The Health Beneficial Properties of Rhodomyrtus tomentosa as Potential Functional Food
Abstract
:1. Description of Rhodomyrtus tomentosa (Aiton) Hassk.
2. Ecology
3. Nutritional Composition of R. tomentosa Fruits
4. Phytochemical Composition
5. Genetic Diversity
6. Medicinal Uses
7. Optimal Conditions for Active-Component Extraction
8. Pharmaceutical Properties
8.1. Anti-Inflammatory Activities
8.2. Antioxidant Activity
8.3. Antimicrobial Activity
8.4. Anticancer Activity
8.5. Other Biological Activities
9. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Langeland, K.A.; Craddock-Burks, K. Rhodomyrtus tomentosa (Ait.) Hassk. In Identification and Biology of Non-Native Plants in Florida’s Natural Areas, 2nd ed.; Langeland, K.A., Craddock-Burks, K., Eds.; University of Florida Press: Gainesville, FL, USA, 1998; pp. 112–113. [Google Scholar]
- Yang, L.; Ren, H.; Liu, N.; Wang, J. The shrub Rhodomyrtus tomentosa acts as a nurse plant for seedlings differing in shade tolerance in degraded land of South China. J. Veg. Sci. 2010, 21, 262–272. [Google Scholar] [CrossRef]
- Wei, M.S.; Chen, Z.H.; Ren, H.; Yin, Z.Y. Reproductive ecology of Rhodomyrtus tomentosa (Myrtaceae). Nord. J. Bot. 2009, 3, 154–160. [Google Scholar] [CrossRef]
- Lai, T.N.; André, C.; Rogez, H.; Mignolet, E.; Nguyen, T.B.; Larondelle, Y. Nutritional composition and antioxidant properties of the sim fruit (Rhodomyrtus tomentosa). Food Chem. 2015, 168, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.Y.; Cai, Y.Z.; Corke, H.; Sun, M. Survey of antioxidant capacity and nutritional quality of selected edible and medicinal fruit plants in Hong Kong. J. Food Compos. Anal. 2010, 23, 510–517. [Google Scholar] [CrossRef]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J. Agric. Food Chem. 2004, 52, 4026–4037. [Google Scholar] [CrossRef] [PubMed]
- Hui, W.H.; Li, M.N.; Luk, K. Triterpenoids and steroids from Rhodomyrtus tomentosa. Phytochemistry 1975, 14, 833–834. [Google Scholar] [CrossRef]
- Chen, D.; Xu, F.; Zhang, P.; Deng, J.; Sun, H.; Wen, X.; Liu, J. Practical synthesis of α-amyrin, β-amyrin, and lupeol: The potential natural inhibitors of human oxidosqualene cyclase. Arch. Pharm. (Weinheim) 2017, 350, 1700178. [Google Scholar] [CrossRef] [PubMed]
- Hui, W.H.; Li, M.M. Two new triterpenoids from Rhodomyrtus tomentosa. Phytochemistry 1976, 15, 1741–1743. [Google Scholar]
- Liu, H.X.; Chen, K.; Yuan, Y.; Xu, Z.F.; Tan, H.B.; Qiu, S.X. Rhodomentones A and B, novel meroterpenoids with unique NMR characteristics from Rhodomyrtus tomentosa. Org. Biomol. Chem. 2016, 14, 7354–7360. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.X.; Zhang, W.M.; Xu, Z.F.; Chen, Y.C.; Tan, H.B.; Qiu, S.X. Isolation, synthesis, and biological activity of tomentosenol A from the leaves of Rhodomyrtus tomentosa. RSC Adv. 2016, 6, 25882–25886. [Google Scholar] [CrossRef]
- Liu, J.; Song, J.G.; Su, J.C.; Huang, X.J.; Ye, W.C.; Wang, Y. Tomentodione E, a new sec-pentyl syncarpic acid-based meroterpenoid from the leaves of Rhodomyrtus tomentosa. J. Asian Nat. Prod. Res. 2018, 20, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Chen, C.; Wang, X.B.; Wu, L.; Yang, M.H.; Luo, J.; Zhang, C.; Sun, H.B.; Luo, J.G.; Kong, L.Y. Rhodomyrtials A and B, two meroterpenoids with a triketone- sesquiterpene-triketone skeleton from Rhodomyrtus tomentosa: Structural elucidation and biomimetic synthesis. Org. Lett. 2016, 18, 4068–4071. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Zhou, X.W.; Wu, L.; Wang, X.B.; Yang, M.H.; Luo, J.; Luo, J.G.; Kong, L.Y. Isolation, structure elucidation, and absolute con fi guration of syncarpic acid-conjugated terpenoids from Rhodomyrtus tomentosa. J. Nat. Prod. 2017, 80, 989–998. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.B.; Li, W.; Zhang, Z.M.; Chen, N.H.; Zhang, X.Q.; Jiang, J.W.; Wang, G.C.; Li, Y.L. Two new triterpenoids from the roots of Rhodomyrtus tomentosa. Chem. Lett. 2016, 45, 368–370. [Google Scholar] [CrossRef]
