Cannabinoids, the Blood–Brain Barrier, and Neurodegeneration: Mechanisms, Dysregulation, and Therapeutic Perspectives
Abstract
1. Introduction
2. Methods
3. The Endocannabinoid System (ECS) and Blood–Brain Barrier Regulation
4. Dysregulation of the Endocannabinoid System in Neurodegenerative Diseases
5. Phytocannabinoid Modulation of Blood–Brain Barrier Integrity
5.1. The Blood–Brain Barrier
5.2. Phytocannabinoids and BBB Penetration
5.3. Neutral Phytocannabinoids and the BBB
5.4. Acidic Phytocannabinoids and the BBB
6. Neuroprotective and Therapeutic Roles of Phytocannabinoids
7. Side Effects
8. Future Directions: Targeting the BBB-ECS Axis
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| Δ9-THCA | Δ9-Tetrahydrocannabinolic acid |
| 2-AG | 2-Arachidonoylglycerol |
| Aβ | Amyloid-β |
| AEA | Anandamide |
| AD | Alzheimer’s disease |
| ALS | Amyotrophic lateral sclerosis |
| AQP4 | Aquaporine-4 |
| BBB | Blood–brain barrier |
| BDNF | Brain-derived neurotrophic factor |
| CB1 | Cannabinoid receptor 1 |
| CB2 | Cannabinoid receptor 2 |
| CBDA | Cannabidiolic acid |
| CBDV | Cannabidivarin |
| CBG | Cannabigerol |
| CBGA | Cannabigerolic acid |
| CNS | Central nervous system |
| CORT | Corticosterone |
| COX-2 | Cyclooxygenase-2 |
| DAGLα | Diacylglycerol lipase α |
| DOPA | 3,4-dihydroxyphenylalanine |
| EAE | Experimental autoimmune encephalomyelitis |
| ECS | Endocannabinoid system |
| FAAH | Fatty acids amide hydrolase |
| GDNF | Glial cell line-derived neurotrophic factor |
| GPR55 | G-protein-coupled receptor 55 |
| GTS-21 | 3-(2,4-dimethoxy-benzylidene) anabaseine |
| HO 1 | Heme oxygenase 1 |
| ICAM-1 | Intercellular adhesion molecule 1 |
| IFN-γ | Interferon gamma |
| IL-2 | Interleukin-2 |
| IL-6 | Interleukin-6 |
| iNOS | Inducible nitric oxide synthase |
| LDH | Lactate dehydrogenase |
| LPS | Lipopolysaccharide |
| M1-like | Macrophages 1-like |
| M2-like | Macrophages 2-like |
| MAGL | Monoacylglycerol lipase |
| MAGLi | Monoacylglycerol lipase inhibitor |
| MS | Multiple Sclerosis |
| MPTP | 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine |
| nAChRs | Nicotinic acetylcholine receptors |
| NAPE-PLD | N-acyl phosphatidylethanolamine phospholipase D |
| NF-κB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
| NO | Nitric Oxide |
| NVU | Neurovascular unit |
| OGD | Oxygen-glucose deprivation |
| PD | Parkinson’s disease |
| PEA | N-palmitoyl-ethanolamine |
| PGE2 | Prostaglandin E2 |
| PPARγ | Peroxisome proliferator-activated receptor γ |
| RhoA | Ras homolog family member A |
| ROCK | Rho-associated, coiled-coil containing protein kinase |
| TBI | Traumatic brain injury |
| TJ | Tight junction |
| TNF-α | Tumor necrosis factor-α |
| TRP | Transient receptor potential |
| TRPA | Transient receptor potential subfamily A |
| TRPM | Transient receptor potential melastatin |
| TRPV | Transient receptor potential vanilloid |
| VCAM-1 | Vascular cell adhesion protein 1 |
| VE-cadherin | Vascular endothelial cadherin |
| VEGF | Vascular endothelial growth factor |
| ZO-1 | Zonula occludens-1 |
References
- Shevyrin, V.A.; Morzherin, Y.Y. Cannabinoids: Structures, Effects, and Classification. Russ. Chem. Bull. 2015, 64, 1249–1266. [Google Scholar] [CrossRef]
- Hourani, W.; Alexander, S.P.H. Cannabinoid Ligands, Receptors and Enzymes: Pharmacological Tools and Therapeutic Potential. Brain Neurosci. Adv. 2018, 2, 2398212818783908. [Google Scholar] [CrossRef] [PubMed]
- Sommano, S.R.; Chittasupho, C.; Ruksiriwanich, W.; Jantrawut, P. The Cannabis Terpenes. Molecules 2020, 25, 5792. [Google Scholar] [CrossRef]
- Gülck, T.; Møller, B.L. Phytocannabinoids: Origins and Biosynthesis. Trends Plant Sci. 2020, 25, 985–1004. [Google Scholar] [CrossRef]
- Andre, C.M.; Hausman, J.-F.; Guerriero, G. Cannabis Sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef]
- Berman, P.; Sulimani, L.; Gelfand, A.; Amsalem, K.; Lewitus, G.M.; Meiri, D. Cannabinoidomics—An Analytical Approach to Understand the Effect of Medical Cannabis Treatment on the Endocannabinoid Metabolome. Talanta 2020, 219, 121336. [Google Scholar] [CrossRef]
- Banister, S.D.; Connor, M. The Chemistry and Pharmacology of Synthetic Cannabinoid Receptor Agonists as New Psychoactive Substances: Origins. Handb. Exp. Pharmacol. 2018, 252, 165–190. [Google Scholar] [CrossRef]
- Sharon, N.; Yarmolinsky, L.; Khalfin, B.; Fleisher-Berkovich, S.; Ben-Shabat, S. Cannabinoids’ Role in Modulating Central and Peripheral Immunity in Neurodegenerative Diseases. Int. J. Mol. Sci. 2024, 25, 6402. [Google Scholar] [CrossRef]
- Ghosh, S.; Debnath, I.; Bhunia, S.; Nandi, S.; Ashique, S.; Nayak, A.; Mallick, S.; Basak, S. Decoding Natural Products for Neuroprotection: Pathway Networks and Structural Insights for Drug Development. Chin. Herb. Med. 2025, 17, 643–672. [Google Scholar] [CrossRef] [PubMed]
- Cristino, L.; Bisogno, T.; Di Marzo, V. Cannabinoids and the Expanded Endocannabinoid System in Neurological Disorders. Nat. Rev. Neurol. 2020, 16, 9–29. [Google Scholar] [CrossRef]
- Morales, P.; Jagerovic, N. Novel Approaches and Current Challenges with Targeting the Endocannabinoid System. Expert. Opin. Drug Discov. 2020, 15, 917–930. [Google Scholar] [CrossRef]
- Cohen, K.; Weizman, A.; Weinstein, A. Positive and Negative Effects of Cannabis and Cannabinoids on Health. Clin. Pharmacol. Ther. 2019, 105, 1139–1147. [Google Scholar] [CrossRef]
- Sotoudeh-Anvari, A. The Applications of MCDM Methods in COVID-19 Pandemic: A State of the Art Review. Appl. Soft Comput. 2022, 126, 109238. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Wu, M.; Huang, Y.; He, X.; Yuan, J.; Dang, B. Research Developments in the Neurovascular Unit and the Blood-brain Barrier (Review). Biomed. Rep. 2025, 22, 88. [Google Scholar] [CrossRef] [PubMed]
- Hagan, K.; Varelas, P.; Zheng, H. Endocannabinoid System of the Blood-Brain Barrier: Current Understandings and Therapeutic Potentials. Cannabis Cannabinoid Res. 2022, 7, 561–568. [Google Scholar] [CrossRef]
