Cyclodextrins: Emerging Medicines of the New Millennium
Abstract
:1. Introduction
1.1. Historical Overview
1.2. Regulatory Status of Cyclodextrins
2. Medicinal Cyclodextrins
2.1. The Early Steps
2.2. Antiviral Activity
2.2.1. HIV Management
2.2.2. Influenza Treatment and Prevention
2.2.3. Interactions with the Dengue Virus
2.2.4. Other Pathogenic Viruses Targeted by CDs
2.3. Antiparasitic Activity
2.3.1. Leishmanicidal Cyclodextrins
2.3.2. Sulphated Cyclodextrins against Malaria
2.3.3. Cyclodextrins against Cryptosporidiosis
2.4. Cyclodextrins in Cardiovascular Diseases
2.5. HPβCD under Clinical Trials for Focal Segmental Glomerulosclerosis
2.6. HPβCD, an Orphan Drug for Niemann–Pick Disease Type C
2.7. Sugammadex, a New Drug for Quick Reversal of Neuromuscular Blockage
3. Cyclodextrins in Biomedical Technology
3.1. Semen Cryopreservation
3.2. Biomimetic Corneal Implants
3.3. Joint Fillers for Arthritis
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
API | Active pharmaceutical ingredient |
BALB/c | Bagg albino mouse (inbred research mouse strain) |
BMP-2 | Bone morphogenetic protein 2 (a subclass of TGF) |
CCDC | Cambridge Crystallographic Data Centre |
CD | Cyclodextrin |
CNS | Central nervous system |
DEN | Dengue virus |
DIMEB | Heptakis-2,6-di-O-methyl-β-cyclodextrin |
EMA | European Medicines Agency |
FAO | Food and Agriculture Organization of the United Nations |
FDA | Food and Drug Administration |
FSGS | Focal segmental glomerulosclerosis |
GRAS | Generally regarded as safe |
H1N1 | Influenza virus type A subtype with hemmagluttinin 1 and neuraminidase 1 |
HCV | Hepatitis C virus |
HMPV | Human metapneumovirus |
HPβCD | Hydroxypropylated-β-cyclodextrin (in random positions) |
HPIV3 | Human parainfluenza virus type 3 |
HSV-1 | Herpes simplex virus type 1 |
IBV | Infectious bronchitis virus |
IL-10 | Interleukin 10 |
JECFA | Joint FAO/WHO Expert Committee on Food Additives |
JEV | Japanese encephalitis virus |
LAMP-1 | Lysosomal-associated membrane protein 1 |
MDCK | Madin-Darby Canis familiaris kidney epithelial cell line |
NDV | Newcastle disease virus |
NPD | Niemann-Pick disease |
NS1 | Non-structural protein 1 |
RAMEB | Randomly methylated β-cyclodextrin |
SIV | Simian immunodeficiency virus |
TRIMEB | Heptakis-2,3,6-tris-O-methyl-β-cyclodextrin |
TNF-α | Tumour necrosis factor alpha |
U937 | Homo sapiens pleural myelomonocyte cell line |
VZV | Varicela-zooster virus (chickenpox virus) |
WHO | World Health Organisation |
TGF-β1 | Transforming growth factor beta 1 (cytokine family) |
References
- Villiers, M.A. Sur la fermentation de la fécule par l’action du ferment butyrique. C. R. Acad. Sci. 1891, 112, 69–71. [Google Scholar]
- Braga, S.S.; Aree, T.; Immamura, K.; Vertut, P.; Boal-Palheiros, I.; Sänger, W.; Teixeira-Dias, J.J.C. Structure of the β-Cyclodextrin·p-Hydroxybenzaldehyde Inclusion Complex in Aqueous Solution and in the Crystalline State. J. Incl. Phenom. Macrocycl. Chem. 2002, 43, 115–125. [Google Scholar] [CrossRef]
- Crini, G. A History of Cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. [Google Scholar] [CrossRef] [PubMed]
- Freudenberg, K. Polysaccharides and lignin. Annu. Rev. Biochem. 1939, 8, 81–112. [Google Scholar] [CrossRef]
- Freudenberg, K.; Jacobi, R. Über Schardingers Dextrine aus Stärke. Justus Liebigs Ann. Chem. 1935, 518, 102–108. [Google Scholar] [CrossRef]
- Borchert, W. Röntgenographische Untersuchungen an Schardinger-Dextrinen. Z. Naturforschg. B 1948, 3, 464–465. [Google Scholar]
- Cramer, F. Einschlussverbindungen (Inclusion Compounds); Springer-Verlag: Berlin, Germany, 1954. [Google Scholar]
- Szejtli, J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev. 1998, 98, 1743–1753. [Google Scholar] [CrossRef]
- Rakmai, J.; Cheirlsip, B.; Mejuto, J.C.; Torrado-Agrasar, A.; Simal-Gándara, J. Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Food Hydrocoll. 2017, 65, 157–164. [Google Scholar] [CrossRef]
- Rakmai, J.; Cheirlsip, B.; Torrado-Agrasar, A.; Simal-Gándara, J.; Mejuto, J.C. Encapsulation of yarrow essential oil in hydroxypropyl-beta-cyclodextrin: Physiochemical characterization and evaluation of bio-efficacies. CYTA J. Food 2017, 15, 1–9. [Google Scholar] [CrossRef]
- Rakmai, J.; Cheirlsip, B.; Mejuto, J.C.; Simal-Gándara, J.; Torrado-Agrasar, A. Antioxidant and antimicrobial properties of encapsulated guava leaf oil in hydroxypropyl-beta-cyclodextrin. Ind. Crops Prod. 2018, 111, 219–225. [Google Scholar] [CrossRef]
- Kroes, R.; Verger, P.; Larsen, J.C. Safety evaluation of certain food additives (α-cyclodextrin-addendum). WHO Food Addit. Ser. 2006, 54, 3–15. [Google Scholar]
- Pollit, F.D. Safety evaluation of certain food additives (β-cyclodextrin). WHO Food Addit. Ser. 1996, 35, 257–268. [Google Scholar]
- Abbott, P.J. JEFCA 55th meeting. Safety evaluation of certain food additives and contaminants (γ-cyclodextrin). WHO Food Addit. Ser. 2000, 44, 969. [Google Scholar]
- Agency Response Letter Gras notice GRN No. 155; Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, US Food and Drug Administration: Silver Spring, MD, USA, 2004.