- Hazrulrizawati, H.; Zeyohannes, S.S. Rhodomyrtus tomentosa: a phytochemical and pharmacological review. Asian J. Pharm. Clin. Res. 2017, 10, 1–7. [Google Scholar]
- Lai, T.N.H.; Herent, M.F.; Quetin-Leclercq, J.; Nguyen, T.B.T.; Rogez, H.; Larondelle, Y.; André, C.M. Piceatannol, a potent bioactive stilbene, as major phenolic component in Rhodomyrtus tomentosa. Food Chem. 2013, 138, 1421–1430. [Google Scholar] [CrossRef] [PubMed]
- Hiranrat, A.; Mahabusarakam, W. New acylphloroglucinols from the leaves of Rhodomyrtus tomentosa. Tetrahedron 2008, 64, 11193–11197. [Google Scholar] [CrossRef]
- Hiranrat, A.; Chitbankluoi, W.; Mahabusarakam, W.; Limsuwan, S.; Voravuthikunchai, S.P. A new flavellagic acid derivative and phloroglucinol from Rhodomyrtus tomentosa. Nat. Prod. Res. 2012, 6, 1904–1909. [Google Scholar] [CrossRef]
- Hiranrat, A.; Mahabusarakam, W.; Carroll, A.R.; Duffy, S.; Avery, V.M. Tomentosones A and B, hexacyclic phloroglucinol derivatives from the Thai shrub Rhodomyrtus tomentosa. J. Org. Chem. 2012, 77, 680–683. [Google Scholar] [CrossRef]
- Hiranrat, W.; Hiranrat, A.; Mahabusarakam, W. Rhodomyrtosones G and H, minor phloroglucinols from the leaves of Rhodomyrtus tomentosa. Phytochem. Lett. 2017, 21, 25–28. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Li, W.; Jiang, L.; Yang, L.; Chen, N.H.; Wu, Z.N.; Li, Y.L.; Wang, G.C. Cytotoxic and anti-inflammatory active phloroglucinol derivatives from Rhodomyrtus tomentosa. Phytochemistry 2018, 153, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.; Chen, L.F.; Zhang, Y.B.; Liu, Z.; Xiao, X.H.; Tang, W.; Wang, G.C.; Song, W.J.; Li, Y.L.; Li, M.M. Watsonianone A from Rhodomyrtus tomentosa fruit attenuates respiratory-syncytial-virus-induced inflammation in vitro. J. Agric. Food Chem. 2017, 65, 3481–3489. [Google Scholar] [CrossRef] [PubMed]
- Lowry, J.B. Anthocyanins of the Melastomataceae, Myrtaceae and some allied families. Phytochemistry 1976, 15, 513–516. [Google Scholar] [CrossRef]
- He, L.; Lihua, Z.; Jianbao, T.; Qui, H.; Su, Y. Properties and extraction of pigment from Rhodomyrtus tomentosa (Ait.) Hassk. Jingxi Huagong Bianjibu 1998, 15, 27–29. [Google Scholar]
- Hou, A.; Wu, Y.; Liu, Y. Flavone glycosides and an ellagitannin from downy rosemyrtle (Rhodomytus tomentosa). Chin. Tradit. Herb. Drugs 1999, 30, 645–647. [Google Scholar]
- Dachriyanus, N.V.; Salni, N.V.; Sargent, M.V.; Skelton, B.W.; Soediro, I.; Sutisna, M.; Allan, W.; Yulinah, E. Rhodomyrtone, an antibiotic from Rhodomyrtus tomentosa. Aust. J. Chem. 2002, 55, 229–232. [Google Scholar]
- Nojima, J.; Murakami, T.; Kiso, A. Piceatannol 4′-O-β-D-glucopyranoside for antioxidants, antiinflammation agents, skin-lightening agents, antiaging agents, tyrosinase inhibitors, and skin cosmetics. JP Patent JP2007223919A, 6 September 2007. [Google Scholar]
- Fahmi, R.; Sargent, M.; Skelton, B.; White, A. 5-Hydroxy-3, 3′, 4′, 5′, 7-pentamethoxyflavone (combretol). Acta Crystallogr. Sect. E Struct. Rep. Online 2004, 60, 86–88. [Google Scholar]
- Phan, M.G.; Tran, T.H.; Nguyen, T.H.A.; Phan, T.S. Contribution to the Study on Polar Constituents from the Buds of Rhodomyrtus tomentosa (Ait.) Hassk. (Myrtaceae). J. Chem. 2007, 45, 749–750. [Google Scholar]
- Liu, Y.Z.; Hou, A.J.; Ji, C.R.; Wu, Y.J. A new C-glycosidic hydrolysable tannin from Rhodomyrtus tomentosa. Chin. Chem. Lett. 1997, 8, 39–40. [Google Scholar]
- Liu, Y.; Hou, A.; Ji, C.; Wu, Y. Isolation and structure of hydrolysable tannins from Rhodomyrtus tomentosa. Nat. Prod. Res. Dev. 1998, 10, 14–19. [Google Scholar]
- Brophy, J.J.; Goldsack, R.J.; Forster, P.I. The essential oils of the Australian species of Rhodomyrtus (Myrtaceae). Flavour Fragr. J. 1997, 12, 103–108. [Google Scholar] [CrossRef]