- Martinez Ramirez, C.E.; Ruiz-Perez, G.; Stollenwerk, T.M.; Behlke, C.; Doherty, A.; Hillard, C.J. Endocannabinoid Signaling in the Central Nervous System. Glia 2023, 71, 5–35. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, W.; Li, T.; Wang, X.; Lai, X.; Hu, W.; Li, Z.; Zeng, X.; Huang, J.; Zhang, R. Δ9-Tetrahydrocannabinol Induces Blood-Brain Barrier Disruption: Involving the Activation of CB1R and Oxidative Stress. Neuropharmacology 2025, 270, 110366. [Google Scholar] [CrossRef]
- Haspula, D.; Clark, M.A. Cannabinoid Receptors: An Update on Cell Signaling, Pathophysiological Roles and Therapeutic Opportunities in Neurological, Cardiovascular, and Inflammatory Diseases. Int. J. Mol. Sci. 2020, 21, 7693. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, A.; Viveros, J.M. Brewing with Cannabis Sativa vs. Humulus Lupulus: A Review. J. Inst. Brew. 2021, 127, 201–209. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, J.; Lehmann, C. GPR55—A Putative “Type 3” Cannabinoid Receptor in Inflammation. J. Basic. Clin. Physiol. Pharmacol. 2016, 27, 297–302. [Google Scholar] [CrossRef]
- Ramirez, S.H.; Haskó, J.; Skuba, A.; Fan, S.; Dykstra, H.; McCormick, R.; Reichenbach, N.; Krizbai, I.; Mahadevan, A.; Zhang, M.; et al. Activation of Cannabinoid Receptor 2 Attenuates Leukocyte-Endothelial Cell Interactions and Blood-Brain Barrier Dysfunction under Inflammatory Conditions. J. Neurosci. 2012, 32, 4004–4016. [Google Scholar] [CrossRef]
- Dudek, K.A.; Paton, S.E.J.; Binder, L.B.; Collignon, A.; Dion-Albert, L.; Cadoret, A.; Lebel, M.; Lavoie, O.; Bouchard, J.; Kaufmann, F.N.; et al. Astrocytic Cannabinoid Receptor 1 Promotes Resilience by Dampening Stress-Induced Blood–Brain Barrier Alterations. Nat. Neurosci. 2025, 28, 766–782. [Google Scholar] [CrossRef]
- Vendel, E.; de Lange, E.C.M. Functions of the CB1 and CB2 Receptors in Neuroprotection at the Level of the Blood–Brain Barrier. Neuromol. Med. 2014, 16, 620–642. [Google Scholar] [CrossRef]
- Chung, Y.C.; Shin, W.H.; Baek, J.Y.; Cho, E.J.; Baik, H.H.; Kim, S.R.; Won, S.Y.; Jin, B.K. CB2 Receptor Activation Prevents Glial-Derived Neurotoxic Mediator Production, BBB Leakage and Peripheral Immune Cell Infiltration and Rescues Dopamine Neurons in the MPTP Model of Parkinson’s Disease. Exp. Mol. Med. 2016, 48, e205. [Google Scholar] [CrossRef]
- Nunez-Lumbreras, M.L.A.; Castaneda-Cabral, J.L.; Valle-Dorado, M.G.; Sanchez-Valle, V.; Orozco-Suarez, S.; Guevara-Guzman, R.; Martinez-Juarez, I.; Alonso-Vanegas, M.; Walter, F.; Deli, M.A.; et al. Drug-Resistant Temporal Lobe Epilepsy Alters the Expression and Functional Coupling to Galphai/o Proteins of CB1 and CB2 Receptors in the Microvasculature of the Human Brain. Front. Behav. Neurosci. 2020, 14, 611780. [Google Scholar] [CrossRef]
- Colomer, T.; Sánchez-Martín, E.; Bernal-Chico, A.; Moreno-García, A.; Serrat, R.; Baraibar, A.M.; Uribe-Irusta, A.; Iriarte-Sarria, A.; Skupio, U.; Matute, C.; et al. Astrocyte CB1 Receptors Drive Blood-Brain Barrier Disruption in CNS Inflammatory Disease. bioRxiv 2025. [Google Scholar] [CrossRef]
- Leo, L.M.; Familusi, B.; Hoang, M.; Smith, R.; Lindenau, K.; Sporici, K.T.; Brailoiu, E.; Abood, M.E.; Brailoiu, G.C. GPR55-Mediated Effects on Brain Microvascular Endothelial Cells and the Blood-Brain Barrier. Neuroscience 2019, 414, 88–98. [Google Scholar] [CrossRef]
- Duncan, R.S.; Riordan, S.M.; Gernon, M.C.; Koulen, P. Cannabinoids and Endocannabinoids as Therapeutics for Nervous System Disorders: Preclinical Models and Clinical Studies. Neural Regen. Res. 2024, 19, 788–799. [Google Scholar] [CrossRef]
- Dionisi, M.; Alexander, S.P.H.; Bennett, A.J. Oleamide Activates Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) In Vitro. Lipids Health Dis. 2012, 11, 51. [Google Scholar] [CrossRef] [PubMed]
- Leggett, J.D.; Aspley, S.; Beckett, S.R.G.; D’Antona, A.M.; Kendall, D.A.; Kendall, D.A. Oleamide Is a Selective Endogenous Agonist of Rat and Human CB1 Cannabinoid Receptors. Br. J. Pharmacol. 2004, 141, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Boger, D.L.; Patterson, J.E.; Guan, X.; Cravatt, B.F.; Lerner, R.A.; Gilula, N.B. Chemical Requirements for Inhibition of Gap Junction Communication by the Biologically Active Lipid Oleamide. Proc. Natl. Acad. Sci. USA 1998, 95, 4810–4815. [Google Scholar] [CrossRef]
- Hind, W.H.; Tufarelli, C.; Neophytou, M.; Anderson, S.I.; England, T.J.; O’Sullivan, S.E. Endocannabinoids Modulate Human Blood-Brain Barrier Permeability In Vitro. Br. J. Pharmacol. 2015, 172, 3015–3027. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Xie, B.; Li, Y.; Xu, Y. PEA Prevented Early BBB Disruption after Cerebral Ischaemic/Reperfusion (I/R) Injury through Regulation of ROCK/MLC Signaling. Biochem. Biophys. Res. Commun. 2021, 566, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, C.; Zhang, Y.; Wang, Q.; Huang, Y.; Xie, Y.; Yang, L.; Xu, L.; Wang, S. Oleoylethanolamide Exerts Neuroprotection Following Ischemic Stroke through Microglial PPARalpha Signal. Int. Immunopharmacol. 2025, 158, 114824. [Google Scholar] [CrossRef] [PubMed]
- Petrosino, S.; Schiano Moriello, A.; Cerrato, S.; Fusco, M.; Puigdemont, A.; De Petrocellis, L.; Di Marzo, V. The Anti-Inflammatory Mediator Palmitoylethanolamide Enhances the Levels of 2-Arachidonoyl-Glycerol and Potentiates Its Actions at TRPV1 Cation Channels. Br. J. Pharmacol. 2016, 173, 1154–1162. [Google Scholar] [CrossRef]
- Benítez-Angeles, M.; Morales-Lázaro, S.L.; Juárez-González, E.; Rosenbaum, T. TRPV1: Structure, Endogenous Agonists, and Mechanisms. Int. J. Mol. Sci. 2020, 21, 3421. [Google Scholar] [CrossRef]
- Clayton, P.; Hill, M.; Bogoda, N.; Subah, S.; Venkatesh, R. Palmitoylethanolamide: A Natural Compound for Health Management. Int. J. Mol. Sci. 2021, 22, 5305. [Google Scholar] [CrossRef]
- Hagan, K.A.; Zheng, H. Endocannabinoids May Enhance the Blood-Brain Barrier Function During Ischemic Stroke. Master’s Theis, Albany College of Pharmacy and Health Sciences, New York, NY, USA, 2021. [Google Scholar]
- Fisher, D.; Crous, M.; Makhathini, K.B. The Effects of Endocannabinoids on Inflammation of Endothelial Cells of The Blood-Brain Barrier. IBRO Neurosci. Rep. 2023, 15, S276. [Google Scholar] [CrossRef]