- Agency Response Letter Gras notice GRN No. 74; Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, US Food and Drug Administration: Silver Spring, MD, USA, 2001.
- Agency Response Letter Gras notice GRN No. 46; Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, US Food and Drug Administration: Silver Spring, MD, USA, 2000.
- European Medicines Agency. Background Review for Cyclodextrins Used as Excipients; EMA: London, UK, 2014; Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Report/2014/12/WC500177936.pdf (accessed on 8 November 2018).
- Irie, T.; Otagiri, M.; Sunada, M.; Uekama, K.; Ohtani, Y.; Yamada, Y.; Sugiyama, Y. Cyclodextrin-induced hemolysis and shape changes of human erythrocytes in vitro. J. Pharm. Dyn. 1982, 5, 741–744. [Google Scholar] [CrossRef] [PubMed]
- Ohtani, Y.; Irie, T.; Uekama, K.; Fukunaga, K.; Pitha, J. Differential effects of α-, β- and γ-cyclodextrins on human erythrocytes. Eur. J. Biochem. 1989, 186, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Nitalikar, M.M.; Sakarkar, D.M.; Jain, P.V. The cyclodextrins: A review. J. Curr. Pharm. Res. 2012, 10, 1–6. [Google Scholar]
- Uekama, K.; Hirayama, F.; Irie, T. Pharmaceutical Uses of Cyclodextrin Derivatives. In High Performance Biomaterials, A Comprehensive Guide to Medical and Pharmaceutical Applications; Szycher, M., Ed.; Technomic: Lancaster, PA, USA, 1991; pp. 789–806. [Google Scholar]
- Vaccine Excipients Summary. Excipients Included in U.S. Vaccines, by Vaccine. Available online: https://www.cdc.gov/vaccines/pubs/pinkbook/downloads/appendices/b/excipient-table-2.pdf (accessed on 5 August 2019).
- Szente, L.; Singhal, A.; Domokos, A.; Song, B. Cyclodextrins: Assessing the Impact of Cavity Size, Occupancy, and Substitutions on Cytotoxicity and Cholesterol Homeostasis. Molecules 2018, 23, 1228. [Google Scholar] [CrossRef]
- Kiss, T.; Fenyvesi, F.; Bácskay, I.; Váradi, J.; Fenyvesi, É.; Iványi, R.; Szente, L.; Tósaki, Á.; Vecsernyé, M. Evaluation of the cytotoxicity of β-cyclodextrin derivatives: Evidence for the role of cholesterol extraction. Eur. J. Pharm. Sci. 2010, 40, 376–380. [Google Scholar] [CrossRef]
- Captisol. Available online: https://www.captisol.com/technology/history (accessed on 17 September 2019).