- Hamrick, J.L.; Godt, M.J.W. Effects of life history traits on genetic diversity in plant species. Philos. Trans. R. Soc. Lond. 1996, B351, 1291–1298. [Google Scholar]
- Hue, T.S.; Abdullah, T.L.; Abdullah, N.A.P.; Sinniah, U.R. Genetic variation in Rhodomyrtus tomentosa (Kemunting) populations from Malaysia as revealed by inter-simple sequence repeat markers. Genet. Mol. Res. 2015, 14, 16827–16839. [Google Scholar] [CrossRef] [PubMed]
- Yao, X. Mating System and Genetic Diversity of Rhodomyrtus tomentosa (Myrtaceae) Detected by ISSR Markers. Master’s Thesis, University of Hong Kong, Pokfulam, Hong Kong, April 2010. [Google Scholar]
- Ong, H.; Nordiana, M. Malay ethno-medico botany in Machang, Kelantan, Malaysia. Fitoterapia 1999, 70, 502–513. [Google Scholar] [CrossRef]
- Chuakul, W. Medicinal plants in the Khok Pho district, pattani province (Thailand). Thai. J. Phytopharm. 2005, 12, 23–45. [Google Scholar]
- Lim, T.K. Rhodomyrtus tomentosa. In Edible Medicinal and Non-Medicinal Plants; Lim, T.K., Ed.; Springer: New York, NY, USA, 2012; Volume 6, pp. 732–737. [Google Scholar]
- Do, T.L. SIM. Medicine Plants and Remedies of Vietnam, 16th ed.; Thoi Dai Publication House: Hanoi, Vietnam, 2011; pp. 434–435. [Google Scholar]
- Wu, P.; Deng, Q.; Ma, G.; Li, N.; Yin, Y.; Zhu, B.; Chen, M.; Huang, R. Spray-drying of Rhodomyrtus tomentosa (Ait.) Hassk. flavonoids extract: Optimization, physicochemical, morphological, and antioxidant properties. Int. J. Food Sci. 2014, 2014, 420908. [Google Scholar] [CrossRef] [PubMed]
- Le, P.H.; Anh, H.P.; Van, V.; Man, L. Effects of core/wall ratio and inlet temperature on the retention of antioxidant compounds during the spray drying of Sim (Rhodomyrtus tomentosa) juice. J. Food Process. Preserv. 2015, 39, 2088–2095. [Google Scholar]
- Hoang, T.Y.; Trinh, T.T.L.; Mai, C.T.; Nguyen, T.T.H.; Lai, T.N.H.; Bui, V.N. Optimization of extraction of phenolic compounds that have high antioxidant activity from Rhodomyrtus tomentosa (ait.) Hassk. (sim) in chi linh, Hai Duong. J. Biol. 2015, 37, 509–519. [Google Scholar]
- Le, P.U.; Ngo, D.H.; Vo, T.S. Optimization of extraction conditions for achieving high content and antioxidant activities of the total phenolic compounds of Phu Quoc sim fruit (Rhodomyrtus tomentosa (aiton) hasak.). J. Med. Mater. 2018, 23, 157–166. [Google Scholar]
- Zhao, G.; Zhang, R.; Liu, L.; Deng, Y.; Wei, Z.; Zhang, Y.; Ma, Y.; Zhang, M. Different thermal drying methods affect the phenolic profiles, their bioaccessibility and antioxidant activity in Rhodomyrtus tomentosa (Ait.) Hassk berries. Food Sci. Technol. 2017, 79, 260–266. [Google Scholar] [CrossRef]
- Liu, G.L.; Guo, H.H.; Sun, Y.M. Optimization of the extraction of anthocyanins from the fruit skin of Rhodomyrtus tomentosa (ait.) hassk and identification of anthocyanins in the extract using high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS). Int. J. Mol. Sci. 2012, 13, 6292–6302. [Google Scholar] [CrossRef]
- Lai, T.N.H.; André, C.M.; Chirinos, R.; Nguyen, T.B.T.; Larondelle, Y.; Rogez, H. Optimisation of extraction of piceatannol from Rhodomyrtus tomentosa seeds using response surface methodology. Sep. Purif. Technol. 2014, 134, 139–146. [Google Scholar] [CrossRef]
- Gallin, J.I.; Snyderman, R. Overview in Inflammation: Basic Principles and Clinical Correlates, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 1999. [Google Scholar]
- Gautam, R.; Jachak, S.M. Recent developments in anti-inflammatory natural products. Med. Res. Rev. 2009, 29, 767–820. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.; Yang, W.S.; Yang, Y.; Nam, G.; Kim, J.H.; Yoon, D.H.; Noh, H.J.; Lee, S.; Kim, T.W.; Sung, G.H.; Cho, J.Y. In vitro and in vivo anti-inflammatory effect of Rhodomyrtus tomentosa methanol extract. J. Ethnopharmacol. 2013, 146, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Srisuwan, S.; Tongtawe, P.; Srimanote, P.; Voravuthikunchai, S.P. Rhodomyrtone modulates innate immune responses of THP-1 monocytes to assist in clearing methicillin-resistant Staphylococcus aureus. PLoS ONE 2014, 9, e110321. [Google Scholar] [CrossRef] [PubMed]
