The Impact of Glucagon-like Peptide-1 Receptor Agonists on Erectile Function: Friend or Foe?
Abstract
1. Introduction
2. Physiological Mechanisms Underlying Male Sexual Arousal
3. Pathophysiology of Erectile Dysfunction in Patients with Diabetes
3.1. Hyperglycemia
3.2. Insulin Resistance
3.3. Hypogonadism
4. GLP-1 Receptor Agonists: Therapeutic Impact and Safety Considerations
4.1. Pharmacological Profile and Clinical Benefits of GLP-1 Receptor Agonists
4.2. Adverse Effects and Safety Profile of GLP-1 Receptor Agonists
5. Cardiovascular and Potential Erectile Implications of GLP-1 Receptor Agonists: Insights from Preclinical Research
5.1. Cardiovascular Effects of GLP-1 Receptor Agonists
5.2. Potential Impact of GLP-1 Receptor Agonists on Erectile Function
6. GLP-1 Receptor Agonists and Erectile Function: Insights from Clinical Research
6.1. Evidence Supporting a Beneficial Effect of GLP-1 Receptor Agonists on Erectile Function
6.2. Evidence Suggesting a Potential Adverse Impact of GLP-1 Receptor Agonists on Erectile Function
7. The Influence of Other Antidiabetic Drugs on Erectile Function: Comparative Evidence with GLP-1 Receptor Agonists
7.1. Erectile Effects of Other Antidiabetic Therapies: Mechanistic Insights and Clinical Evidence
7.2. Potential Comparative Advantage of GLP-1 Receptor Agonists in Erectile Function
8. Research Gaps, Challenges, Future Perspectives, and Conclusions
8.1. Evaluating Mechanistic and Clinical Evidence Supporting GLP-1 Receptor Agonists–Mediated Erectile Benefits
8.2. Assessing Emerging Concerns and Theoretical Risks of GLP-1 Receptor Agonists on Erectile Function
8.3. Comparing GLP-1 Receptor Agonists with Other Weight Loss Interventions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Yafi, F.A.; Jenkins, L.; Albersen, M.; Corona, G.; Isidori, A.M.; Goldfarb, S.; Maggi, M.; Nelson, C.J.; Parish, S.; Salonia, A.; et al. Erectile dysfunction. Nat. Rev. Dis. Primers 2016, 2, 16003. [Google Scholar] [CrossRef] [PubMed]
- Obi, P.C.; Njoku, G.H.; Mbaike, A.C.; Ihim, A.C.; Nwako, O.F.; Anyanwu, A.C.; Ohiri, J.U.; Nwazor, E.; Ubani, B.C.; Ogbonna, S.U.; et al. Quality of Sexual Life and its Correlates among Men with Diabetes Mellitus and Erectile dysfunction attending a tertiary hospital in Owerri, Nigeria. Niger. Med. J. 2025, 66, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Pang, K.; Pan, D.; Xu, H.; Ma, Y.; Wang, J.; Xu, P.; Wang, H.; Zang, G. Advances in physical diagnosis and treatment of male erectile dysfunction. Front. Physiol. 2023, 13, 1096741. [Google Scholar] [CrossRef]
- Rhoden, E.L.; Telöken, C.; Sogari, P.R.; Vargas Souto, C.A. The use of the simplified International Index of Erectile Function (IIEF-5) as a diagnostic tool to study the prevalence of erectile dysfunction. Int. J. Impot. Res. 2002, 14, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Pyrgidis, N.; Mykoniatis, I.; Haidich, A.B.; Tirta, M.; Talimtzi, P.; Kalyvianakis, D.; Ouranidis, A.; Hatzichristou, D. Effect of phosphodiesterase-type 5 inhibitors on erectile function: An overview of systematic reviews and meta-analyses. BMJ Open 2021, 11, e047396. [Google Scholar] [CrossRef] [PubMed]
- Vishwakarma, R.K.; Patel, N.P.; Goutam, P. Evaluation of Erectile Dysfunction in Prediabetic Males at Tertiary Care Center in Central India. J. Assoc. Physicians India 2024, 72, e10–e13. [Google Scholar] [CrossRef]
- Dandona, P.; Dhindsa, S. Update: Hypogonadotropic hypogonadism in type 2 diabetes and obesity. J. Clin. Endocrinol. Metab. 2011, 96, 2643–2651. [Google Scholar] [CrossRef]