- Moriya, T.; Kurita, H.; Matsumoto, K.; Otake, T.; Mori, H.; Morimoto, M.; Ueba, N.; Kunita, N. Potent Inhibitory Effect of a Series of Modified Cyclodextrin Sulfates (mCDS) on the Replication of HIV-1 in Vitro. J. Med. Chem. 1991, 34, 2301–2304. [Google Scholar] [CrossRef]
- Weiner, D.B.; Williams, W.V.; Weisz, P.B.; Greene, M.I. Synthetic cyclodextrin derivatives inhibit HIV infection in vitro. Pathobiology 1992, 60, 206–212. [Google Scholar] [CrossRef]
- Moriya, T.; Sato, K.; Kurita, H.; Matsumoto, K.; Otake, T.; Mori, H.; Morimoto, M.; Ueba, N.; Kunita, N. A New Candidate for an Anti-HIV-1 Agent: Modified Cyclodextrin Sulfate (mCDS71). J. Med. Chem. 1993, 36, 1674–1677. [Google Scholar] [CrossRef]
- Mori, H.; Otake, T.; Oishi, I.; Kurimura, T. Characterization of human immunodeficiency virus type 1 resistant to modified cyclodextrin sulphate (mCDS71) in vitro. Antivir. Chem. Chemother. 1999, 10, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Cimakasky, L.M.; Hampton, R.; Nguyen, D.H.; Hildreth, J.E.K. Lipid Rafts and HIV Pathogenesis: Host Membrane Cholesterol Is Required for Infection by HIV Type 1. Aids Res. Hum. Retrov. 2001, 17, 1009–1019. [Google Scholar] [CrossRef] [PubMed]
- Castagne, D.; Fillet, M.; Delattre, L.; Evrard, B.; Nusgens, B.; Piel, B. Study of the cholesterol extraction capacity of β-cyclodextrin and its derivatives, relationships with their effects on endothelial cell viability and on membrane models. J. Incl. Phenom. Macrocycl. Chem. 2009, 63, 225–231. [Google Scholar] [CrossRef]
- Liao, Z.; Graham, D.R.; Hildreth, J.E. Lipid rafts and HIV pathogenesis: Virion-associated cholesterol is required for fusion and infection of susceptible cells. AIDS Res. Hum. Retrovir. 2003, 19, 675–687. [Google Scholar] [CrossRef]
- Graham, D.R.M.; Chertova, E.; Hilburn, J.M.; Arthur, L.O.; Hildreth, J.E.K. Cholesterol Depletion of Human Immunodeficiency Virus Type 1 and Simian Immunodeficiency Virus with β-Cyclodextrin Inactivates and Permeabilizes the Virions: Evidence for Virion-Associated Lipid Rafts. J. Virol. 2003, 77, 8237–8248. [Google Scholar] [CrossRef] [PubMed]
- Khanna, K.V.; Whaley, K.J.; Zeitlin, L.; Moench, T.R.; Mehrazar, K.; Cone, R.A.; Liao, Z.; Hildreth, J.E.; Hoen, T.E.; Shultz, L.; et al. Vaginal transmission of cell-associated HIV-1 in the mouse is blocked by a topical, membrane-modifying agent. J. Clin. Investig. 2002, 109, 205–211. [Google Scholar] [CrossRef]
- Matassoli, F.L.; Leão, I.C.; Bezerra, B.B.; Pollard, R.B.; Lütjohann, D.; Hildreth, J.E.K.; de Arruda, L.B. Hydroxypropyl-Beta-Cyclodextrin Reduces Inflammatory Signaling from Monocytes: Possible Implications for Suppression of HIV Chronic Immune Activation. mSphere 2018, 3, e00497-18. [Google Scholar] [CrossRef]
- Ambrose, Z.; Compton, L.; Michael Piatak Jr, M.; Lu, D.; Alvord, W.G.; Lubomirski, M.S.; Hildreth, J.E.K.; Lifson, J.D.; Miller, C.J.; KewalRamani, V.N. Incomplete Protection against Simian Immunodeficiency Virus Vaginal Transmission in Rhesus Macaques by a Topical Antiviral Agent Revealed by Repeat Challenges. J. Virol. 2008, 82, 6591–6599. [Google Scholar] [CrossRef]
- Barman, S.; Nayak, D.P. Lipid Raft Disruption by Cholesterol Depletion Enhances Influenza A Virus Budding from MDCK Cells. J. Virol. 2007, 81, 12169–12178. [Google Scholar] [CrossRef]
- Sun, X.; Whittaker, G.R. Role for Influenza Virus Envelope Cholesterol in Virus Entry and Infection. J. Virol. 2003, 77, 12543–12551. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.K.; Gupta, D.; Lal, S.K. Host Lipid Rafts Play a Major Role in Binding and Endocytosis of Influenza A Virus. Viruses 2018, 10, 650. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Xiao, S.; Zhou, D.; Sollogoub, M.; Zhang, Y. Design, synthesis and biological evaluation of water-soluble per-O-methylated cyclodextrin-C60 conjugates as anti-influenza virus agents. Eur. J. Med. Chem. 2018, 146, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Si, L.; Tian, Z.; Jiao, P.; Fan, Z.; Meng, K.; Zhou, X.; Wang, H.; Xu, R.; Han, X.; et al. Pentacyclic triterpenes grafted on CD cores to interfere with influenza virus entry: A dramatic multivalent effect. Biomaterials 2016, 78, 74–85. [Google Scholar] [CrossRef]
- Tian, Z.; Si, L.; Meng, K.; Zhou, X.; Zhang, Y.; Zhou, D.; Xiao, S. Inhibition of influenza virus infection by multivalent pentacyclic triterpene-functionalized per-O-methylated cyclodextrin conjugates. Eur. J. Med. Chem. 2017, 134, 133–139. [Google Scholar] [CrossRef]
- Onishi, M.; Ozasa, K.; Kobiyama, K.; Ohata, K.; Kitano, M.; Taniguchi, K.; Homma, T.; Kobayashi, M.; Sato, A.; Katakai, Y.; et al. Hydroxypropyl-β-Cyclodextrin Spikes Local Inflammation That Induces Th2 Cell and T Follicular Helper Cell Responses to the Coadministered Antigen. J. Immunol. 2015, 194, 2673–2682. [Google Scholar] [CrossRef]
- Kim, S.K.; Yun, C.H.; Han, S.H. Induction of Dendritic Cell Maturation and Activation by a Potential Adjuvant, 2-Hydroxypropyl-β-Cyclodextrin. Front. Immunol. 2016, 7, 435. [Google Scholar] [CrossRef] [Green Version]
- Kusakabe, T.; Ozasa, K.; Kobari, S.; Momota, M.; Kishishita, N.; Kobiyama, K.; Kuroda, E.; Ishii, K.J. Intranasal hydroxypropyl-β-cyclodextrin-adjuvanted influenza vaccine protects against sub-heterologous virus infection. Vaccine 2016, 34, 3191–3198. [Google Scholar] [CrossRef]
- A Phase 1 Study of Hydroxypropyl-beta-cyclodextrin(HP-beta-CyD)-adjuvanted Influenza Split Vaccine. Available online: https://rctportal.niph.go.jp/en/detail?trial_id=UMIN000028530 (accessed on 2 August 2019).