- Shiratake, S.; Nakahara, T.; Iwahashi, H.; Onodera, T.; Mizushina, Y. Rose myrtle (Rhodomyrtus tomentosa) extract and its component, piceatannol, enhance the activity of DNA polymerase and suppress the inflammatory response elicited by UVB-induced DNA damage in skin cells. Mol. Med. Rep. 2015, 12, 5857–5864. [Google Scholar] [CrossRef] [PubMed]
- Na-Phatthalung, P.; Teles, M.; Voravuthikunchai, S.P.; Tort, L.; Fierro-Castro, C. Immunomodulatory effects of Rhodomyrtus tomentosa leaf extract and its derivative compound, rhodomyrtone, on head kidney macrophages of rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem. 2018, 44, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Chorachoo, J.; Lambert, S.; Furnholm, T.; Roberts, L.; Reingold, L.; Auepemkiate, S.; Voravuthikunchai, S.P.; Johnston, A. The small molecule rhodomyrtone suppresses TNF-α and IL-17A-induced keratinocyte inflammatory responses: A potential new therapeutic for psoriasis. PLoS ONE 2018, 13, e0205340. [Google Scholar] [CrossRef] [PubMed]
- Scandalios, J.G. The rise of ROS. Trends Biochem. Sci. 2002, 27, 483–486. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef]
- Lavanya, G.; Voravuthikunchai, S.P.; Towatana, N.H. Acetone extract from rhodomyrtus tomentosa: A potent natural antioxidant. J. Evid. Based Complement. Altern. Med. 2012, 2012, 535479. [Google Scholar]
- Maskam, M.F.; Mohamad, J.; Abdulla, M.A.; Afzan, A.; Wasiman, I. Antioxidant activity of Rhodomyrtus tomentosa (kemunting) fruits and its effect on lipid profile in induced-cholesterol new zealand white rabbit. Sains Malaysiana 2014, 43, 1673–1684. [Google Scholar]
- Cui, C.; Zhang, S.; You, L.; Ren, J.; Luo, W.; Chen, W.; Zhao, M. Antioxidant capacity of anthocyanins from Rhodomyrtus tomentosa (Ait.) and identification of the major anthocyanins. Food Chem. 2013, 139, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kukreja, A.; Wadhwa, N.; Tiwari, A. Therapeutic role of resveratrol and piceatannol in disease prevention. J. Blood Disord. Transf. 2014, 5, 240. [Google Scholar] [CrossRef]
- Wu, P.; Ma, G.; Li, N.; Deng, Q.; Yin, Y.; Huang, R. Investigation of in vitro and in vivo antioxidant activities of flavonoids rich extract from the berries of Rhodomyrtus tomentosa (Ait.) Hassk. Food Chem. 2015, 173, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Kusuma, I.W.; Ainiyati, N.; Suwinarti, W. Search for biological activities from an invasive shrub species rose myrtle (Rhodomyrtus tomentosa). Nusant. Biosci. 2016, 8, 55–59. [Google Scholar] [CrossRef]
- Mordmuang, A.; Voravuthikunchai, S.P. Rhodomyrtus tomentosa (Aiton) Hassk. leaf extract: An alternative approach for the treatment of staphylococcal bovine mastitis. Res. Vet. Sci. 2015, 102, 242–246. [Google Scholar] [CrossRef]
- Limsuwan, S.; Homlaead, S.; Watcharakul, S.; Chusri, S.; Moosigapong, K.; Saising, J.; Voravuthikunchai, S.P. Inhibition of microbial adhesion to plastic surface and human buccal epithelial cells by Rhodomyrtus tomentosa leaf extract. Arch. Oral. Biol. 2014, 59, 1256–1265. [Google Scholar] [CrossRef]
- Na-Phatthalung, P.; Chusri, S.; Suanyuk, N.; Voravuthikunchai, S.P. In vitro and in vivo assessments of Rhodomyrtus tomentosa leaf extract as an alternative anti-streptococcal agent in Nile tilapia (Oreochromis niloticus L.). J. Med. Microbiol. 2017, 66, 430–439. [Google Scholar] [CrossRef]
- Limsuwan, S.; Kayser, O.; Voravuthikunchai, S.P. Antibacterial activity of Rhodomyrtus tomentosa (Aiton) Hassk. leaf extract against clinical isolates of Streptococcus pyogenes. J. Evid. Based Complement. Altern. Med. 2012, 2012, 697183. [Google Scholar]