- Kouidrat, Y.; Pizzol, D.; Cosco, T.; Thompson, T.; Carnaghi, M.; Bertoldo, A.; Solmi, M.; Stubbs, B.; Veronese, N. High prevalence of erectile dysfunction in diabetes: A systematic review and meta-analysis of 145 studies. Diabet. Med. 2017, 34, 1185–1192. [Google Scholar] [CrossRef]
- Chu, N.V.; Edelman, S.V. Erectile dysfunction and diabetes. Curr. Diabetes Rep. 2002, 2, 60–66. [Google Scholar] [CrossRef]
- Kitaw, T.A.; Abate, B.B.; Tilahun, B.D.; Yilak, G.; Rede, M.B.; Getie, A.; Haile, R.N. The global burden of erectile dysfunction and its associated risk factors in diabetic patients: An umbrella reviews. BMC Public Health 2024, 24, 2816. [Google Scholar] [CrossRef]
- Maiorino, M.I.; Bellastella, G.; Della Volpe, E.; Casciano, O.; Scappaticcio, L.; Cirillo, P.; Giugliano, D.; Esposito, K. Erectile dysfunction in young men with type 1 diabetes. Int. J. Impot. Res. 2017, 29, 17–22. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Z.; Tang, G. Global prevalence of erectile dysfunction and its associated risk factors among men with type 1 diabetes: A systematic review and meta-analysis. Int. J. Impot. Res. 2024, 36, 365–374. [Google Scholar] [CrossRef]
- Yao, S.; Xing, S.; Shan, X.; Dai, W.; Cao, Y.; Hu, B. Importance of assessing erectile dysfunction in patients with type 2 diabetes mellitus based on glucose fluctuation: A Cross-Sectional study. Endocrine 2025, 88, 650–659. [Google Scholar] [CrossRef]
- Dilixiati, D.; Waili, A.; Tuerxunmaimaiti, A.; Tao, L.; Zebibula, A.; Rexiati, M. Risk factors for erectile dysfunction in diabetes mellitus: A systematic review and meta-analysis. Front. Endocrinol. 2024, 15, 1368079. [Google Scholar] [CrossRef]
- Lu, M.; Ni, D.; Wu, W.; Xu, C.; Zhang, Y. Analysis of Risk Factors Associated with Organic Erectile Dysfunction in Patients with Type 2 Diabetes Mellitus and Erectile Dysfunction. Discov. Med. 2025, 37, 141–151. [Google Scholar] [CrossRef]
- Cignarelli, A.; Genchi, V.A.; D’Oria, R.; Giordano, F.; Caruso, I.; Perrini, S.; Natalicchio, A.; Laviola, L.; Giorgino, F. Role of Glucose-Lowering Medications in Erectile Dysfunction. J. Clin. Med. 2021, 10, 2501. [Google Scholar] [CrossRef]
- Westermeier, F.; Fisman, E.Z. Glucagon like peptide-1 (GLP-1) agonists and cardiometabolic protection: Historical development and future challenges. Cardiovasc. Diabetol. 2025, 24, 44. [Google Scholar] [CrossRef]
- Pantea, I.; Repanovici, A.; Andreescu, O. The Influence of GLP1 on Body Weight and Glycemic Management in Patients with Diabetes—A Scientometric Investigation and Visualization Study. Medicina 2024, 60, 1761. [Google Scholar] [CrossRef]
- Calabrò, R.S.; Cacciola, A.; Bruschetta, D.; Milardi, D.; Quattrini, F.; Sciarrone, F.; la Rosa, G.; Bramanti, P.; Anastasi, G. Neuroanatomy and function of human sexual behavior: A neglected or unknown issue? Brain Behav. 2019, 9, e01389. [Google Scholar] [CrossRef]
- Azadzoi, K.M.; Yang, J.; Siroky, M.B. Neural regulation of sexual function in men. World J. Clin. Urol. 2013, 2, 32–41. [Google Scholar] [CrossRef]
- Liu, X.; Yu, Y.; Zhang, H.; Zhang, M.; Liu, Y. The Role of Muscarinic Acetylcholine Receptor M3 in Cardiovascular Diseases. Int. J. Mol. Sci. 2024, 25, 7560. [Google Scholar] [CrossRef]
- Lincoln, T.M.; Dey, N.; Sellak, H. Invited review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: From the regulation of tone to gene expression. J. Appl. Physiol. 2001, 91, 1421–1430. [Google Scholar] [CrossRef]
- Morgado, M.; Cairrão, E.; Santos-Silva, A.J.; Verde, I. Cyclic nucleotide-dependent relaxation pathways in vascular smooth muscle. Cell. Mol. Life Sci. 2012, 69, 247–266. [Google Scholar] [CrossRef]