- Lee, C.J.; Lin, H.R.; Liao, C.L.; Lin, Y.L. Cholesterol Effectively Blocks Entry of Flavivirus. J. Virol. 2008, 82, 6470–6480. [Google Scholar] [CrossRef] [Green Version]
- Puerta-Guardo, H.; Mosso, C.; Medina, F.; Liprandi, F.; Ludert, J.E.; del Angel, R.M. Antibody-dependent enhancement of dengue virus infection in U937 cells requires cholesterol-rich membrane microdomains. J. Gen. Virol. 2010, 91, 394–403. [Google Scholar] [CrossRef]
- Carro, A.C.; Damonte, E.B. Requirement of cholesterol in the viral envelope for dengue virus infection. Virus. Res. 2013, 174, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Alcalá, A.C.; Hernández-Bravo, R.; Medina, F.; Coll, D.S.; Zambrano, J.L.; del Angel, R.M.; Ludert, J.E. The dengue virus non-structural protein 1 (NS1) is secreted from infected mosquito cells via a non-classical caveolin-1-dependent pathway. J. Gen. Virol. 2017, 98, 2088–2099. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.H.; He, H.; Yang, H.; Tan, B.; Liu, E.M.; Zhao, X.D.; Zhao, Y. The role of lipid rafts in cell entry of human metapneumovirus. J. Med. Virol. 2019, 91, 949–957. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.P.; Liu, P.F.; Chen, M.Z.; Qin, Y.L. Virion-Associated Cholesterol Regulates the Infection of Human Parainfluenza Virus Type 3. Viruses 2019, 11, 438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.C.; Huang, M.; Yuan, Q.; Wei, Y.Q.; Gao, Y.; Mao, L.J.; Gu, L.J.; Tan, Y.W.; Zhong, Y.X.; Liu, D.X.; et al. The Important Role of Lipid Raft-Mediated Attachment in the Infection of Cultured Cells by Coronavirus Infectious Bronchitis Virus Beaudette Strain. PLoS ONE 2017, 12, e0170123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wudiri, G.A.; Nicola, A.V. Cellular Cholesterol Facilitates the Post-entry Replication Cycle of Herpes Simplex Virus 1. J. Virol. 2017, 91, e00445-17. [Google Scholar] [CrossRef] [Green Version]
- Wudiri, G.A.; Schneider, S.M.; Nicola, A.V. Herpes Simplex Virus 1 Envelope Cholesterol Facilitates Membrane Fusion. Front. Microbiol. 2017, 8, 2383. [Google Scholar] [CrossRef] [Green Version]
- Cantín, C.; Holguera, J.; Ferreira, L.; Villar, E.; Muñoz-Barroso, I. Newcastle disease virus may enter cells by caveolae-mediated endocytosis. J. Gen. Virol. 2007, 88, 559–569. [Google Scholar] [CrossRef]
- Martín, J.J.; Holguera, J.; Sánchez-Felipe, L.; Villar, E.; Muñoz-Barroso, I. Cholesterol dependence of Newcastle Disease Virus entry. Biochim. Biophys. Acta 2012, 1818, 753–761. [Google Scholar] [CrossRef] [Green Version]
- Hambleton, S.; Steinberg, S.P.; Gershon, M.D.; Gershon, A.A. Cholesterol Dependence of Varicella-Zoster Virion Entry into Target Cells. J. Virol. 2007, 81, 7548–7558. [Google Scholar] [CrossRef] [Green Version]
- Shanmugam, S.; Saravanabalaji, D.; Yi, M. Detergent-Resistant Membrane Association of NS2 and E2 during Hepatitis C Virus Replication. J. Virol. 2015, 89, 4562–4574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Wang, W.B.; Zou, Z.Y.; Hu, Z.H.; Fan, Q.S.; Xiong, J. Hepatitis C Virus Entry into Macrophages/Monocytes Mainly Depends on the Phagocytosis of Macrophages. Digest. Dis. Sci. 2019, 64, 1226–1237. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Wang, Q.; Yu, F.; Peng, Y.Y.; Yang, M.; Sollogoub, M.; Sinaÿ, P.; Zhang, Y.M.; Zhang, L.H.; Zhou, D.M. Conjugation of cyclodextrin with fullerene as a new class of HCV entry inhibitors. Bioorg. Med. Chem. 2012, 20, 5616–5622. [Google Scholar] [CrossRef] [PubMed]
- Braga, S.S. Treating an old disease with new tricks: Strategies based on host–guest chemistry for leishmaniasis therapy. J. Incl. Phenom. Macrocycl. Chem. 2019, 93, 145–155. [Google Scholar] [CrossRef]
