Plasma Mucin-1 as a Potential Biomarker for Diabetic Peripheral Neuropathy in Type 2 Diabetes
Abstract
1. Introduction
2. Materials and Methods
2.1. Human Subjects and Research Design
2.2. Antibody Array Screening and ELISA Validation
2.3. Bioinformatic Analyses
2.4. Animal Experiments
2.5. Quantitative Real-Time PCR
2.6. Immunofluorescence Staining
2.7. Statistical Analysis
3. Results
3.1. Identification of Plasma Proteins for DPN in Patients with T2D
3.2. Functional Enrichment Analysis of Antibody Array
3.3. Validation of Mucin-1 as a Potential Biomarker for DPN
3.4. Correlation Analysis of Mucin-1 with Clinical Parameters
3.5. The Assessment of Mucin-1 Expression in Sciatic Nerve of T2D Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| DPN | Diabetic peripheral neuropathy |
| T2D | Type 2 diabetes mellitus |
| HV | Healthy volunteers |
| MNSI | Michigan Neuropathy Screening Inventory |
| MNCV | Motor nerve conduction velocity |
| SNCV | Sensory nerve conduction velocity |
| ROC | Receiver operating characteristic |
| AUC | Area under the curve |
| CA15-3 | Cancer antigen 15-3 |
References
- Zhu, J.; Hu, Z.; Luo, Y.; Liu, Y.; Luo, W.; Du, X.; Luo, Z.; Hu, J.; Peng, S. Diabetic peripheral neuropathy: Pathogenetic mechanisms and treatment. Front. Endocrinol. 2023, 14, 1265372. [Google Scholar] [CrossRef]
- Yagihashi, S.; Mizukami, H.; Sugimoto, K. Mechanism of diabetic neuropathy: Where are we now and where to go? J. Diabetes Investig. 2011, 2, 18–32. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, B.; Wang, Y.; Lan, H.; Liu, X.; Hu, Y.; Cao, P. Diabetic neuropathy: Cutting-edge research and future directions. Signal Transduct. Target. Ther. 2025, 10, 132. [Google Scholar] [CrossRef]
- Zhou, P.; Zhou, J.S.; Li, J.J.; Qin, L.; Hu, W.F.; Zhang, X.Y.; Wang, J.X.; Shi, Z. Prevalence and risk factors for painful diabetic peripheral neuropathy: A systematic review and meta-analysis. Front. Neurol. 2025, 16, 1564867. [Google Scholar] [CrossRef] [PubMed]
- Callaghan, B.C.; Cheng, H.T.; Stables, C.L.; Smith, A.L.; Feldman, E.L. Diabetic neuropathy: Clinical manifestations and current treatments. Lancet Neurol. 2012, 11, 521–534. [Google Scholar] [CrossRef]
- Selvarajah, D.; Kar, D.; Khunti, K.; Davies, M.J.; Scott, A.R.; Walker, J.; Tesfaye, S. Diabetic peripheral neuropathy: Advances in diagnosis and strategies for screening and early intervention. Lancet Diabetes Endocrinol. 2019, 7, 938–948. [Google Scholar] [CrossRef]
- Won, J.C.; Park, T.S. Recent Advances in Diagnostic Strategies for Diabetic Peripheral Neuropathy. Endocrinol. Metab. 2016, 31, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Mogilevskaya, M.; Gaviria-Carrillo, M.; Feliciano-Alfonso, J.E.; Barragan, A.M.; Calderon-Ospina, C.A.; Nava-Mesa, M.O. Diagnostic Accuracy of Screening Tests for Diabetic Peripheral Neuropathy: An Umbrella Review. J. Diabetes Res. 2024, 2024, 5902036. [Google Scholar] [CrossRef] [PubMed]