- Rosli, M.F.A.; Asaruddin, M.R.; Romli, A.M.; Radhakrishnan, S.E.; Nyawai, T.N.; Ahmad, M.N. Phytochemical studies of Rhodomyrtus tomentosa leaves, stem and fruits as antimicrobial and antioxidant agents. Trans. Sci. Technol. 2017, 4, 396–401. [Google Scholar]
- Odedina, G.F.; Vongkamjan, K.; Voravuthikunchai, S.P. Potential bio-control agent from Rhodomyrtus tomentosa against Listeria monocytogenes. Nutrients 2015, 7, 7451–7468. [Google Scholar] [CrossRef] [PubMed]
- Hmoteh, J.; Syed Musthafa, K.; Pomwised, R.; Voravuthikunchai, S.P. Effects of Rhodomyrtus tomentosa extract on killing activity of human neutrophils and membrane integrity of enterohaemorrhagic Escherichia coli O157:H7. Molecules 2016, 21, 692. [Google Scholar] [CrossRef] [PubMed]
- Limsuwan, S.; Trip, E.N.; Kouwen, T.R.; Piersma, S.; Hiranrat, A.; Mahabusarakam, W.; Voravuthikunchai, S.P.; van Dijl, J.M.; Kayser, O. Rhodomyrtone: A new candidate as natural antibacterial drug from Rhodomyrtus tomentosa. Phytomedicine 2009, 16, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Saising, J.; Hiranrat, A.; Mahabusarakam, W.; Ongsakul, M.; Voravuthikunchai, S.P. Rhodomyrtone from Rhodomyrtus tomentosa (Aiton) Hassk. as a natural antibiotic for Staphylococcal cutaneous Infections. J. Health Sci. 2008, 54, 589–595. [Google Scholar] [CrossRef]
- Limsuwan, S.; Hesseling-Meinders, A.; Voravuthikunchai, S.P.; van Dijl, J.M.; Kayser, O. Potential antibiotic and anti-infective effects of Rhodomyrtone from Rhodomyrtus tomentosa (Aiton) Hassk. on Streptococcus pyogenes as revealed by proteomics. Phytomedicine 2011, 18, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Srisuwan, S.; Mackin, K.E.; Hocking, D.M.; Lyras, D.; Bennett-Wood, V.R.; Voravuthikunchai, S.P.; Robins-Browne, R.M. Antibacterial activity of rhodomyrtone on Clostridium difficile vegetative cells and spores in vitro. Int. J. Antimicrob. Agents 2018, 52, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Leejae, S.; Taylor, P.W.; Voravuthikunchai, S.P. Antibacterial mechanisms of Rhodomyrtone against important hospital-acquired antibiotic-resistant pathogenic bacteria. J. Med. Microbiol. 2013, 62, 78–85. [Google Scholar] [CrossRef]
- Saising, J.; Voravuthikunchai, S.P. Anti Propionibacterium acnes activity of rhodomyrtone, an effective compound from Rhodomyrtus tomentosa (Aiton) Hassk. Leaves. Anaerobe 2012, 18, 400–404. [Google Scholar] [CrossRef]
- Bach, Q.N.; Hongthong, S.; Quach, L.T.; Pham, L.V.; Pham, T.V.; Kuhakarn, C.; Reutrakul, V.; Nguyen, P.T.M. Antimicrobial activity of rhodomyrtone isolated from Rhodomyrtus tomentosa (Aiton) Hassk. Nat. Prod. Res. 2019, 2, 1–6. [Google Scholar] [CrossRef]
- Saising, J.; Ongsakul, M.; Voravuthikunchai, S.P. Rhodomyrtus tomentosa (Aiton) Hassk. ethanol extract and rhodomyrtone: A potential strategy for the treatment of biofilm-forming staphylococci. J. Med. Microbiol. 2011, 60, 1793–1800. [Google Scholar] [CrossRef] [PubMed]
- Wunnoo, S.; Saising, J.; Voravuthikunchai, S.P. Rhodomyrtone inhibits lipase production, biofilm formation, and disorganizes established biofilm in Propionibacterium acnes. Anaerobe 2017, 43, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Leejae, S.; Hasap, L.; Voravuthikunchai, S.P. Inhibition of staphyloxanthin biosynthesis in Staphylococcus aureus by rhodomyrtone, a novel antibiotic candidate. J. Med. Microbiol. 2013, 62, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Visutthi, M.; Srimanote, P.; Voravuthikunchai, S.P. Responses in the expression of extracellular proteins in Methicillin-Resistant Staphylococcus aureus treated with Rhodomyrtone. J. Microbiol. 2011, 49, 956–964. [Google Scholar] [CrossRef] [PubMed]
- Sianglum, W.; Srimanote, P.; Wonglumsom, W.; Kittiniyom, K.; Voravuthikunchai, S.P. Proteome analyses of cellular proteins in Methicillin-Resistant Staphylococcus aureus treated with Rhodomyrtone, a novel antibiotic candidate. PLoS ONE 2011, 6, e16628. [Google Scholar] [CrossRef] [PubMed]