- Zhu, X.; Pandharkar, T.; Werbovetz, K. Identification of New Antileishmanial Leads from Hits Obtained by High-Throughput Screening. Antimicrob. Agents Chemother. 2012, 56, 1182–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pucadyil, T.J.; Tewary, P.; Madhubala, R.; Chattopadhyay, A. Cholesterol is required for Leishmania donovani infection: Implications in leishmaniasis. Mol. Biochem. Parasitol. 2004, 133, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, N.E.; Gaur, U.; Wilson, M.E. Role of caveolae in Leishmania chagasi phagocytosis and intracellular survival in macrophages. Cell. Microbiol. 2006, 8, 1106–1120. [Google Scholar] [CrossRef]
- Chattopadhyay, A.; Madhubala, R. Method of Treating Leishmaniasis Using Methylbeta-cyclodextrin. U.S. Patent 20050227944 A1, 31 May 2005. [Google Scholar]
- Clark, D.L.; Su, S.; Davidson, E.A. Saccharide anions as inhibitors of the malaria parasite. Glycoconjugate J. 1997, 14, 473–479. [Google Scholar] [CrossRef]
- Crandall, I.E.; Szarek, W.A.; Vlahakis, J.Z.; Xu, Y.; Vohra, R.; Sui, J.; Kisilevsky, R. Sulfated cyclodextrins inhibit the entry of Plasmodium into red blood cells Implications for malarial therapy. Biochem. Pharmacol. 2007, 73, 632–642. [Google Scholar] [CrossRef]
- Castro-Hermida, J.A.; Pors, I.; Ares-Mazas, E.; Chartier, C. In vitro activity on Cryptosporidium parvum oocyst of different drugs with recognized anticryptosporidial efficacy. Revue Méd. Vét. 2004, 155, 453–456. [Google Scholar]
- Castro-Hermida, J.A.; Freire-Santos, F.; Oteiza-López, A.M.; Ares-Mazás, E. Unexpected activity of β-cyclodextrin against experimental infection by Cryptosporidium parvum. J. Parasitol. 2000, 85, 1118–1120. [Google Scholar] [CrossRef]
- Castro-Hermida, J.A.; Quílez-Cinca, J.; López-Bernad, F.; Sânchez-Acedo, C.; Freire-Santos, F.; Ares-Mazás, E. Treatment with β-cyclodextrin of natural Cryptosporidium parvum infections in lambs under field conditions. Int. J. Parasitol. 2001, 31, 1134–1137. [Google Scholar] [CrossRef]
- Castro-Hermida, J.A.; Pors, I.; Otero-Espinar, F.; Luzardo-Alvarez, A.; Ares-Mazás, E.; Chartier, C. Efficacy of α-cyclodextrin against experimental cryptosporidiosis in neonatal goats. Vet. Parasitol. 2004, 120, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.B.; Braga, S.S. Cyclodextrin Inclusion of Nutraceuticals, from the Bench to your Table. In Cyclodextrins: Synthesis, Chemical Applications and Role in Drug Delivery, 1st ed.; Ramirez, F.G., Ed.; NovaSience: Hauppage, NY, USA, 2015; Chapter 6; pp. 195–224. [Google Scholar]
- Berliner, J.A.; Heinecke, J.W. The role of oxidized lipoproteins in atherogenesis. Free Radic. Biol. Med. 1996, 20, 707–727. [Google Scholar] [CrossRef]
- Kritharides, L.; Kus, M.; Brown, A.J.; Jessup, W.; Dean, R.T. Hydroxy-propyl-beta-cyclodextrin-mediated efflux of 7-ketocholesterol from macrophage foam cells. J. Biol. Chem. 1996, 265, 10771–10779. [Google Scholar]
- Martinic, G. Cyclodextrins as potential human antiatherosclerotic agents. A comparative pilot study to determine the most optimum route of administration of Hydroxy-propyl-β-cyclodextrin (HP-β-CD) in the apolipoprotein-E deficient ‘knockout’ mouse: Part III. Determining the optimum concentration of oral HP-β-CD. Anim. Techol. Welfare 2011, 10, 11–25. [Google Scholar]
- Zimmer, S.; Grebe, A.; Bakke, S.S.; Bode, N.; Halvorsen, B.; Ulas, T.; Skjelland, M.; De Nardo, D.; Labzin, L.I.; Kerksiek, A.; et al. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Sci. Transl. Med. 2016, 8, 333ra50. [Google Scholar] [CrossRef] [Green Version]
- Bakke, S.S.; Aune, M.H.; Niyonzima, N.; Pilely, K.; Ryan, L.; Skjelland, M.; Garred, P.; Aukrust, P.; Halvorsen, B.; Latz, E.; et al. Cyclodextrin Reduces Cholesterol Crystal–Induced Inflammation by Modulating Complement Activation. J. Immunol. 2017, 199, 2910–2920. [Google Scholar] [CrossRef] [Green Version]