- Burgess, J.; Frank, B.; Marshall, A.; Khalil, R.S.; Ponirakis, G.; Petropoulos, I.N.; Cuthbertson, D.J.; Malik, R.A.; Alam, U. Early Detection of Diabetic Peripheral Neuropathy: A Focus on Small Nerve Fibres. Diagnostics 2021, 11, 165. [Google Scholar] [CrossRef]
- Fundaun, J.; Kolski, M.; Molina-Alvarez, M.; Baskozos, G.; Schmid, A.B. Types and Concentrations of Blood-Based Biomarkers in Adults with Peripheral Neuropathies: A Systematic Review and Meta-analysis. JAMA Netw. Open 2022, 5, e2248593. [Google Scholar] [CrossRef]
- Rossor, A.M.; Reilly, M.M. Blood biomarkers of peripheral neuropathy. Acta Neurol. Scand. 2022, 146, 325–331. [Google Scholar] [CrossRef]
- Lee, J.E.; Won, J.C. Clinical Phenotypes of Diabetic Peripheral Neuropathy: Implications for Phenotypic-Based Therapeutics Strategies. Diabetes Metab. J. 2025, 49, 542–564. [Google Scholar] [CrossRef]
- Weis, J.; May, R.; Schroder, J.M. Fine structural and immunohistochemical identification of perineurial cells connecting proximal and distal stumps of transected peripheral nerves at early stages of regeneration in silicone tubes. Acta Neuropathol. 1994, 88, 159–165. [Google Scholar] [CrossRef]
- Hill, R.E.; Williams, P.E. Perineurial cell basement membrane thickening and myelinated nerve fibre loss in diabetic and nondiabetic peripheral nerve. J. Neurol. Sci. 2004, 217, 157–163. [Google Scholar] [CrossRef]
- Apostolopoulos, V.; Stojanovska, L.; Gargosky, S.E. MUC1 (CD227): A multi-tasked molecule. Cell. Mol. Life Sci. 2015, 72, 4475–4500. [Google Scholar] [CrossRef]
- De Gregorio, C.; Contador, D.; Campero, M.; Ezquer, M.; Ezquer, F. Characterization of diabetic neuropathy progression in a mouse model of type 2 diabetes mellitus. Biol. Open 2018, 7, bio036830. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2025. Diabetes Care 2025, 48, S27–S49. [Google Scholar] [CrossRef]
- Bae, Y.U.; You, J.H.; Cho, N.H.; Kim, L.E.; Shim, H.M.; Park, J.H.; Cho, H.C. Association of Protein Z with Prediabetes and Type 2 Diabetes. Endocrinol. Metab. 2021, 36, 637–646. [Google Scholar] [CrossRef]
- Schmidt, D.; von Hochstetter, A.R. The use of CD31 and collagen IV as vascular markers. A study of 56 vascular lesions. Pathol. Res. Pract. 1995, 191, 410–414. [Google Scholar] [CrossRef]
- Elafros, M.A.; Andersen, H.; Bennett, D.L.; Savelieff, M.G.; Viswanathan, V.; Callaghan, B.C.; Feldman, E.L. Towards prevention of diabetic peripheral neuropathy: Clinical presentation, pathogenesis, and new treatments. Lancet Neurol. 2022, 21, 922–936. [Google Scholar] [CrossRef]
