ** | 1.0000 | |
Indole-3-acetic acid | 0.4902 | 0.9328 ** | 0.8511 ** | 1.0000 |
Cytokinin | ||||
6-benzylaminopurine | 1.0000 | |||
Adenine hemisulfate | 0.3481 | 1.0000 | ||
Ethephon | 0.3612 | 0.6233 ** | 1.0000 | |
Chlorocholine chloride | 0.6583 ** | −0.1495 | 0.1034 | 1.0000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holik, L.; Vranová, V. Proteolytic Activity in Meadow Soil after the Application of Phytohormones. Biomolecules 2019, 9, 507. https://doi.org/10.3390/biom9090507
Holik L, Vranová V. Proteolytic Activity in Meadow Soil after the Application of Phytohormones. Biomolecules. 2019; 9(9):507. https://doi.org/10.3390/biom9090507
Chicago/Turabian StyleHolik, Ladislav, and Valerie Vranová. 2019. "Proteolytic Activity in Meadow Soil after the Application of Phytohormones" Biomolecules 9, no. 9: 507. https://doi.org/10.3390/biom9090507
APA StyleHolik, L., & Vranová, V. (2019). Proteolytic Activity in Meadow Soil after the Application of Phytohormones. Biomolecules, 9(9), 507. https://doi.org/10.3390/biom9090507