- Amar, M.J.A.; Kaler, M.; Courville, A.B.; Shamburek, R.; Sampson, M.; Remaley, A.T. Randomized double blind clinical trial on the effect of oral α-cyclodextrin on serum lipids. Lipid. Health Dis. 2016, 15, 115. [Google Scholar] [CrossRef] [Green Version]
- Mitrofanova, A.; Molina, J.; Santos, J.V.; Guzman, J.; Morales, X.A.; Ducasa, G.M.; Bryn, J.; Sloan, A.; Volosenco, I.; Kim, J.J.; et al. Hydroxypropyl-β-cyclodextrin protects from kidney disease in experimental Alport syndrome and focal segmental glomerulosclerosis. Kidney Int. 2018, 94, 1151–1159. [Google Scholar] [CrossRef]
- Variant Pharmaceuticals Completes Pre-IND Meeting with FDA on VAR 200 for Focal Segmental Glomerulosclerosis (FSGS), a Rare Kidney Disease. Available online: https://www.prnewswire.com/news-releases/variant-pharmaceuticals-completes-pre-ind-meeting-with-fda-on-var-200-for-focal-segmental-glomerulosclerosis-fsgs-a-rare-kidney-disease-300629892.html (accessed on 7 August 2019).
- Megías-Vericat, J.E.; Company-Albir, M.J.; García-Robles, A.A.; Poveda, J.L. Use of 2-Hydroxypropyl-Beta-Cyclodextrin for Niemann-Pick Type C Disease. In Cyclodextrin—A Versatile Ingredient; Aroora, P., Dhingra, N., Eds.; IntechOpen: London, UK, 2018; Chapter 4; pp. 94–117. [Google Scholar]
- Camargo, F.; Erickson, R.P.; Garver, W.S.; Hossain, G.S.; Carbone, P.N.; Heidenreich, R.A.; Blanchard, J. Cyclodextrins in the treatment of a mouse model of Niemann-Pick C disease. Life Sci. 2001, 70, 131–142. [Google Scholar] [CrossRef]
- Aqul, A.; Liu, B.; Ramirez, C.M.; Pieper, A.A.; Estill, S.J.; Burns, D.K.; Liu, B.; Repa, J.J.; Turley, S.D.; Dietschy, J.M. Unesterified Cholesterol Accumulation in Late Endosomes/Lysosomes Causes Neurodegeneration and Is Prevented by Driving Cholesterol Export from This Compartment. J. Neurosc. 2011, 31, 9404–9413. [Google Scholar] [CrossRef] [PubMed]
- Vite, C.; Mauldin, E.; Ward, S.; Stein, V.; Prociuk, M.; Haskins, M.E.; Strattan, R.; Kao, M.; Ory, D.; Walkley, S.U.; et al. Intrathecal cyclodextrin therapy of feline Niemann-Pick Type C disease. Mol. Gen. Metabol. 2011, 102, S44. [Google Scholar] [CrossRef]
- Orphanet, Orphan Designation–USA. Available online: https://www.orpha.net/consor/cgi-bin/Drugs_Search.php?lng=EN&data_id=88421&search=Drugs_Search_Simple&data_type=Status&Typ=Sub (accessed on 8 September 2019).
- Orphan Designation EU/3/13/1124. Available online: https://www.ema.europa.eu/en/medicines/human/orphan-designations/eu3131124 (accessed on 8 September 2019).
- Ory, D.S.; Ottinger, E.A.; Farhat, N.Y.; King, K.A.; Jiang, X.; Weissfeld, L.; Berry-Kravis, E.; Davidson, C.D.; Bianconi, S.; Keener, L.A.; et al. Intrathecal 2-hydroxypropyl-β-cyclodextrin decreases neurological disease progression in Niemann-Pick disease, type C1: A non-randomised, open-label, phase 1–2 trial. Lancet 2017, 390, 1758–1768. [Google Scholar] [CrossRef] [Green Version]
- Berry-Kravis, E.; Chin, J.; Hoffman, A.; Winston, A.; Stoner, R.; LaGorio, L.; Friedmann, K.; Hernandez, M.; Ory, D.S.; Porter, F.D.; et al. Long-Term Treatment of Niemann-Pick Type C1 Disease with Intrathecal 2-Hydroxypropyl-β-Cyclodextrin. Pediatr. Neurol. 2018, 80, 24–34. [Google Scholar] [CrossRef]
- Farmer, C.A.; Thurm, A.; Farhat, N.; Bianconi, S.; Keener, L.A.; Porter, F.D. Long-Term Neuropsychological Outcomes from an Open-Label Phase I/IIa Trial of 2-Hydroxypropyl-β-Cyclodextrins (VTS-270) in Niemann-Pick Disease, Type C1. CNS Drugs 2019, 33, 677–683. [Google Scholar] [CrossRef]
- Clinicaltrials.Gov: Niemann-Pick Disease. Available online: https://clinicaltrials.gov/search/term=Niemann-Pick%20Disease (accessed on 8 September 2019).