- Zheng, H.; Sun, W.; Zhang, Q.; Zhang, Y.; Ji, L.; Liu, X.; Zhu, X.; Ye, H.; Xiong, Q.; Li, Y.; et al. Proinflammatory cytokines predict the incidence of diabetic peripheral neuropathy over 5 years in Chinese type 2 diabetes patients: A prospective cohort study. eClinicalMedicine 2021, 31, 100649. [Google Scholar] [CrossRef]
- Oshitari, T. Advanced Glycation End-Products and Diabetic Neuropathy of the Retina. Int. J. Mol. Sci. 2023, 24, 2927. [Google Scholar] [CrossRef]
- Tejchman, K.; Kotfis, K.; Sienko, J. Biomarkers and Mechanisms of Oxidative Stress-Last 20 Years of Research with an Emphasis on Kidney Damage and Renal Transplantation. Int. J. Mol. Sci. 2021, 22, 8010. [Google Scholar] [CrossRef]
- Sun, Q.; Tang, D.D.; Yin, E.G.; Wei, L.L.; Chen, P.; Deng, S.P.; Tu, L.L. Diagnostic Significance of Serum Levels of Nerve Growth Factor and Brain Derived Neurotrophic Factor in Diabetic Peripheral Neuropathy. Med. Sci. Monit. 2018, 24, 5943–5950. [Google Scholar] [CrossRef]
- Zheng, L.Q.; Zhang, H.L.; Guan, Z.H.; Hu, M.Y.; Zhang, T.; Ge, S.J. Elevated serum homocysteine level in the development of diabetic peripheral neuropathy. Genet. Mol. Res. 2015, 14, 15365–15375. [Google Scholar] [CrossRef]
- Lv, N.; Jia, L.; Liu, F.; Cheng, L.; Liu, F.; Kuang, J.; Chen, X. Elevated circulating homocysteine concentrations delayed nerve conduction velocity and increase the risk of diabetic kidney disease in patients with type 2 diabetes. Front. Endocrinol. 2024, 15, 1451758. [Google Scholar] [CrossRef]
- Maalmi, H.; Strom, A.; Petrera, A.; Hauck, S.M.; Strassburger, K.; Kuss, O.; Zaharia, O.P.; Bonhof, G.J.; Rathmann, W.; Trenkamp, S.; et al. Serum neurofilament light chain: A novel biomarker for early diabetic sensorimotor polyneuropathy. Diabetologia 2023, 66, 579–589. [Google Scholar] [CrossRef]
- Bradley, J.L.; Thomas, P.K.; King, R.H.; Watkins, P.J. A comparison of perineurial and vascular basal laminal changes in diabetic neuropathy. Acta Neuropathol. 1994, 88, 426–432. [Google Scholar] [CrossRef]
- King, R.H.; Llewelyn, J.G.; Thomas, P.K.; Gilbey, S.G.; Watkins, P.J. Diabetic neuropathy: Abnormalities of Schwann cell and perineurial basal laminae. Implications for diabetic vasculopathy. Neuropathol. Appl. Neurobiol. 1989, 15, 339–355. [Google Scholar] [CrossRef]
- Pusnik, L.; Gabor, A.; Radochova, B.; Janacek, J.; Saudek, F.; Alibegovic, A.; Sersa, I.; Cvetko, E.; Umek, N.; Snoj, Z. High-Field Diffusion Tensor Imaging of Median, Tibial, and Sural Nerves in Type 2 Diabetes With Morphometric Analysis. J. Neuroimaging 2025, 35, e70025. [Google Scholar] [CrossRef]