- Banks, W.A.; Gray, A.M.; Erickson, M.A.; Salameh, T.S.; Damodarasamy, M.; Sheibani, N.; Meabon, J.S.; Wing, E.E.; Morofuji, Y.; Cook, D.G.; et al. Lipopolysaccharide-induced blood-brain barrier disruption: Roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. J. Neuroinflamm. 2015, 12, 223. [Google Scholar] [CrossRef]
- Panikashvili, D.; Shein, N.A.; Mechoulam, R.; Trembovler, V.; Kohen, R.; Alexandrovich, A.; Shohami, E. The Endocannabinoid 2-AG Protects the Blood-Brain Barrier after Closed Head Injury and Inhibits MRNA Expression of Proinflammatory Cytokines. Neurobiol. Dis. 2006, 22, 257–264. [Google Scholar] [CrossRef]
- Ahluwalia, M.; McMichael, H.; Kumar, M.; Espinosa, M.P.; Bosomtwi, A.; Lu, Y.; Khodadadi, H.; Jarrahi, A.; Khan, M.B.; Hess, D.C.; et al. Altered Endocannabinoid Metabolism Compromises the Brain-CSF Barrier and Exacerbates Chronic Deficits after Traumatic Brain Injury in Mice. Exp. Neurol. 2023, 361, 114320. [Google Scholar] [CrossRef]
- Liktor-Busa, E.; Levine, A.A.; Young, S.J.; Bader, C.; Palomino, S.M.; Polk, F.D.; Couture, S.A.; Pires, P.W.; Anderson, T.; Largent-Milnes, T.M. Inhibition of Diacylglycerol Lipase Alpha Induced Blood-Brain Barrier Breach in Female Sprague-Dawley Rats. J. Physiol. 2025, 603, 929–947. [Google Scholar] [CrossRef]
- Levine, A.A.; Liktor-Busa, E.; Balasubramanian, S.; Palomino, S.M.; Burtman, A.M.; Couture, S.A.; Lipinski, A.A.; Langlais, P.R.; Largent-Milnes, T.M. Depletion of Endothelial-Derived 2-AG Reduces Blood-Endothelial Barrier Integrity via Alteration of VE-Cadherin and the Phospho-Proteome. Int. J. Mol. Sci. 2023, 25, 531. [Google Scholar] [CrossRef]
- Guadalupi, L.; Mandolesi, G.; Vanni, V.; Balletta, S.; Caioli, S.; Pavlovic, A.; De Vito, F.; Fresegna, D.; Sanna, K.; Vitiello, L.; et al. Pharmacological Blockade of 2-AG Degradation Ameliorates Clinical, Neuroinflammatory and Synaptic Alterations in Experimental Autoimmune Encephalomyelitis. Neuropharmacology 2024, 252, 109940. [Google Scholar] [CrossRef]
- Kemble, A.; Hornsperger, B.; Ruf, I.; Richter, H.; Benz, J.; Kuhn, B.; Heer, D.; Wittwer, M.; Engelhardt, B.; Grether, U.; et al. A Potent and Selective Inhibitor for the Modulation of MAGL Activity in the Neurovasculature. bioRxiv 2022. [Google Scholar] [CrossRef]
- Zhang, H.; Hilton, D.A.; Hanemann, C.O.; Zajicek, J. Cannabinoid Receptor and N-Acyl Phosphatidylethanolamine Phospholipase D--Evidence for Altered Expression in Multiple Sclerosis. Brain Pathol. 2011, 21, 544–557. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, X.; Liu, T.; Sun, J.; Li, X.; Zhang, W.; Tian, X. GPR55 Activation Alleviates Cognitive Dysfunction Caused by Neuropathic Pain through Modulation of Microglia Polarization and Synaptic Plasticity via the CaMKKbeta/AMPK/SOCS3 Signaling Pathway. Cell. Signal. 2025, 135, 112070. [Google Scholar] [CrossRef]
- Viader, A.; Ogasawara, D.; Joslyn, C.M.; Sanchez-Alavez, M.; Mori, S.; Nguyen, W.; Conti, B.; Cravatt, B.F. A Chemical Proteomic Atlas of Brain Serine Hydrolases Identifies Cell Type-Specific Pathways Regulating Neuroinflammation. eLife 2016, 5, e12345. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xiang, X.; Hu, J.; Wu, Y.; Li, Y.; Jin, S.; Wu, X. Pharmacological Activation of GPR55 Improved Cognitive Impairment Induced by Lipopolysaccharide in Mice. J. Mol. Neurosci. 2022, 72, 1656–1669. [Google Scholar] [CrossRef] [PubMed]
- Basavarajappa, B.S.; Shivakumar, M.; Joshi, V.; Subbanna, S. Endocannabinoid System in Neurodegenerative Disorders. J. Neurochem. 2017, 142, 624–648. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, S.E. An Update on PPAR Activation by Cannabinoids. Br. J. Pharmacol. 2016, 173, 1899–1910. [Google Scholar] [CrossRef]
- Kosar, M.; Sarott, R.C.; Sykes, D.A.; Viray, A.E.G.; Vitale, R.M.; Tomašević, N.; Li, X.; Ganzoni, R.L.Z.; Kicin, B.; Reichert, L.; et al. Flipping the GPCR Switch: Structure-Based Development of Selective Cannabinoid Receptor 2 Inverse Agonists. ACS Cent. Sci. 2024, 10, 956–968. [Google Scholar] [CrossRef]
- Kruk-Slomka, M.; Dzik, A.; Budzynska, B.; Biala, G. Endocannabinoid System: The Direct and Indirect Involvement in the Memory and Learning Processes—A Short Review. Mol. Neurobiol. 2017, 54, 8332–8347. [Google Scholar] [CrossRef]
- Khan, N.; Laudermilk, L.; Ware, J.; Rosa, T.; Mathews, K.; Gay, E.; Amato, G.; Maitra, R. Peripherally Selective CB1 Receptor Antagonist Improves Symptoms of Metabolic Syndrome in Mice. ACS Pharmacol. Transl. Sci. 2021, 4, 757–764. [Google Scholar] [CrossRef]
- Ehrhart, J.; Obregon, D.; Mori, T.; Hou, H.; Sun, N.; Bai, Y.; Klein, T.; Fernandez, F.; Tan, J.; Shytle, R.D. Stimulation of Cannabinoid Receptor 2 (CB2) Suppresses Microglial Activation. J. Neuroinflamm. 2005, 2, 29. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.F.; Boileau, I.; Kloiber, S. Effects of Pharmacological Inhibition of Fatty Acid Amide Hydrolase on Corticosterone Release: A Systematic Review of Preclinical Studies. Discov. Ment. Health 2025, 5, 51. [Google Scholar] [CrossRef]
- Migliore, M.; Habrant, D.; Sasso, O.; Albani, C.; Bertozzi, S.M.; Armirotti, A.; Piomelli, D.; Scarpelli, R. Potent Multitarget FAAH-COX Inhibitors: Design and Structure-Activity Relationship Studies. Eur. J. Med. Chem. 2016, 109, 216–237. [Google Scholar] [CrossRef] [PubMed]
- Nango, H.; Tsuruta, K.; Miyagishi, H.; Aono, Y.; Saigusa, T.; Kosuge, Y. Update on the Pathological Roles of Prostaglandin E2 in Neurodegeneration in Amyotrophic Lateral Sclerosis. Transl. Neurodegener. 2023, 12, 32. [Google Scholar] [CrossRef]
- Farkas, I.; Vastagh, C.; Farkas, E.; Bálint, F.; Skrapits, K.; Hrabovszky, E.; Fekete, C.; Liposits, Z. Glucagon-Like Peptide-1 Excites Firing and Increases GABAergic Miniature Postsynaptic Currents (MPSCs) in Gonadotropin-Releasing Hormone (GnRH) Neurons of the Male Mice via Activation of Nitric Oxide (NO) and Suppression of Endocannabinoid Signaling Pathways. Front. Cell. Neurosci. 2016, 10, 214. [Google Scholar] [CrossRef]
- Viveros-Paredes, J.M.; Gonzalez-Castañeda, R.E.; Escalante-Castañeda, A.; Tejeda-Martínez, A.R.; Castañeda-Achutiguí, F.; Flores-Soto, M.E. Efecto Del Inhibidor de Amida Hidrolasa de Ácidos Grasos En El Daño Neuronal Dopaminérgico Inducido Por MPTP. Neurología 2019, 34, 143–152. [Google Scholar] [CrossRef]