- Lucas-Herald, A.K.; Alves-Lopes, R.; Montezano, A.C.; Ahmed, S.F.; Touyz, R.M. Genomic and non-genomic effects of androgens in the cardiovascular system: Clinical implications. Clin. Sci. 2017, 131, 1405–1418. [Google Scholar] [CrossRef] [PubMed]
- Foradori, C.D.; Weiser, M.J.; Handa, R.J. Non-genomic actions of androgens. Front. Neuroendocrinol. 2008, 29, 169–181. [Google Scholar] [CrossRef]
- Goto, K.; Ohtsubo, T.; Kitazono, T. Endothelium-Dependent Hyperpolarization (EDH) in Hypertension: The Role of Endothelial Ion Channels. Int. J. Mol. Sci. 2018, 19, 315. [Google Scholar] [CrossRef]
- Prieto, D. Physiological regulation of penile arteries and veins. Int. J. Impot. Res. 2008, 20, 17–29. [Google Scholar] [CrossRef]
- Ma, J.; Chen, Y.; Si, Y.; Qian, J.; Wang, C.; Jin, J.; He, Q. The multifaceted nature of diabetic erectile dysfunction: Uncovering the intricate mechanisms and treatment strategies. Front. Endocrinol. 2024, 15, 1460033. [Google Scholar] [CrossRef]
- Asadipooya, K.; Uy, E.M. Advanced Glycation End Products (AGEs), Receptor for AGEs, Diabetes, and Bone: Review of the Literature. J. Endocr. Soc. 2019, 3, 1799–1818. [Google Scholar] [CrossRef]
- Castela, Â.; Costa, C. Molecular mechanisms associated with diabetic endothelial-erectile dysfunction. Nat. Rev. Urol. 2016, 13, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Cartledge, J.J.; Eardley, I.; Morrison, J.F. Advanced glycation end-products are responsible for the impairment of corpus cavernosal smooth muscle relaxation seen in diabetes. BJU Int. 2001, 87, 402–407. [Google Scholar] [CrossRef]
- Kaltsas, A.; Zikopoulos, A.; Dimitriadis, F.; Sheshi, D.; Politis, M.; Moustakli, E.; Symeonidis, E.N.; Chrisofos, M.; Sofikitis, N.; Zachariou, A. Oxidative Stress and Erectile Dysfunction: Pathophysiology, Impacts, and Potential Treatments. Curr. Issues Mol. Biol. 2024, 46, 8807–8834. [Google Scholar] [CrossRef]
- Cai, Z.; Yuan, S.; Zhong, Y.; Deng, L.; Li, J.; Tan, X.; Feng, J. Amelioration of Endothelial Dysfunction in Diabetes: Role of Takeda G Protein-Coupled Receptor 5. Front. Pharmacol. 2021, 12, 637051. [Google Scholar] [CrossRef]
- Bahadoran, Z.; Mirmiran, P.; Kashfi, K.; Ghasemi, A. Vascular nitric oxide resistance in type 2 diabetes. Cell Death Dis. 2023, 14, 410. [Google Scholar] [CrossRef]
- Toque, H.A.; Nunes, K.P.; Yao, L.; Liao, J.K.; Webb, R.C.; Caldwell, R.B.; Caldwell, R.W. Activated Rho kinase mediates diabetes-induced elevation of vascular arginase activation and contributes to impaired corpora cavernosa relaxation: Possible involvement of p38 MAPK activation. J. Sex. Med. 2013, 10, 1502–1515. [Google Scholar] [CrossRef]
- Zhou, M.; Li, G.; Zhu, L.; Zhou, H.; Lu, L. Arctiin attenuates high glucose-induced human retinal capillary endothelial cell proliferation by regulating ROCK1/PTEN/PI3K/Akt/VEGF pathway in vitro. J. Cell. Mol. Med. 2020, 24, 5695–5706. [Google Scholar] [CrossRef]
- Kilarkaje, N.; Yousif, M.H.; El-Hashim, A.Z.; Makki, B.; Akhtar, S.; Benter, I.F. Role of angiotensin II and angiotensin-(1-7) in diabetes-induced oxidative DNA damage in the corpus cavernosum. Fertil. Steril. 2013, 100, 226–233. [Google Scholar] [CrossRef]
- Deng, W.; Bivalacqua, T.J.; Champion, H.C.; Hellstrom, W.J.; Murthy, S.N.; Kadowitz, P.J. Superoxide dismutase—A target for gene therapeutic approach to reduce oxidative stress in erectile dysfunction. Methods Mol. Biol. 2010, 610, 213–227. [Google Scholar] [CrossRef]
- Radi, R. Protein tyrosine nitration: Biochemical mechanisms and structural basis of functional effects. Acc. Chem. Res. 2013, 46, 550–559. [Google Scholar] [CrossRef]