- Singhal, A.; Szente, L.; Hildreth, J.E.K.; Song, B. Hydroxypropyl-beta and -gamma cyclodextrins rescue cholesterol accumulation in Niemann–Pick C1 mutant cell via lysosome-associated membrane protein 1. Cell Death Dis. 2018, 9, 1019. [Google Scholar] [CrossRef]
- Kovac, A.L. Sugammadex: The first selective binding reversal agent for neuromuscular block. J. Clin. Anesth. 2009, 21, 444–453. [Google Scholar] [CrossRef]
- Bom, A.; Bradley, M.; Cameron, K.; Clark, J.K.; van Egmond, J.; Feilden, E.; MacLean, E.J.; Muir, A.W.; Palin, R.; Rees, D.C.; et al. A Novel Concept of Reversing Neuromuscular Block: Chemical Encapsulation of Rocuronium Bromide by a Cyclodextrin-Based Synthetic Host. Angew. Chem. 2002, 114, 276–280. [Google Scholar] [CrossRef]
- Van Pelt, M.; Chitilian, H.V.; Eikerman, M. Multi-Faceted Initiative Designed to Improve Safety of Neuromuscular Blockade. APSF Newsl. 2016, 30, 51–52. [Google Scholar]
- Eldawlatly, A.; El-Tahan, M.R.; MMM-Anaesthesia Group Collaborators. A survey of the current use of neuromuscular blocking drugs among the Middle Eastern anesthesiologists. Saudi J. Anaesth. 2013, 7, 146–150. [Google Scholar] [CrossRef]
- Murphy, G. The Development and Regulatory History of Sugammadex in the United States. APSF Newsl. 2016, 30, 53–54. [Google Scholar]
- Blobner, M.; Eriksson, L.I.; Scholz, J.; Motsch, J.; Della Rocca, G.; Prins, M.E. Reversal of rocuronium-induced neuromuscular blockade with sugammadex compared with neostigmine during sevoflurane anaesthesia: Results of a randomised, controlled trial. Eur. J. Anaesthesiol. 2010, 27, 874–881. [Google Scholar] [CrossRef] [PubMed]
- Kusha Nag, N.; Singh, D.R.; Shetti, A.N.; Kumar, H.; Sivashanmugam, T.; Parthasarathy, S. Sugammadex: A revolutionary drug in neuromuscular pharmacology. Anesth. Essays Res. 2013, 7, 302–306. [Google Scholar]
- Hemmerling, T.M.; Zaouter, C.; Geldner, G.; Nauheimer, D. Sugammadex: A short review and clinical recommendations for the cardiac anesthesiologist. Ann. Card. Anaesth. 2010, 13, 206–216. [Google Scholar] [CrossRef]
- Panhuizen, I.F.; Gold, S.J.A.; Bürkle, C.; Snoeck, M.M.J.; Harper, N.J.N.; Kaspers, M.J.G.H.; van den Heuvel, M.W.; Hollmann, M.W. Efficacy, safety and pharmacokinetics of sugammadex 4 mg kg−1 for reversal of deep neuromuscular blockade in patients with severe renal impairment. Br. J. Anaesth. 2015, 114, 777–784. [Google Scholar] [CrossRef] [Green Version]
- Blommaert, D.; Franck, T.; Donnay, I.; Lejeune, J.P.; Detilleux, J.; Serteyn, D. Substitution of egg yolk by a cyclodextrin-cholesterol complex allows a reduction of the glycerol concentration into the freezing medium of equine sperm. Cryobiology 2016, 72, 27–32. [Google Scholar] [CrossRef]
- Salmon, V.M.; Leclerc, P.; Bailey, J.L. Cholesterol-Loaded Cyclodextrin Increases the Cholesterol Content of Goat Sperm to Improve Cold and Osmotic Resistance and Maintain Sperm Function after Cryopreservation. Biol. Reprod. 2016, 94, 1–12. [Google Scholar] [CrossRef]
- Mocé, E.; Tomás, C.; Blanch, E.; Graham, J.K. Effect of cholesterol-loaded cyclodextrins on bull and goat sperm processed with fast or slow cryopreservation protocols. Animal 2014, 8, 771–776. [Google Scholar] [CrossRef] [Green Version]
- Farshad, A.; Amidi, F.; Khor, A.K.; Rashidi, A. Effect of Cholesterol-loaded-cyclodextrin in Presence and Absence of Egg Yolk during Freezing Step on Quality of Markhoz Buck’s Spermatozoa. Asian-Aust. J. Anim. Sci. 2011, 24, 181–189. [Google Scholar] [CrossRef]