- Armeli, F.; Coccurello, R.; Giacovazzo, G.; Mengoni, B.; Paoletti, I.; Oddi, S.; Maccarrone, M.; Businaro, R. FAAH Inhibition Counteracts Neuroinflammation via Autophagy Recovery in AD Models. Int. J. Mol. Sci. 2024, 25, 12044. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, N.; Duan, T.; Kesner, P.; Blaskovits, F.; Liu, J.; Lu, Y.; Tong, L.; Gao, F.; Harris, C.; et al. Monoacylglycerol Lipase Inhibitors Produce Pro- or Antidepressant Responses via Hippocampal CA1 GABAergic Synapses. Mol. Psychiatry 2017, 22, 215–226. [Google Scholar] [CrossRef]
- Kerr, D.; Harhen, B.; Okine, B.; Egan, L.; Finn, D.; Roche, M. The Monoacylglycerol Lipase Inhibitor JZL 184 Attenuates LPS-induced Increases in Cytokine Expression in the Rat Frontal Cortex and Plasma: Differential Mechanisms of Action. Br. J. Pharmacol. 2013, 169, 808–819. [Google Scholar] [CrossRef]
- Nomura, D.K.; Morrison, B.E.; Blankman, J.L.; Long, J.Z.; Kinsey, S.G.; Marcondes, M.C.G.; Ward, A.M.; Hahn, Y.K.; Lichtman, A.H.; Conti, B.; et al. Endocannabinoid Hydrolysis Generates Brain Prostaglandins That Promote Neuroinflammation. Science 2011, 334, 809–813. [Google Scholar] [CrossRef]
- Pasquarelli, N.; Porazik, C.; Bayer, H.; Buck, E.; Schildknecht, S.; Weydt, P.; Witting, A.; Ferger, B. Contrasting Effects of Selective MAGL and FAAH Inhibition on Dopamine Depletion and GDNF Expression in a Chronic MPTP Mouse Model of Parkinson’s Disease. Neurochem. Int. 2017, 110, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Nevalainen, N.; Chermenina, M.; Rehnmark, A.; Berglöf, E.; Marschinke, F.; Strömberg, I. Glial Cell Line-Derived Neurotrophic Factor Is Crucial for Long-Term Maintenance of the Nigrostriatal System. Neuroscience 2010, 171, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- d’Anglemont de Tassigny, X.; Pascual, A.; López-Barneo, J. GDNF-Based Therapies, GDNF-Producing Interneurons, and Trophic Support of the Dopaminergic Nigrostriatal Pathway. Implications for Parkinson’s Disease. Front. Neuroanat. 2015, 9, 10. [Google Scholar] [CrossRef]
- Rathod, S.S.; Agrawal, Y.O. Phytocannabinoids as Potential Multitargeting Neuroprotectants in Alzheimer’s Disease. Curr. Drug Res. Rev. 2024, 16, 94–110. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Chen, X.; Zhang, J.; Chen, C. Inhibition of COX-2 Expression by Endocannabinoid 2-Arachidonoylglycerol Is Mediated via PPAR-Gamma. Br. J. Pharmacol. 2011, 163, 1533–1549. [Google Scholar] [CrossRef]
- Alhouayek, M.; Masquelier, J.; Muccioli, G.G. Controlling 2-Arachidonoylglycerol Metabolism as an Anti-Inflammatory Strategy. Drug Discov. Today 2014, 19, 295–304. [Google Scholar] [CrossRef]
- Korhonen, J.; Kuusisto, A.; van Bruchem, J.; Patel, J.Z.; Laitinen, T.; Navia-Paldanius, D.; Laitinen, J.T.; Savinainen, J.R.; Parkkari, T.; Nevalainen, T.J. Piperazine and Piperidine Carboxamides and Carbamates as Inhibitors of Fatty Acid Amide Hydrolase (FAAH) and Monoacylglycerol Lipase (MAGL). Bioorg. Med. Chem. 2014, 22, 6694–6705. [Google Scholar] [CrossRef]
- Papa, A.; Pasquini, S.; Contri, C.; Gemma, S.; Campiani, G.; Butini, S.; Varani, K.; Vincenzi, F. Polypharmacological Approaches for CNS Diseases: Focus on Endocannabinoid Degradation Inhibition. Cells 2022, 11, 471. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, S.; Zameer, S.; Jain, S.; Yadav, V.; Vohora, D. Effect of the MAGL/FAAH Dual Inhibitor JZL-195 on Streptozotocin-Induced Alzheimer’s Disease-like Sporadic Dementia in Mice with an Emphasis on Aβ, HSP-70, Neuroinflammation, and Oxidative Stress. ACS Chem. Neurosci. 2022, 13, 920–932. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zhang, J.; Wu, Y.; Wang, D.; Feng, G.; Tang, Y.-P.; Teng, Z.; Chen, C. Monoacylglycerol Lipase Is a Therapeutic Target for Alzheimer’s Disease. Cell Rep. 2012, 2, 1329–1339. [Google Scholar] [CrossRef]
- Gawdi, R.; Shumway, K.R.; Emmady, P.D. Physiology, Blood Brain Barrier; StatPearls Publishing: St. Petersburg, FL, USA, 2025. [Google Scholar]
- Yang, H.-M. Overcoming the Blood–Brain Barrier: Advanced Strategies in Targeted Drug Delivery for Neurodegenerative Diseases. Pharmaceutics 2025, 17, 1041. [Google Scholar] [CrossRef]
- Konig, S.; Jayarajan, V.; Wray, S.; Kamm, R.; Moeendarbary, E. Mechanobiology of the Blood-Brain Barrier during Development, Disease and Ageing. Nat. Commun. 2025, 16, 7233. [Google Scholar] [CrossRef]
- Stone, N.L.; England, T.J.; O’Sullivan, S.E. Protective Effects of Cannabidivarin and Cannabigerol on Cells of the Blood–Brain Barrier Under Ischemic Conditions. Cannabis Cannabinoid Res. 2021, 6, 315–326. [Google Scholar] [CrossRef]
- Calapai, F.; Cardia, L.; Sorbara, E.E.; Navarra, M.; Gangemi, S.; Calapai, G.; Mannucci, C. Cannabinoids, Blood–Brain Barrier, and Brain Disposition. Pharmaceutics 2020, 12, 265. [Google Scholar] [CrossRef]
- Anderson, L.L.; Low, I.K.; Banister, S.D.; McGregor, I.S.; Arnold, J.C. Pharmacokinetics of Phytocannabinoid Acids and Anticonvulsant Effect of Cannabidiolic Acid in a Mouse Model of Dravet Syndrome. J. Nat. Prod. 2019, 82, 3047–3055. [Google Scholar] [CrossRef] [PubMed]
- Hind, W.H.; England, T.J.; O’Sullivan, S.E. Cannabidiol Protects an In Vitro Model of the Blood–Brain Barrier from Oxygen-glucose Deprivation via PPARγ and 5-HT 1A Receptors. Br. J. Pharmacol. 2016, 173, 815–825. [Google Scholar] [CrossRef]
- Rajesh, M.; Mukhopadhyay, P.; Bátkai, S.; Haskó, G.; Liaudet, L.; Drel, V.R.; Obrosova, I.G.; Pacher, P. Cannabidiol Attenuates High Glucose-Induced Endothelial Cell Inflammatory Response and Barrier Disruption. Am. J. Physiol.-Heart Circ. Physiol. 2007, 293, H610–H619. [Google Scholar] [CrossRef]
- Aparicio-Blanco, J.; Romero, I.A.; Male, D.K.; Slowing, K.; García-García, L.; Torres-Suárez, A.I. Cannabidiol Enhances the Passage of Lipid Nanocapsules across the Blood–Brain Barrier Both In Vitro and In Vivo. Mol. Pharm. 2019, 16, 1999–2010. [Google Scholar] [CrossRef]