- Mitsuwan, W.; Olaya-Abril, A.; Calderón-Santiago, M.; Jiménez-Munguía, I.; González-Reyes, J.A.; Priego-Capote, F.; Voravuthikunchai, S.P.; Rodríguez-Ortega, M.J. Integrated proteomic and metabolomic analysis reveals that rhodomyrtone reduces the capsule in Streptococcus pneumonia. Sci. Rep. 2017, 7, 2715. [Google Scholar] [CrossRef] [PubMed]
- Sianglum, W.; Saeloh, D.; Tongtawe, P.; Wootipoom, N.; Indrawattana, N.; Voravuthikunchai, S.P. Early effects of Rhodomyrtone on membrane integrity in Methicillin-Resistant Staphylococcus aureus. Microb. Drug Resist. 2018, 24, 882–889. [Google Scholar] [CrossRef]
- Saeloh, D.; Tipmanee, V.; Jim, K.K.; Dekker, M.P.; Bitter, W.; Voravuthikunchai, S.P.; Wenzel, M.; Hamoen, L.W. The novel antibiotic rhodomyrtone traps membrane proteins in vesicles with increased fluidity. PLoS Pathog. 2018, 14, e1006876. [Google Scholar] [CrossRef]
- Hail, N., Jr. Mitochondria: A novel target for the chemoprevention of cancer. Apoptosis 2005, 10, 687–705. [Google Scholar] [CrossRef]
- Wattanapitayakul, S.K.; Chularojmontri, L.; Herunsalee, A.; Charuchongkolwongse, S.; Niumsakul, S.; Bauer, J.A. Screening of antioxidants from medicinal plants for cardioprotective effect against doxorubicin toxicity. Basic Clin. Pharmacol. Toxicol. 2005, 96, 80–87. [Google Scholar] [CrossRef]
- Reddy, L.; Odhav, B.; Bhoola, K.D. Natural products for cancer prevention: A global perspective. Pharmacol. Therapeut. 2003, 99, 1–13. [Google Scholar] [CrossRef]
- Nirmala, M.J.; Samundeeswari, A.; Sankar, P.D. Natural plant resources in anti-cancer therapy-A review. Res. Plant Biol. 2011, 1, 1–14. [Google Scholar]
- Bhanot, A.; Sharma, R.; Noolvi, M.N. Natural sources as potential anti-cancer agents: A review. Int. J. Phytomed. 2011, 3, 9–26. [Google Scholar]
- Abd Hamid, H.; Mutazah, R.; Yusoff, M.M.; Abd Karim, N.A.; Abdull Razis, A.F. Comparative analysis of antioxidant and antiproliferative activities of Rhodomyrtus tomentosa extracts prepared with various solvents. Food Chem. Toxicol. 2017, 108, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Chorachoo, J.; Saeloh, D.; Srichana, T.; Amnuaikit, T.; Musthafa, K.S.; Sretrirutchai, S.; Voravuthikunchai, S.P. Rhodomyrtone as a potential anti-proliferative and apoptosis inducing agent in HaCaT keratinocyte cells. Eur. J. Pharmacol. 2016, 772, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Tayeh, M.; Nilwarangkoon, S.; Tanunyutthawongse, C.; Mahabusarakum, W.; Watanapokasin, R. Apoptosis and antimigration induction in human skin cancer cells by rhodomyrtone. Exp. Ther. Med. 2018, 15, 5035–5040. [Google Scholar] [CrossRef]
- Tayeh, M.; Nilwarangoon, S.; Mahabusarakum, W.; Watanapokasin, R. Anti-metastatic effect of rhodomyrtone from Rhodomyrtus tomentosa on human skin cancer cells. Int. J. Oncol. 2017, 50, 1035–1043. [Google Scholar] [CrossRef] [PubMed]
- Larrosa, M.; Tom’as-Barber’an, F.A.; Esp’ın, J.C. The grape and wine polyphenol piceatannol is a potent inducer of apoptosis in human SK-Mel-28 melanoma cells. Eur. J. Nutr. 2004, 43, 275–284. [Google Scholar] [CrossRef]
- Kita, Y.; Miura, Y.; Yagasaki, K. Antiproliferative and anti-invasive effect of piceatannol, a polyphenol present in grapes and wine, against hepatoma AH109a cells. J. Biomed. Biotechnol. 2012, 2012, 672416. [Google Scholar] [CrossRef]
- Zhou, X.W.; Xia, Y.Z.; Zhang, Y.L.; Luo, J.G.; Han, C.; Zhang, H.; Zhang, C.; Yang, L.; Kong, L.Y. Tomentodione M sensitizes multidrug resistant cancer cells by decreasing P-glycoprotein via inhibition of p38 MAPK signaling. Oncotarget 2017, 8, 101965–101983. [Google Scholar] [CrossRef]
- Chai, H.; Liu, B.; Zhan, H.; Li, X.; He, Z.; Ye, J.; Guo, Q.; Chen, J.; Zhang, J.; Li, S. Antidepressant effects of rhodomyrtone in mice with chronic unpredictable mild stress-induced depression. Int. J. Neuropsychopharmacol. 2018, 22, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Hasibuan, R.; Ilyas, S.; Hanum, S. Effect of leaf extract Haramonting (Rhodomyrtus tomentosa) to lower blood sugar levels in mice induced by alloxan. Int. J. Pharm. Tech. Res. 2015, 8, 284–291. [Google Scholar]