- Evans, M.C.; Wade, C.; Hohenschurz-Schmidt, D.; Lally, P.; Ugwudike, A.; Shah, K.; Bangerter, N.; Sharp, D.J.; Rice, A.S.C. Magnetic Resonance Imaging as a Biomarker in Diabetic and HIV-Associated Peripheral Neuropathy: A Systematic Review-Based Narrative. Front. Neurosci. 2021, 15, 727311. [Google Scholar] [CrossRef]
- Jackson, L.J.; Serhal, M.; Omar, I.M.; Garg, A.; Michalek, J.; Serhal, A. Sural nerve: Imaging anatomy and pathology. Br. J. Radiol. 2023, 96, 20220336. [Google Scholar] [CrossRef]
- Hu, X.; Buhl, C.S.; Sjogaard, M.B.; Schousboe, K.; Mizrak, H.I.; Kufaishi, H.; Jensen, T.S.; Hansen, C.S.; Yderstraede, K.B.; Zhang, M.D.; et al. Structural changes in Schwann cells and nerve fibres in type 1 diabetes: Relationship with diabetic polyneuropathy. Diabetologia 2023, 66, 2332–2345. [Google Scholar] [CrossRef]
- Younger, D.S.; Rosoklija, G.; Hays, A.P.; Trojaborg, W.; Latov, N. Diabetic peripheral neuropathy: A clinicopathologic and immunohistochemical analysis of sural nerve biopsies. Muscle Nerve 1996, 19, 722–727. [Google Scholar] [CrossRef]
- Sheng, Y.H.; Triyana, S.; Wang, R.; Das, I.; Gerloff, K.; Florin, T.H.; Sutton, P.; McGuckin, M.A. MUC1 and MUC13 differentially regulate epithelial inflammation in response to inflammatory and infectious stimuli. Mucosal Immunol. 2013, 6, 557–568. [Google Scholar] [CrossRef]
- Yin, L.; Huang, L.; Kufe, D. MUC1 oncoprotein activates the FOXO3a transcription factor in a survival response to oxidative stress. J. Biol. Chem. 2004, 279, 45721–45727. [Google Scholar] [CrossRef]
- Duffy, M.J.; Evoy, D.; McDermott, E.W. CA 15-3: Uses and limitation as a biomarker for breast cancer. Clin. Chim. Acta 2010, 411, 1869–1874. [Google Scholar] [CrossRef]
- Krolewska-Daszczynska, P.; Englisz, A.; Morawiec, M.L.; Miskiewicz, J.; Golebski, M.; Mielczarek-Palacz, A. The assessment of breast cancer biomarkers in diagnosis, prognosis and treatment monitoring: Integrated analysis. J. Cancer Res. Clin. Oncol. 2025, 151, 233. [Google Scholar] [CrossRef]
- Jezersek, B.; Cervek, J.; Rudolf, Z.; Novakovic, S. Clinical evaluation of potential usefulness of CEA, CA 15-3, and MCA in follow-up of breast cancer patients. Cancer Lett. 1996, 110, 137–144. [Google Scholar] [CrossRef]





| Characteristic | HV | T2D w/o DPN | T2D with DPN | p-Value |
|---|---|---|---|---|
| Number (male/female) | 10 (5/5) | 20 (10/10) | 13 (5/8) | 0.078 |
| Age (year) | 54.70 ± 4.32 | 56.70 ± 7.07 | 59.23 ± 7.36 | 0.271 |
| Body weight (kg) | 57.99 ± 8.18 | 61.85 ± 10.12 | 66.48 ± 9.64 | 0.116 |
| BMI (kg/m2) | 24.04 ± 1.93 | 24.48 ± 2.62 | 25.92 ± 2.95 | 0.093 |
| Waist circumference (cm) | 78.10 ± 6.99 | 82.50 ± 7.13 | 80.08 ± 6.53 | 0.075 |
| Fasting glucose (mg/dL) | 79.60 ± 6.38 | 138.35 ± 14.56 | 132.54 ± 15.24 | <0.001 |
| HbA1c (%) | 5.29 ± 0.17 | 7.48 ± 1.24 | 7.32 ± 1.39 | <0.001 |