- Ruiz-Valdepeñas, L.; Martínez-Orgado, J.A.; Benito, C.; Millán, Á.; Tolón, R.M.; Romero, J. Cannabidiol Reduces Lipopolysaccharide-Induced Vascular Changes and Inflammation in the Mouse Brain: An Intravital Microscopy Study. J. Neuroinflamm. 2011, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Li, H.; Cao, Y.; Zhang, R.; Zhou, L.; Zhou, Y.; Zeng, X.; Wu, J.; Wu, D.; Wu, D.; et al. Effects of Cannabinoid (CBD) on Blood Brain Barrier Permeability after Brain Injury in Rats. Brain Res. 2021, 1768, 147586. [Google Scholar] [CrossRef] [PubMed]
- Anil, S.M.; Peeri, H.; Koltai, H. Medical Cannabis Activity Against Inflammation: Active Compounds and Modes of Action. Front. Pharmacol. 2022, 13, 908198. [Google Scholar] [CrossRef]
- Al-Ghezi, Z.Z.; Miranda, K.; Nagarkatti, M.; Nagarkatti, P.S. Combination of Cannabinoids, Δ9- Tetrahydrocannabinol and Cannabidiol, Ameliorates Experimental Multiple Sclerosis by Suppressing Neuroinflammation Through Regulation of MiRNA-Mediated Signaling Pathways. Front. Immunol. 2019, 10, 1921. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghezi, Z.Z.; Busbee, P.B.; Alghetaa, H.; Nagarkatti, P.S.; Nagarkatti, M. Combination of Cannabinoids, Delta-9-Tetrahydrocannabinol (THC) and Cannabidiol (CBD), Mitigates Experimental Autoimmune Encephalomyelitis (EAE) by Altering the Gut Microbiome. Brain Behav. Immun. 2019, 82, 25–35. [Google Scholar] [CrossRef]
- Smith, S.; Spurgeon, T.; Spurgeon, R.; Heal, D. Phytocannabinoids—Evaluation of Their Therapeutic Role in Neuroinflammation. Explor. Neuroprot. Ther. 2024, 4, 325–348. [Google Scholar] [CrossRef]
- Kim, J.; Choi, P.; Park, Y.-T.; Kim, T.; Ham, J.; Kim, J.-C. The Cannabinoids, CBDA and THCA, Rescue Memory Deficits and Reduce Amyloid-Beta and Tau Pathology in an Alzheimer’s Disease-like Mouse Model. Int. J. Mol. Sci. 2023, 24, 6827. [Google Scholar] [CrossRef]
- Stone, N. Phytocannabinoids, Neuroprotection and the Blood-Brain Barrier. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2020. [Google Scholar]
- Dei Cas, M.; Casagni, E.; Casiraghi, A.; Minghetti, P.; Fornasari, D.M.M.; Ferri, F.; Arnoldi, S.; Gambaro, V.; Roda, G. Phytocannabinoids Profile in Medicinal Cannabis Oils: The Impact of Plant Varieties and Preparation Methods. Front. Pharmacol. 2020, 11, 570616. [Google Scholar] [CrossRef]
- Estes, M.L.; McAllister, A.K. Maternal Immune Activation: Implications for Neuropsychiatric Disorders. Science 2016, 353, 772–777. [Google Scholar] [CrossRef]
- Park, J.E.; Leem, Y.H.; Park, J.S.; Kim, D.Y.; Kang, J.L.; Kim, H.S. Anti-Inflammatory and Neuroprotective Mechanisms of GTS-21, an A7 Nicotinic Acetylcholine Receptor Agonist, in Neuroinflammation and Parkinson’s Disease Mouse Models. Int. J. Mol. Sci. 2022, 23, 4420. [Google Scholar] [CrossRef]
- Subhramanyam, C.S.; Wang, C.; Hu, Q.; Dheen, S.T. Microglia-Mediated Neuroinflammation in Neurodegenerative Diseases. Semin. Cell Dev. Biol. 2019, 94, 112–120. [Google Scholar] [CrossRef]
- He, F.; Sun, Y.E. Glial Cells More than Support Cells? Int. J. Biochem. Cell Biol. 2007, 39, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Brook, E.; Mamo, J.; Wong, R.; Al-Salami, H.; Falasca, M.; Lam, V.; Takechi, R. Blood-Brain Barrier Disturbances in Diabetes-Associated Dementia: Therapeutic Potential for Cannabinoids. Pharmacol. Res. 2019, 141, 291–297. [Google Scholar] [CrossRef]
- Persidsky, Y.; Ramirez, S.H.; Haorah, J.; Kanmogne, G.D. Blood–Brain Barrier: Structural Components and Function Under Physiologic and Pathologic Conditions. J. Neuroimmune Pharmacol. 2006, 1, 223–236. [Google Scholar] [CrossRef]
- Mecha, M.; Feliú, A.; Iñigo, P.M.; Mestre, L.; Carrillo-Salinas, F.J.; Guaza, C. Cannabidiol Provides Long-Lasting Protection against the Deleterious Effects of Inflammation in a Viral Model of Multiple Sclerosis: A Role for A2A Receptors. Neurobiol. Dis. 2013, 59, 141–150. [Google Scholar] [CrossRef]
- Cătălin, B.; Cupido, A.; Iancău, M.; Albu, C.V.; Kirchhoff, F. Microglia: First Responders in the Central Nervous System. Rom. J. Morphol. Embryol. 2013, 54, 467–472. [Google Scholar] [PubMed]
- Hickman, S.; Izzy, S.; Sen, P.; Morsett, L.; El Khoury, J. Microglia in Neurodegeneration. Nat. Neurosci. 2018, 21, 1359–1369. [Google Scholar] [CrossRef]
- Kawamata, J.; Suzuki, S.; Shimohama, S. A7 Nicotinic Acetylcholine Receptor Mediated Neuroprotection in Parkinson’s Disease. Curr. Drug Targets 2012, 13, 623–630. [Google Scholar] [CrossRef]
- Li, L.; Liu, Z.; Jiang, Y.-Y.; Shen, W.-X.; Peng, Y.-P.; Qiu, Y.-H. Acetylcholine Suppresses Microglial Inflammatory Response via A7nAChR to Protect Hippocampal Neurons. J. Integr. Neurosci. 2019, 18, 51–56. [Google Scholar] [CrossRef]
- John, D.; Shelukhina, I.; Yanagawa, Y.; Deuchars, J.; Henderson, Z. Functional Alpha7 Nicotinic Receptors Are Expressed on Immature Granule Cells of the Postnatal Dentate Gyrus. Brain Res. 2015, 1601, 15–30. [Google Scholar] [CrossRef][Green Version]
- Borovikova, L.V.; Ivanova, S.; Zhang, M.; Yang, H.; Botchkina, G.I.; Watkins, L.R.; Wang, H.; Abumrad, N.; Eaton, J.W.; Tracey, K.J. Vagus Nerve Stimulation Attenuates the Systemic Inflammatory Response to Endotoxin. Nature 2000, 405, 458–462. [Google Scholar] [CrossRef]
- Shytle, R.D.; Mori, T.; Townsend, K.; Vendrame, M.; Sun, N.; Zeng, J.; Ehrhart, J.; Silver, A.A.; Sanberg, P.R.; Tan, J. Cholinergic Modulation of Microglial Activation by A7 Nicotinic Receptors. J. Neurochem. 2004, 89, 337–343. [Google Scholar] [CrossRef]
- Parrish, W.R.; Rosas-Ballina, M.; Gallowitsch-Puerta, M.; Ochani, M.; Ochani, K.; Yang, L.-H.; Hudson, L.; Lin, X.; Patel, N.; Johnson, S.M.; et al. Modulation of TNF Release by Choline Requires A7 Subunit Nicotinic Acetylcholine Receptor-Mediated Signaling. Mol. Med. 2008, 14, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.-Z.; Jin, X.-D.; Guan, L.-X.; Yan, H.-C.; Wang, P.; Gong, Z.; Li, S.-J.; Cao, X.; Xing, Y.-L.; Gao, T.-M. Nicotine Inhibits Microglial Proliferation and Is Neuroprotective in Global Ischemia Rats. Mol. Neurobiol. 2015, 51, 1480–1488. [Google Scholar] [CrossRef]
