Honokiol Enhances TRAIL-Mediated Apoptosis through STAMBPL1-Induced Survivin and c-FLIP Degradation
1
Department of Immunology, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Korea
2
Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
3
Department of Experimental Carcinogenesis, Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
*
Author to whom correspondence should be addressed.
Biomolecules 2019, 9(12), 838; https://doi.org/10.3390/biom9120838
Received: 22 November 2019 / Revised: 4 December 2019 / Accepted: 6 December 2019 / Published: 6 December 2019
(This article belongs to the Special Issue Plant-Derived Natural Compounds in the Management of Cancer: Significance and Challenges)
Honokiol is a natural biphenolic compound extracted from traditional Chinese medicine Magnolia species, which have been known to display various biological effects including anti-cancer, anti-proliferative, anti-angiogenic, and anti-metastatic activities in cancer cells. Here, we found that honokiol sensitizes cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through downregulation of anti-apoptotic proteins survivin and c-FLIP. Ectopic expression of survivin and c-FLIP markedly abolished honokiol and TRAIL-induced apoptosis. Mechanistically, honokiol induced protein degradation of c-FLIP and survivin through STAMBPL1, a deubiquitinase. STAMBPL1 interacted with survivin and c-FLIP, resulted in reduction of ubiquitination. Knockdown of STAMBPL1 reduced survivin and c-FLIP protein levels, while overexpression of STAMBPL1 inhibited honokinol-induced survivin and c-FLIP degradation. Our findings provided that honokiol could overcome TRAIL resistance through survivin and c-FLIP degradation induced by inhibition of STAMBPL1 expression.
View Full-Text
▼
Show Figures
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
- Supplementary File 1:
ZIP-Document (ZIP, 1906 KiB)
MDPI and ACS Style
Woo, S.M.; Seo, S.U.; Kubatka, P.; Min, K.-j.; Kwon, T.K. Honokiol Enhances TRAIL-Mediated Apoptosis through STAMBPL1-Induced Survivin and c-FLIP Degradation. Biomolecules 2019, 9, 838. https://doi.org/10.3390/biom9120838
AMA Style
Woo SM, Seo SU, Kubatka P, Min K-j, Kwon TK. Honokiol Enhances TRAIL-Mediated Apoptosis through STAMBPL1-Induced Survivin and c-FLIP Degradation. Biomolecules. 2019; 9(12):838. https://doi.org/10.3390/biom9120838
Chicago/Turabian StyleWoo, Seon M.; Seo, Seung U.; Kubatka, Peter; Min, Kyoung-jin; Kwon, Taeg K. 2019. "Honokiol Enhances TRAIL-Mediated Apoptosis through STAMBPL1-Induced Survivin and c-FLIP Degradation" Biomolecules 9, no. 12: 838. https://doi.org/10.3390/biom9120838
Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.
Search more from Scilit