- Rajoriya, J.S.; Prasad, J.K.; Ghosh, S.K.; Ramteke, S.S.; Barik, N.C.; Das, G.K.; Pande, M. Cholesterol loaded cyclodextrin increases freezability of buffalo bull (Bubalus bubalis) spermatozoa by increasing cholesterol to phospholipid ratio. Vet. World 2014, 7, 702–706. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.S.; Lee, S.; Lee, S.H.; Yang, B.K.; Park, C.K. Effect of cholesterol-loaded-cyclodextrin on sperm viability and acrosome reaction in boar semen cryopreservation. Anim. Reprod. Sci. 2015, 159, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Elkhawagah, A.R.; Longobardi, V.; Gasparrini, B.; Sosa, G.A.; Salzano, A.; Aboul-roos, M.E.A.; Abd El-Gaffar, A.E.; Zicarelli, L. Effect of Methyl-B-Cyclodextrin (MBCD) on In Vitro Capacitation of Buffalo Frozen/Thawed Sperm. J. Buffalo Sci. 2014, 3, 12–17. [Google Scholar]
- Lee, S.; Lee, Y.S.; Lee, S.H.; Yang, B.K.; Park, C.K. Effect of methyl-beta-cyclodextrin on the viability and acrosome damage of sex-sorted sperm in frozen-thawed bovine semen. J. Biol. Res. Thessalon. 2016, 23, 5. [Google Scholar] [CrossRef] [Green Version]
- Partyka, A.; Strojecki, M.; Niżański, W. Cyclodextrins or cholesterol-loaded-cyclodextrins? A better choice for improved cryosurvival of chicken spermatozoa. Anim. Reprod. Sci. 2018, 193, 235–244. [Google Scholar] [CrossRef]
- Partyka, A.; Bonarska-Kujawa, D.; Sporniak, M.; Strojecki, M. Modification of membrane cholesterol and its impact on frozen–thawed chicken sperm characteristics. Zygote 2016, 24, 714–723. [Google Scholar] [CrossRef]
- Oliva, M.S.; Schottman, T.; Gulati, M. Turning the tide of corneal blindness. Indian J. Ophthalmol. 2012, 60, 423–427. [Google Scholar] [CrossRef]
- Franzco, D.R.; Franzco, S.W. Corneal blindness: A global problem. Clin. Exp. Ophthalmol. 2014, 42, 213–214. [Google Scholar]
- Majumdar, S.; Wang, X.; Sommerfeld, S.D.; Chae, J.J.; Athanasopoulou, E.N.; Shores, L.S.; Duan, X.; Amzel, L.M.; Stellacci, F.; Schein, O.; et al. Cyclodextrin Modulated Type I Collagen Self-Assembly to Engineer Biomimetic Cornea Implants. Adv. Funct. Mater. 2018, 1804076. [Google Scholar] [CrossRef]
- Chellam, J.; Mandall, A.B. Influence of cyclodextrins on the physical properties of collagen. Int. J. Pharma Bio Sci. 2013, 4, 795–806. [Google Scholar]
- Elisseeff, J.; Guo, Q.; Majumdar, S. Compositions Comprising Cyclodextrin Incorporated Collagen Matrices for Use in Biomedical Applications. WO Patent 2015/164733 Al, 29 October 2015. [Google Scholar]
- Elisseeff, J.; Guo, Q.; Majumdar, S.; Singh, A. Cornea mimetic biomaterials: Vitrified collagen-cyclodextrin implants. WO Patent 2016/171745 Al, 27 October 2016. [Google Scholar]
- Grier, W.K.; Tiffany, A.S.; Ramsey, M.D.; Harley, B.A.C. Incorporating β-cyclodextrin into collagen scaffolds to sequester growth factors and modulate mesenchymal stem cell activity. Acta Biomater. 2018, 76, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Pizzoni, A.; Pizzoni, P. Combination of Glycosaminoglycans and Cyclodextrins. WO Patent 2015/092516 Al, 25 June 2015. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braga, S.S. Cyclodextrins: Emerging Medicines of the New Millennium. Biomolecules 2019, 9, 801. https://doi.org/10.3390/biom9120801
Braga SS. Cyclodextrins: Emerging Medicines of the New Millennium. Biomolecules. 2019; 9(12):801. https://doi.org/10.3390/biom9120801
Chicago/Turabian StyleBraga, Susana Santos. 2019. "Cyclodextrins: Emerging Medicines of the New Millennium" Biomolecules 9, no. 12: 801. https://doi.org/10.3390/biom9120801
APA StyleBraga, S. S. (2019). Cyclodextrins: Emerging Medicines of the New Millennium. Biomolecules, 9(12), 801. https://doi.org/10.3390/biom9120801