- Mahad, D.H.; Trapp, B.D.; Lassmann, H. Pathological Mechanisms in Progressive Multiple Sclerosis. Lancet Neurol. 2015, 14, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Matute, C.; Alberdi, E.; Ibarretxe, G.; Sánchez-Gómez, M.V. Excitotoxicity in Glial Cells. Eur. J. Pharmacol. 2002, 447, 239–246. [Google Scholar] [CrossRef]
- Lewerenz, J.; Maher, P. Chronic Glutamate Toxicity in Neurodegenerative Diseases—What Is the Evidence? Front. Neurosci. 2015, 9, 469. [Google Scholar] [CrossRef]
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.-S.; Peterson, T.C.; et al. Neurotoxic Reactive Astrocytes Are Induced by Activated Microglia. Nature 2017, 541, 481–487. [Google Scholar] [CrossRef]
- Pryce, G.; Ahmed, Z.; Hankey, D.J.R.; Jackson, S.J.; Croxford, J.L.; Pocock, J.M.; Ledent, C.; Petzold, A.; Thompson, A.J.; Giovannoni, G.; et al. Cannabinoids Inhibit Neurodegeneration in Models of Multiple Sclerosis. Brain 2003, 126, 2191–2202. [Google Scholar] [CrossRef]
- Talarico, G.; Trebbastoni, A.; Bruno, G.; de Lena, C. Modulation of the Cannabinoid System: A New Perspective for the Treatment of the Alzheimer’s Disease. Curr. Neuropharmacol. 2019, 17, 176–183. [Google Scholar] [CrossRef]
- Offen, D.; Gilgun-Sherki, Y.; Melamed, E. The Role of Oxidative Stress in the Pathogenesis of Multiple Sclerosis: The Need for Effective Antioxidant Therapy. J. Neurol. 2004, 251, 261–268. [Google Scholar] [CrossRef]
- Mestre, L.; Correa, F.; Arévalo-Martín, A.; Molina-Holgado, E.; Valenti, M.; Ortar, G.; Di Marzo, V.; Guaza, C. Pharmacological Modulation of the Endocannabinoid System in a Viral Model of Multiple Sclerosis. J. Neurochem. 2005, 92, 1327–1339. [Google Scholar] [CrossRef] [PubMed]
- Molina-Holgado, E.; Vela, J.M.; Arévalo-Martín, A.; Almazán, G.; Molina-Holgado, F.; Borrell, J.; Guaza, C. Cannabinoids Promote Oligodendrocyte Progenitor Survival: Involvement of Cannabinoid Receptors and Phosphatidylinositol-3 Kinase/Akt Signaling. J. Neurosci. 2002, 22, 9742–9753. [Google Scholar] [CrossRef]
- Hasbi, A.; George, S.R. Multilayered Neuroprotection by Cannabinoids in Neurodegenerative Diseases. Explor. Neuroprot. Ther. 2025, 5, 100498. [Google Scholar] [CrossRef]
- Marini, P.; Maccarrone, M.; Saso, L.; Tucci, P. The Effect of Phytocannabinoids and Endocannabinoids on Nrf2 Activity in the Central Nervous System and Periphery. Neurol. Int. 2024, 16, 776–789. [Google Scholar] [CrossRef] [PubMed]
- Tucci, P.; Lattanzi, R.; Severini, C.; Saso, L. Nrf2 Pathway in Huntington’s Disease (HD): What Is Its Role? Int. J. Mol. Sci. 2022, 23, 15272. [Google Scholar] [CrossRef]
- Cuadrado, A. NRF2 in Neurodegenerative Diseases. Curr. Opin. Toxicol. 2016, 1, 46–53. [Google Scholar] [CrossRef]
- Ligresti, A.; De Petrocellis, L.; Di Marzo, V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol. Rev. 2016, 96, 1593–1659. [Google Scholar] [CrossRef]
- Stasiłowicz, A.; Tomala, A.; Podolak, I.; Cielecka-Piontek, J. Cannabis Sativa L. as a Natural Drug Meeting the Criteria of a Multitarget Approach to Treatment. Int. J. Mol. Sci. 2021, 22, 778. [Google Scholar] [CrossRef]
- Martinez Naya, N.; Kelly, J.; Corna, G.; Golino, M.; Polizio, A.H.; Abbate, A.; Toldo, S.; Mezzaroma, E. An Overview of Cannabidiol as a Multifunctional Drug: Pharmacokinetics and Cellular Effects. Molecules 2024, 29, 473. [Google Scholar] [CrossRef]
- Daynes, R.A.; Jones, D.C. Emerging Roles of PPARS in Inflammation and Immunity. Nat. Rev. Immunol. 2002, 2, 748–759. [Google Scholar] [CrossRef]
- Heneka, M.; Landreth, G. PPARs in the Brain. Biochim. Biophys. Acta—Mol. Cell Biol. Lipids 2007, 1771, 1031–1045. [Google Scholar] [CrossRef]
- Le Foll, B.; Di Ciano, P.; Panlilio, L.V.; Goldberg, S.R.; Ciccocioppo, R. Peroxisome Proliferator-Activated Receptor (PPAR) Agonists as Promising New Medications for Drug Addiction: Preclinical Evidence. Curr. Drug Targets 2013, 14, 768–776. [Google Scholar] [CrossRef]
- Ramer, R.; Heinemann, K.; Merkord, J.; Rohde, H.; Salamon, A.; Linnebacher, M.; Hinz, B. COX-2 and PPAR-γ Confer Cannabidiol-Induced Apoptosis of Human Lung Cancer Cells. Mol. Cancer Ther. 2013, 12, 69–82. [Google Scholar] [CrossRef]
- Chang, R.C.; Thangavelu, C.S.; Joloya, E.M.; Kuo, A.; Li, Z.; Blumberg, B. Cannabidiol Promotes Adipogenesis of Human and Mouse Mesenchymal Stem Cells via PPARγ by Inducing Lipogenesis but Not Lipolysis. Biochem. Pharmacol. 2022, 197, 114910. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.; Nagarkatti, P.S.; Nagarkatti, M. Δ 9 Tetrahydrocannabinol Attenuates Staphylococcal Enterotoxin B-induced Inflammatory Lung Injury and Prevents Mortality in Mice by Modulation of Mi R-17-92 Cluster and Induction of T-regulatory Cells. Br. J. Pharmacol. 2015, 172, 1792–1806. [Google Scholar] [CrossRef]
- Karuppagounder, V.; Chung, J.; Abdeen, A.; Thompson, A.; Bouboukas, A.; Pinamont, W.J.; Yoshioka, N.K.; Sepulveda, D.E.; Raup-Konsavage, W.M.; Graziane, N.M.; et al. Therapeutic Effects of Non-Euphorigenic Cannabis Extracts in Osteoarthritis. Cannabis Cannabinoid Res. 2023, 8, 1030–1044. [Google Scholar] [CrossRef] [PubMed]
- Schubert, D.; Kepchia, D.; Liang, Z.; Dargusch, R.; Goldberg, J.; Maher, P. Efficacy of Cannabinoids in a Pre-Clinical Drug-Screening Platform for Alzheimer’s Disease. Mol. Neurobiol. 2019, 56, 7719–7730. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Sun, Y.; Li, J.; Liu, S.; Ding, H.; Wang, G.; Li, X. Assessing Cannabidiol as a Therapeutic Agent for Preventing and Alleviating Alzheimer’s Disease Neurodegeneration. Cells 2023, 12, 2672. [Google Scholar] [CrossRef]
- Martín-Moreno, A.M.; Reigada, D.; Ramírez, B.G.; Mechoulam, R.; Innamorato, N.; Cuadrado, A.; de Ceballos, M.L. Cannabidiol and Other Cannabinoids Reduce Microglial Activation In Vitro and In Vivo: Relevance to Alzheimer’s Disease. Mol. Pharmacol. 2011, 79, 964–973. [Google Scholar] [CrossRef] [PubMed]
- Staton, P.C.; Hatcher, J.P.; Walker, D.J.; Morrison, A.D.; Shapland, E.M.; Hughes, J.P.; Chong, E.; Mander, P.K.; Green, P.J.; Billinton, A.; et al. The Putative Cannabinoid Receptor GPR55 Plays a Role in Mechanical Hyperalgesia Associated with Inflammatory and Neuropathic Pain. Pain 2008, 139, 225–236. [Google Scholar] [CrossRef]