| Fasting insulin (µIU/mL) | 3.19 ± 1.70 | 5.91 ± 5.04 | 6.94 ± 5.67 | 0.047 |
| HOMA-IR | 0.62 ± 0.32 | 2.19 ± 2.35 | 2.33 ± 2.11 | 0.038 |
| M/C ratio | 2.88 ± 1.50 | 9.94 ± 7.57 | 11.91 ± 8.75 | 0.012 |
| eGFR (mL/min/1.73 m2) | 102.57 ± 19.03 | 101.29 ± 19.22 | 95.97 ± 19.17 | 0.658 |
| Creatinine (mg/mL) | 0.75 ± 0.15 | 0.72 ± 0.15 | 0.73 ± 0.16 | 0.891 |
| AST (U/L) | 25.00 ± 6.93 | 27.85 ± 12.57 | 29.77 ± 12.31 | 0.616 |
| ALT (U/L) | 23.10 ± 7.92 | 28.60 ± 12.76 | 28.69 ± 12.34 | 0.683 |
| Triglyceride (mg/dL) | 110.40 ± 30.62 | 111.75 ± 22.73 | 123.59 ± 24.13 | 0.243 |
| HDL (mg/dL) | 62.02 ± 23.19 | 53.47 ± 12.07 | 50.42 ± 12.21 | 0.194 |
| LDL (mg/dL) | 108.15 ± 26.02 | 103.30 ± 28.63 | 83.00 ± 26.90 | 0.233 |
| T2D duration (year) | 0 | 9.60 ± 2.32 | 12.85 ± 5.76 | 0.013 |
| Characteristic | HV | T2D w/o DPN | T2D with DPN | p-Value |
|---|---|---|---|---|
| Number (male/female) | 100 (73/27) | 97 (54/43) | 95 (43/52) | 0.142 |
| Age (year) | 59.68 ± 6.71 | 59.13 ± 8.59 | 61.11 ± 9.69 | 0.274 |
| Body weight (kg) | 63.05 ± 7.45 | 67.68 ± 13.10 | 66.57 ± 12.51 | 0.061 |
| BMI (kg/m2) | 24.54 ± 1.52 | 25.19 ± 3.54 | 25.58 ± 4.26 | 0.296 |
| Waist circumference (cm) | 79.08 ± 6.30 | 83.73 ± 8.80 | 82.73 ± 4.84 | 0.095 |
| Fasting glucose (mg/dL) | 88.35 ± 5.00 | 129.05 ± 13.54 | 124.29 ± 18.79 | 0.006 |
| HbA1c (%) | 5.28 ± 0.18 | 7.03 ± 0.93 | 7.53 ± 1.26 | 0.001 |
| Fasting insulin (µIU/mL) | 3.11 ± 1.66 | 8.43 ± 6.35 | 7.59 ± 4.14 | 0.003 |
| HOMA-IR | 0.68 ± 0.36 | 2.77 ± 2.47 | 2.72 ± 1.33 | 0.001 |
| M/C ratio | 2.73 ± 1.83 | 8.20 ± 6.52 | 9.15 ± 8.08 | 0.032 |
| eGFR (mL/min/1.73 m2) | 100.63 ± 19.86 | 102.30 ± 20.13 | 91.59 ± 17.69 | 0.553 |
| Creatinine (mg/mL) | 0.81 ± 0.18 | 0.79 ± 0.16 | 0.76 ± 0.13 | 0.211 |
| AST (U/L) | 21.27 ± 4.78 | 21.34 ± 8.19 | 21.80 ± 7.58 | 0.473 |
| ALT (U/L) | 17.09 ± 6.77 | 19.12 ± 9.12 | 19.98 ± 9.58 | 0.272 |
| Triglyceride (mg/dL) | 109.34 ± 32.27 | 119.66 ± 49.77 | 122.03 ± 48.48 | 0.062 |
| HDL (mg/dL) | 53.55 ± 12.53 | 50.60 ± 13.42 | 51.86 ± 14.11 | 0.061 |
| LDL (mg/dL) | 113.29 ± 29.88 | 118.63 ± 30.93 | 110.87 ± 32.50 | 0.093 |
| SBP (mmHg) | 118.14 ± 11.06 | 121.66 ± 13.65 | 118.02 ± 7.24 | 0.262 |
| DBP (mmHg) | 75.44 ± 8.46 | 74.36 ± 10.94 | 71.58 ± 7.23 | 0.345 |
| T2D duration (year) | 0 | 5.52 ± 1.66 | 8.27 ± 5.62 | 0.001 |
| Characteristic | T2D w/o DPN | T2D with DPN | p-Value |
|---|---|---|---|
| MMSI score | 0.31 ± 0.51 | 3.90 ± 1.14 | <0.001 |
| Mucin-1 (U/mL) | 9.66 ± 2.02 | 17.76 ± 4.45 | 0.004 |
| T2D duration (year) | 5.52 ± 1.66 | 8.27 ± 5.62 | 0.001 |
| Peroneal MNCV | 51.43 ± 3.75 | 44.20 ± 3.96 | 0.001 |
| Tibial MNCV | 45.41 ± 6.70 | 39.56 ± 7.11 | 0.007 |
| Sural SNCV | 47.47 ± 3.77 | 38.74 ± 4.23 | 0.001 |