- Tung, N.H.; Ding, Y.; Choi, E.M.; Kiem, V.P.; Minh, V.C.; Kim, Y.H. New anthracene glycosides from Rhodomyrtus tomentosa stimulate osteoblastic differentiation of MC3T3-E1 cells. Arch. Pharm. Res. 2009, 32, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Geetha, K.M.; Sridhar, C.; Murugan, V. Antioxidant and healing effect of aqueous alcoholic extract of Rhodomyrtus tomentosa (Ait.) Hassk on chronic gastric ulcers in rats. J. Pharm. Res. 2010, 3, 2860–2862. [Google Scholar]
No. | Compounds | Classification | Source | Ref. |
---|---|---|---|---|
1 | Lupeol, β-amyrin, β-amyrenonol, and botulin | Terpenoid | Leaves | [7] |
2 | 3β-hydroxy-21α-hop-22(29)-en-30-al | Terpenoid | Leaves | [9] |
3 | Rhodomentones A and B | Terpenoid | Leaves | [10] |
4 | Tomentosenol A, 4S-focifolidione, and 4R-focifolidione | Terpenoid | Leaves | [11] |
5 | Tomentodione E | Terpenoid | Leaves | [12] |
6 | Rhodomyrtials A and B, tomentodiones A–D | Terpenoid | Leaves | [13] |
7 | Tomentodiones E–G and tomentodiones H–M | Terpenoid | Leaves | [14] |
8 | Tomentodiones H–M | Terpenoid | Roots | [15] |
9 | Rhodomyrtosone A, rhodomyrtosone B, rhodomyrtosone C, and rhodomyrtosone D | Phenolics | Leaves | [18] |
10 | 3,3′,4,4′-tetra-O-methylflavellagic acid, rhodomyrtosone I, stigmast-4-en-3-one, rhodomyrtone, rhodomyrtosone D, oleanolic acid, methyl gallate, and 3-O-methylellagic acid 4-O-rhamnopyranoside | Phenolics | Stems | [19] |
11 | Tomentosones A and B, rhodomyrtosones G and H | Phenolics | Leaves | [20,21] |
12 | Tomentodiones N−T | Phenolics | Leaves | [22] |
13 | Watsonianone A | Phenolics | Fruits | [23] |
14 | Malvidin-3-glucoside, pelargonidin-3,5-biglucoside, delphinidin-3-galactoside, and cyanidin-3-galactoside | Phenolics | Flowers | [24,25] |
15 | Myricetin 3-O-α-L-furanoarabinoside, myricetin 3-O-β-D-glucoside, and myricetin 3-O-α-L-rhamnoside | Phenolics | Leaves | [26] |
16 | Rhodomyrtone and piceatannol 4′-O-β-D-glucopyranoside | Phenolics | Leaves | [27,28] |
17 | Combretol | Phenolics | Bark and twigs | [29] |
18 | Kaempferol 3-O-β-sambubioside | Phenolics | Buds | [30] |
19 | Tomentosin, pedunculagin, casuariin, and castalagin | Phenolics | Leaves | [31,32] |
20 | α-pinene, β-pinene, and aromadendrene | Lipids | Leaves | [33] |
No. | Bioactive Agents | Biological Activity | Ref. |
---|---|---|---|
1 | Acetone leaves extract | Inhibiting lipid peroxidation (equal to 0.93 ± 0.07 mM gallic acid at 100 μg/mL). Reducing Fe3+ to Fe2+ (equal to 10.8 ± 1.12 mM gallic acid at 1 mg/mL) Increasing SOD, CAT, and GPx enzyme activities in blood, liver, and kidneys (0.8 g/kg body weight) | [57] |
2 | Methanol fruits extract | Scavenging 62.13% DPPH (200 µg/mL) and chelating 36% metal (100 µg/mL) | [58] |
3 | Anthocyanin extract from fruits | Scavenging DPPH (IC50, 6.27 ± 0.25 µg/mL) and ABTS (IC50, 90.3 ± 1.52 µg/mL) radicals | [59] |
4 | Flavonoid-rich extract from fruits | Reducing power (EC50, 28.67 ± 1.37 µg/mL), scavenging superoxide radicals (EC50, 214.83 ± 6.54 µg/mL), hydroxyl radicals (EC50, 217.73 ± 3.46 µg/mL), and DPPH radicals (EC50, 10.97 ± 0.18 µg/mL), and inhibiting lipid peroxidation Enhancing SOD, GSH-Px, and CAT in serums of mice | [61] |
No. | Bioactive Agents | Biological Activity | Ref. |
---|---|---|---|
1 | Leaves, stem, twig and fruit extracts | Inhibiting Bacillus cereus, Candida albicans, Salmonella typhi, and Propionibacterium acnes | [62] |
2 | Ethanol leaves extract | Inhibiting staphylococcal bacteria from milk, MIC = 16–64 μg/mL and MBC = 64–128 μg/mL | [63] |
3 | Ethanol leaves extract | Inhibiting Staphylococcus aureus ATCC 25923, Streptococcus mutans, and C. albicans ATCC 90028, MIC = 31.25, 15.62, and 1000 µg/mL, respectively. | [64] |