- Marsh, D.T.; Sugiyama, A.; Imai, Y.; Kato, R.; Smid, S.D. The Structurally Diverse Phytocannabinoids Cannabichromene, Cannabigerol and Cannabinol Significantly Inhibit Amyloid β-Evoked Neurotoxicity and Changes in Cell Morphology in PC12 Cells. Basic. Clin. Pharmacol. Toxicol. 2024, 134, 293–309. [Google Scholar] [CrossRef]
- Vitale, R.M.; Morace, A.M.; D’Errico, A.; Ricciardi, F.; Fusco, A.; Boccella, S.; Guida, F.; Nasso, R.; Rading, S.; Karsak, M.; et al. Identification of Cannabidiolic and Cannabigerolic Acids as MTDL AChE, BuChE, and BACE Inhibitors Against Alzheimer’s Disease by in Silico, In Vitro, and In Vivo Studies. Phytother. Res. 2025, 39, 233–245. [Google Scholar] [CrossRef]
- Giuliano, C.; Francavilla, M.; Ongari, G.; Petese, A.; Ghezzi, C.; Rossini, N.; Blandini, F.; Cerri, S. Neuroprotective and Symptomatic Effects of Cannabidiol in an Animal Model of Parkinson’s Disease. Int. J. Mol. Sci. 2021, 22, 8920. [Google Scholar] [CrossRef]
- Blázquez, C.; Chiarlone, A.; Sagredo, O.; Aguado, T.; Pazos, M.R.; Resel, E.; Palazuelos, J.; Julien, B.; Salazar, M.; Börner, C.; et al. Loss of Striatal Type 1 Cannabinoid Receptors Is a Key Pathogenic Factor in Huntington’s Disease. Brain 2011, 134, 119–136. [Google Scholar] [CrossRef] [PubMed]
- Dowie, M.J.; Howard, M.L.; Nicholson, L.F.B.; Faull, R.L.M.; Hannan, A.J.; Glass, M. Behavioural and Molecular Consequences of Chronic Cannabinoid Treatment in Huntington’s Disease Transgenic Mice. Neuroscience 2010, 170, 324–336. [Google Scholar] [CrossRef] [PubMed]
- Valdeolivas, S.; Navarrete, C.; Cantarero, I.; Bellido, M.L.; Muñoz, E.; Sagredo, O. Neuroprotective Properties of Cannabigerol in Huntington’s Disease: Studies in R6/2 Mice and 3-Nitropropionate-Lesioned Mice. Neurotherapeutics 2015, 12, 185–199. [Google Scholar] [CrossRef]
- Mammana, S.; Cavalli, E.; Gugliandolo, A.; Silvestro, S.; Pollastro, F.; Bramanti, P.; Mazzon, E. Could the Combination of Two Non-Psychotropic Cannabinoids Counteract Neuroinflammation? Effectiveness of Cannabidiol Associated with Cannabigerol. Medicina 2019, 55, 747. [Google Scholar] [CrossRef]
- Vaney, C.; Heinzel-Gutenbrunner, M.; Jobin, P.; Tschopp, F.; Gattlen, B.; Hagen, U.; Schnelle, M.; Reif, M. Efficacy, Safety and Tolerability of an Orally Administered Cannabis Extract in the Treatment of Spasticity in Patients with Multiple Sclerosis: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study. Mult. Scler. J. 2004, 10, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Charernboon, T.; Lerthattasilp, T.; Supasitthumrong, T. Effectiveness of Cannabinoids for Treatment of Dementia: A Systematic Review of Randomized Controlled Trials. Clin. Gerontol. 2021, 44, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, N.; Ruthirakuhan, M.; Gallagher, D.; Verhoeff, N.P.L.G.; Kiss, A.; Black, S.E.; Lanctôt, K.L. Randomized Placebo-Controlled Trial of Nabilone for Agitation in Alzheimer’s Disease. Am. J. Geriatr. Psychiatry 2019, 27, 1161–1173. [Google Scholar] [CrossRef]
- Jung, K.-M.; Astarita, G.; Yasar, S.; Vasilevko, V.; Cribbs, D.H.; Head, E.; Cotman, C.W.; Piomelli, D. An Amyloid Β42-Dependent Deficit in Anandamide Mobilization Is Associated with Cognitive Dysfunction in Alzheimer’s Disease. Neurobiol. Aging 2012, 33, 1522–1532. [Google Scholar] [CrossRef]
- Hua, D.Y.-H.; Hindocha, C.; Baio, G.; Lees, R.; Shaban, N.; Morgan, C.J.; Mofeez, A.; Curran, H.V.; Freeman, T.P. Effects of Cannabidiol on Anandamide Levels in Individuals with Cannabis Use Disorder: Findings from a Randomised Clinical Trial for the Treatment of Cannabis Use Disorder. Transl. Psychiatry 2023, 13, 131. [Google Scholar] [CrossRef]
- Saft, C.; von Hein, S.M.; Lücke, T.; Thiels, C.; Peball, M.; Djamshidian, A.; Heim, B.; Seppi, K. Cannabinoids for Treatment of Dystonia in Huntington’s Disease. J. Huntingtons Dis. 2018, 7, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Chagas, M.H.N.; Zuardi, A.W.; Tumas, V.; Pena-Pereira, M.A.; Sobreira, E.T.; Bergamaschi, M.M.; dos Santos, A.C.; Teixeira, A.L.; Hallak, J.E.; Crippa, J.A.S. Effects of Cannabidiol in the Treatment of Patients with Parkinson’s Disease: An Exploratory Double-Blind Trial. J. Psychopharmacol. 2014, 28, 1088–1098. [Google Scholar] [CrossRef]
- Zuardi, A.; Crippa, J.; Hallak, J.; Pinto, J.; Chagas, M.; Rodrigues, G.; Dursun, S.; Tumas, V. Cannabidiol for the Treatment of Psychosis in Parkinson’s Disease. J. Psychopharmacol. 2009, 23, 979–983. [Google Scholar] [CrossRef]
- Gabarin, A.; Yarmolinsky, L.; Budovsky, A.; Khalfin, B.; Ben-Shabat, S. Cannabis as a Source of Approved Drugs: A New Look at an Old Problem. Molecules 2023, 28, 7686. [Google Scholar] [CrossRef]
- Dias-de Freitas, F.; Pimenta, S.; Soares, S.; Gonzaga, D.; Vaz-Matos, I.; Prior, C. The Role of Cannabinoids in Neurodevelopmental Disorders of Children and Adolescents. Rev. Neurol. 2022, 75, 189–197. [Google Scholar] [CrossRef]
- Kaszewska, M.; Woźniczka, K.; Sztormowska-Achranowicz, K.; Mosińska, A.; Trojan, V.; Schreiber, P.; Balog, N.; Bączek, T.; Roszkowska, A. Perspectives of Cannabis-Based Medicines in a View of Pharmacokinetic Studies of Δ9-THC and CBD in Humans. Biomed. Pharmacother. 2025, 192, 118673. [Google Scholar] [CrossRef] [PubMed]
- Stone, N.L.; Murphy, A.J.; England, T.J.; O’Sullivan, S.E. A Systematic Review of Minor Phytocannabinoids with Promising Neuroprotective Potential. Br. J. Pharmacol. 2020, 177, 4330–4352. [Google Scholar] [CrossRef] [PubMed]
- Beltran-Velasco, A.I.; Clemente-Suarez, V.J. Impact of Peripheral Inflammation on Blood-Brain Barrier Dysfunction and Its Role in Neurodegenerative Diseases. Int. J. Mol. Sci. 2025, 26, 2440. [Google Scholar] [CrossRef] [PubMed]




| Component | Expression at NVU | Main Effects on BBB Structure and Function | Clinical Findings |
|---|---|---|---|
| CB1 receptor | Brain endothelial cells, pericytes, and glial cells [23,25,38] | Modulates tight junction proteins, vascular tone, and oxidative stress [23,38] | CB1 can either preserve or disrupt the BBB; CB1 activation led to downregulation of tight junction proteins [17,26]. Other studies reported that CB1 is upregulated in response to BBB disruption and is responsible for BBB integrity [22,25]. |