| Sural SNAP | 15.09 ± 2.69 | 10.00 ± 1.71 | 0.019 |
| Variables | Mucin-1 | |
|---|---|---|
| Pearson Correlation Coefficient R | p-Value | |
| MNSI score | 0.330 | 0.006 |
| Peroneal MNCV | −0.323 | 0.042 |
| Tibial MNCV | −0.297 | 0.046 |
| Sural SNCV | −0.351 | 0.039 |
| Sural SNAP | −0.317 | 0.045 |
| T2D duration (year) | 0.439 | <0.001 |
| BMI (kg/m2) | 0.049 | 0.687 |
| Glucose (mg/dL) | −0.146 | 0.230 |
| HbA1c (%) | 0.061 | 0.620 |
| M/C ratio | 0.167 | 0.170 |
| Insulin (μIU/mL) | −0.199 | 0.100 |
| HOMA-IR | −0.186 | 0.126 |
| Variables | B | Standard Error | Wald | Degrees of Freedom | p-Value | Estimated Odd Ratio | 95% Confidence Interval |
|---|---|---|---|---|---|---|---|
| Mucin-1 | 0.569 | 0.248 | 5.271 | 1 | 0.022 | 1.766 | 1.087–2.871 |
| MNSI score | 0.861 | 0.424 | 4.122 | 1 | 0.042 | 2.366 | 1.030–5.434 |
| Peroneal MNCV | −0.273 | 0.135 | 4.093 | 1 | 0.043 | 0.761 | 0.584–0.992 |
| Tibial MNCV | −0.254 | 0.108 | 4.008 | 1 | 0.047 | 0.713 | 0.512–0.937 |
| Sural SNCV | −0.266 | 0.127 | 4.051 | 1 | 0.039 | 0.758 | 0.579–0.976 |
| Sural SNAP | −0.291 | 0.131 | 4.085 | 1 | 0.045 | 0.683 | 0.438–0.913 |
| BMI (kg/m2) | −0.039 | 0.154 | 0.064 | 1 | 0.800 | 0.962 | 0.711–1.300 |
| Glucose (mg/dL) | −0.035 | 0.050 | 0.511 | 1 | 0.475 | 0.965 | 0.876–1.064 |
| HbA1c (%) | 1.046 | 0.691 | 2.290 | 1 | 0.130 | 2.845 | 0.734–11.022 |
| M/C ratio | −0.057 | 0.071 | 0.643 | 1 | 0.423 | 0.945 | 0.822–1.086 |
| Insulin (μIU/mL) | −0.216 | 0.631 | 0.117 | 1 | 0.732 | 0.806 | 0.234–2.777 |
| HOMA-IR | 0.417 | 1.920 | 0.047 | 1 | 0.828 | 1.517 | 0.035–65.30 |
| (constant) | −7.732 | 7.341 | 1.109 | 1 | 0.292 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Park, J.-H.; Nguyen, T.N.; Shim, H.M.; Yu, G.I.; Kang, J.; Ha, E.Y.; Cho, H. Plasma Mucin-1 as a Potential Biomarker for Diabetic Peripheral Neuropathy in Type 2 Diabetes. Biomolecules 2026, 16, 128. https://doi.org/10.3390/biom16010128
Park J-H, Nguyen TN, Shim HM, Yu GI, Kang J, Ha EY, Cho H. Plasma Mucin-1 as a Potential Biomarker for Diabetic Peripheral Neuropathy in Type 2 Diabetes. Biomolecules. 2026; 16(1):128. https://doi.org/10.3390/biom16010128
Chicago/Turabian StylePark, Jae-Hyung, Thi Nhi Nguyen, Hye Min Shim, Gyeong Im Yu, Junho Kang, Eun Yeong Ha, and Hochan Cho. 2026. "Plasma Mucin-1 as a Potential Biomarker for Diabetic Peripheral Neuropathy in Type 2 Diabetes" Biomolecules 16, no. 1: 128. https://doi.org/10.3390/biom16010128
APA StylePark, J.-H., Nguyen, T. N., Shim, H. M., Yu, G. I., Kang, J., Ha, E. Y., & Cho, H. (2026). Plasma Mucin-1 as a Potential Biomarker for Diabetic Peripheral Neuropathy in Type 2 Diabetes. Biomolecules, 16(1), 128. https://doi.org/10.3390/biom16010128