4 | Ethanol leaves extract | Inhibiting Streptococcus agalactiae and Streptococcus iniae, MIC = 7.8–62.5 µg/mL | [65] |
5 | Ethanol leaves extract | Inhibiting Streptococcus pyogenes, MIC = 3.91–62.5 μg/mL | [66] |
6 | Methanol extracts of leaves, fruits, and stems | Inhibiting Escherichia coli and S. aureus | [67] |
7 | Ethanol leaves extract | Inhibiting Listeria monocytogenes, MIC = 16–32 µg/mL and MBC = 128–512 µg/mL | [68] |
8 | Rhodomyrtone | Inhibiting B. cereus, Bacillus subtilis, Enterococcus faecalis, S. aureus, methicillin-resistant S. aureus (MRSA), Staphylococcus epidermidis, Streptococcus gordonii, S. mutans, Streptococcus pneumoniae, S. pyogenes, Streptococcus salivarius, Clostridium difficile, epidemic methicillin-resistant S. aureus, vancomycin-intermediate S. aureus, and vancomycin-resistant enterococcal strains, MBC = 0.39–0.78 µg/mL | [70,71,72,73,74] |
9 | Rhodomyrtone | Inhibiting staphyloxanthin biosynthesis in bacteria | [79] |
10 | Rhodomyrtone | Suppressing acid production and tolerance via inhibiting membrane-bound enzymes F-ATPase and phosphotransferase system, glyceraldehyphosphate dehydrogenase, and pyruvate kinase | [76] |
11 | Rhodomyrtone | Interfering in metabolic pathways such as glycolysis, gluconeogenesis, and amino acid metabolism and inhibiting the expression of streptococcal toxins such as the CAMP factor and streptococcal pyrogenic exotoxin C | [72] |
12 | Rhodomyrtone | Suppressing cell wall hydrolysis, disturbing the bacterial cell wall biosynthesis and cell division | [80,81] |
13 | Rhodomyrtone | Inhibiting amino acid biosynthesis, nucleic acid biosynthesis, and glucid and lipid metabolism | [82] |
14 | Rhodomyrtone | Causing bacterial cell membrane damage and membrane invaginations | [83,84] |
No. | Bioactive Agents | Biological Activity | Ref. |
---|---|---|---|
1 | Ethyl acetate extract of roots | Anti-proliferative activity on HepG2 (IC50 = 11.47 ± 0.280 µg/mL), MCF-7 (IC50 = 2.68 ± 0.529 µg/mL), and HT29 (IC50 = 16.18 ± 0.538 µg/mL) after 72 h. | [90] |
2 | Rhodomyrtone | Suppressing 61.82–85.34% HaCaT cell proliferation after 72 h treatment. Inducting 21.0–77.8% apoptosis of keratinocytes after 72 h treatment. | [91] |
3 | Rhodomyrtone | Inhibiting proliferation of human epidermoid carcinoma A431 cells (IC50 = 8.04 ± 0.11 µg/mL). Inducing cell apoptosis through the activation of caspase-7 and poly (ADP-Ribose) polymerase cleavage, and causing cell cycle arrest at the G1 phase. | [92] |
4 | Rhodomyrtone | Inhibiting A431 cancer cell metastasis by reducing cell migration, cell adhesive ability, and cell invasion. | [93] |
5 | Rhodomyrtosone I and B | Inhibiting HeLa and Vero cells (IC50 < 10 μM) | [19] |
6 | Piceatannol | Inducing apoptosis and cell cycle arrest in human melanoma cells and hepatoma cells. | [94,95] |
7 | Tomentodione M | Increasing the cytotoxicity of chemotherapeutic drugs in human breast cancer cell/reversed multidrug resistance and human immortalized myelogenous leukemia cells/reversed multidrug resistance. Enhancing cell apoptosis. | [96] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vo, T.S.; Ngo, D.H. The Health Beneficial Properties of Rhodomyrtus tomentosa as Potential Functional Food. Biomolecules 2019, 9, 76. https://doi.org/10.3390/biom9020076
Vo TS, Ngo DH. The Health Beneficial Properties of Rhodomyrtus tomentosa as Potential Functional Food. Biomolecules. 2019; 9(2):76. https://doi.org/10.3390/biom9020076
Chicago/Turabian StyleVo, Thanh Sang, and Dai Hung Ngo. 2019. "The Health Beneficial Properties of Rhodomyrtus tomentosa as Potential Functional Food" Biomolecules 9, no. 2: 76. https://doi.org/10.3390/biom9020076
APA StyleVo, T. S., & Ngo, D. H. (2019). The Health Beneficial Properties of Rhodomyrtus tomentosa as Potential Functional Food. Biomolecules, 9(2), 76. https://doi.org/10.3390/biom9020076