| CB2 receptor | Brain endothelial cells, pericytes [23,25], and glial cells [23,47]. | Reduces leukocyte adhesion, preserves tight junctions, and limits the release of neurotoxic mediators [21,23]. | CB2 activation attenuates BBB leakage and neuroinflammation [21]. |
| GPR55 | Brain endothelial cells [27] and glial cells [48]. | GPR55 activation leads to transient disruption and reorganization of tight and adherent junction proteins in brain microvascular endothelial cells [27]. | Activation of GPR55 reduces BBB integrity and increases BBB permeability in vivo [27]. |
| Endocannabinoids (AEA, 2-AG) | Produced by brain endothelial cells, astrocytes, and microglia [15]. | Under basal conditions, it may impair endothelial repair, and under injury, it increases claudin-5 and ZO-1 [15,32,39]. | Reduced AEA/2-AG levels with elevated degrading enzymes associated with BBB breakdown after traumatic brain injury [42]. AEA/2-AG treatment limits inflammation and preserves BBB integrity in vitro [15,39]. |
| Synthetic enzymes (NAPE-PLD, DAGLα/β) | Brain endothelial and glial cells [22,43,47,49]. | increases ECS tone in the brain; DAGLα-derived 2-AG maintains VE-cadherin and ZO-1 in brain endothelial cells [44]. | DAGLα inhibition compromises endothelial monolayers and facilitates BBB disruption [44]. |
| Degrading enzymes (FAAH, MAGL) | Brain endothelial, pericytes, and glial cells [22,46,50]. | Control 2-AG/AEA and arachidonic acid levels; preserved BBB integrity via anti-oxidative and anti-inflammatory pathways. | MAGL inhibitor protects BBB integrity in an ischemic model [46]; FAAH inhibitor protects the permeability of brain microvascular endothelial cells in vitro [50]. |
| Endocannabinoid-like mediators (PEA, OEA, oleamide) | Brain endothelial and glial cells [29,30,33,34]. | PEA and OEA have anti-inflammatory effects on BBB via PPAR signaling; PEA enhances the effects AEA and 2-AG [35]; oleamide inhibits gap-junction communication in glial and microvascular endothelial cells [29,31,32,33,34]. | PEA and OEA enhance BBB integrity in vitro and in vivo [33,34]. Oleamide increases BBB permeability in vivo [31,32]. |
| Disease | Phytocannabinoid | Study Design | Sample Size | Dose | Duration | Phytocannabinoid Effects | Endocannabinoids Modulation | Clinical Findings | Adverse Effects |
|---|---|---|---|---|---|---|---|---|---|
| Multiple Sclerosis | Δ9-THC + CBD (Sativex) [144] | Randomized, double-blind, placebo-controlled crossover trial | 57 patients | Capsules: 2.5 mg THC + 0.9 mg CBD standardized (escalated to max ~30 mg THC/day) | 14 days | May reduce spasticity, alleviates pain, improves sleep | CBD may increase anandamide levels | CB1/CB2-mediated anti-inflammatory modulates glutamatergic neurotransmission | Minor adverse events slightly more frequent in active phase; generally mild toxicity symptoms |
| Alzheimer’s Disease | Δ9-THC/Dronabinol [145] | Randomized, double-blind, placebo-controlled, crossover | 12 patients | Oral Dronabinol 2.5 mg twice daily | 6 weeks | Increased body weight overall; improved behavior and reduced disturbed behavior more during dronabinol periods | - | CB1/CB2 agonist | Seizure (one patient) |
| Nabilone [146] | Randomized, double-blind, placebo-controlled | 39 patients | Oral 0.5–1 mg/day | 6 weeks | Reduces agitation | - | Improvement in agitation scores compared with placebo | Mild sedation, somnolence | |
| CBD [147,148] | Randomized, double-blind, placebo-controlled | 13 patients | Oral 600 mg/day | 4 weeks | Potential neuro-protective and anti-inflammatory effects | Increase anandamide via FAAH inhibition and transport restriction | Antioxidant, anti-inflammatory effects, | Mild gastrointestinal upset, fatigue | |
| Huntington’s Disease | Δ9-THC + CBD (Sativex) [149] | Randomized, double-blind, placebo-controlled, crossover pilot clinical trial | 24 patients | Oromucosal spray: up to 12 sprays/day | 12 weeks | No significant motor, cognitive, behavioral or functional improvement vs. placebo | Not specifically evaluated Increase anandamide via FAAH inhibition and transport restriction | Trial showed safety and tolerability but no significant symptomatic benefit at the prescribed dose | No severe adverse events; well tolerated |
| Parkinson’s Disease | CBD [150] | Exploratory double-blind trial | 21 patients | Oral 150–400 mg/day | Improved non-motor symptoms: sleep disturbances, psychosis; no significant motor improvement | Possible anandamide enhancement, anti-inflammatory | Non CB1/CB2-mediated; antioxidant, anti-inflammatory | Mild somnolence, diarrhea | |
| CBD [151] | Open-label trial | 6 patients | Oral 150–400 mg/day | 4 weeks | Reduced psychosis and agitation | Improvement in psychotic symptoms without worsening motor function | No serious adverse events |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ben-Shabat, S.; Yarmolinsky, L.; Sharon, N.; Zeadnaa-Aldda, T.; Dayan, S.; Khalfin, B.; Fleisher-Berkovich, S. Cannabinoids, the Blood–Brain Barrier, and Neurodegeneration: Mechanisms, Dysregulation, and Therapeutic Perspectives. Biomolecules 2026, 16, 225. https://doi.org/10.3390/biom16020225
Ben-Shabat S, Yarmolinsky L, Sharon N, Zeadnaa-Aldda T, Dayan S, Khalfin B, Fleisher-Berkovich S. Cannabinoids, the Blood–Brain Barrier, and Neurodegeneration: Mechanisms, Dysregulation, and Therapeutic Perspectives. Biomolecules. 2026; 16(2):225. https://doi.org/10.3390/biom16020225
Chicago/Turabian StyleBen-Shabat, Shimon, Ludmila Yarmolinsky, Nitzan Sharon, Taima Zeadnaa-Aldda, Shir Dayan, Boris Khalfin, and Sigal Fleisher-Berkovich. 2026. "Cannabinoids, the Blood–Brain Barrier, and Neurodegeneration: Mechanisms, Dysregulation, and Therapeutic Perspectives" Biomolecules 16, no. 2: 225. https://doi.org/10.3390/biom16020225
APA StyleBen-Shabat, S., Yarmolinsky, L., Sharon, N., Zeadnaa-Aldda, T., Dayan, S., Khalfin, B., & Fleisher-Berkovich, S. (2026). Cannabinoids, the Blood–Brain Barrier, and Neurodegeneration: Mechanisms, Dysregulation, and Therapeutic Perspectives. Biomolecules, 16(2), 225. https://doi.org/10.3390/biom16020225