- Zhang, J.; Xin, S.; Mao, J.; Liu, X.; Wang, T.; Liu, J.; Song, X.; Song, W. The role of pogrammed cell death in diabetes mellitus-induced erectile dysfunction: From mechanisms to targeted therapy. Reprod. Biol. Endocrinol. 2025, 23, 32. [Google Scholar] [CrossRef]
- Chen, Y.; Xiao, M.; Zhao, L.; Huang, Y.; Lin, Y.; Xie, T.; Tian, J.; Wang, Q.; Tang, Y.; Su, Z. Low-Intensity Pulsed Ultrasound Counteracts Advanced Glycation End Products-Induced Corpus Cavernosal Endothelial Cell Dysfunction via Activating Mitophagy. Int. J. Mol. Sci. 2022, 23, 14887. [Google Scholar] [CrossRef]
- Qabazard, B.; Yousif, M.; Mousa, A.; Phillips, O.A. GYY4137 attenuates functional impairment of corpus cavernosum and reduces fibrosis in rats with STZ-induced diabetes by inhibiting the TGF-β1/Smad/CTGF pathway. Biomed. Pharmacother. 2021, 138, 111486. [Google Scholar] [CrossRef]
- Kadioglu, A.; Dincer, M.; Salabas, E.; Culha, M.G.; Akdere, H.; Cilesiz, N.C. A Population-Based Study of Peyronie’s Disease in Turkey: Prevalence and Related Comorbidities. Sex. Med. 2020, 8, 679–685. [Google Scholar] [CrossRef]
- Yang, C.C.; Liao, P.H.; Cheng, Y.H.; Chien, C.Y.; Cheng, K.H.; Chien, C.T. Diabetes associated with hypertension exacerbated oxidative stress-mediated inflammation, apoptosis and autophagy leading to erectile dysfunction in rats. J. Chin. Med. Assoc. 2022, 85, 346–357. [Google Scholar] [CrossRef]
- Chrysant, S.G. Antihypertensive therapy causes erectile dysfunction. Curr. Opin. Cardiol. 2015, 30, 383–390. [Google Scholar] [CrossRef]
- Musicki, B.; Liu, T.; Lagoda, G.A.; Strong, T.D.; Sezen, S.F.; Johnson, J.M.; Burnett, A.L. Hypercholesterolemia-induced erectile dysfunction: Endothelial nitric oxide synthase (eNOS) uncoupling in the mouse penis by NAD(P)H oxidase. J. Sex. Med. 2010, 7, 3023–3032. [Google Scholar] [CrossRef]
- Potenza, M.A.; Addabbo, F.; Montagnani, M. Vascular actions of insulin with implications for endothelial dysfunction. Am. J. Physiol. Endocrinol. Metab. 2009, 297, 568–577. [Google Scholar] [CrossRef]
- Silva, F.H.; Alexandre, E.C.; Calmasini, F.B.; Calixto, M.C.; Antunes, E. Treatment with Metformin Improves Erectile Dysfunction in a Murine Model of Obesity Associated with Insulin Resistance. Urology 2015, 86, 423.e1-6. [Google Scholar] [CrossRef]
- Chen, S.; Wu, R.; Huang, Y.; Zheng, F.; Ou, Y.; Tu, X.; Zhang, Y.; Gao, Y.; Chen, X.; Zheng, T.; et al. Insulin resistance is an independent determinate of ED in young adult men. PLoS ONE 2013, 8, e83951. [Google Scholar] [CrossRef]
- Jalali, S.; Zareshahi, N.; Behnoush, A.H.; Azarboo, A.; Shirinezhad, A.; Hosseini, S.Y.; Javidan, A.; Ghaseminejad-Raeini, A. Association of insulin resistance surrogate indices and erectile dysfunction: A systematic review and meta-analysis. Reprod. Biol. Endocrinol. 2024, 22, 148. [Google Scholar] [CrossRef]
- Wu, S.; Xia, W. Association between different insulin resistance surrogates and erectile dysfunction in non-diabetic men: A large population-based study. BMC Public Health 2025, 25, 1949. [Google Scholar] [CrossRef]
- Sun, C.; Gao, Y.; Liang, Z.; Liu, C.; Chen, M. Association of METS-IR index with prevalence of erectile dysfunction in US adults: A cross-sectional study. Int. Urol. Nephrol. 2024, 56, 2157–2164. [Google Scholar] [CrossRef]
- De Silva, N.L.; Papanikolaou, N.; Grossmann, M.; Antonio, L.; Quinton, R.; Anawalt, B.D.; Jayasena, C.N. Male hypogonadism: Pathogenesis, diagnosis, and management. Lancet Diabetes Endocrinol. 2024, 12, 761–774. [Google Scholar] [CrossRef]
- Ding, E.L.; Song, Y.; Manson, J.E.; Hunter, D.J.; Lee, C.C.; Rifai, N.; Buring, J.E.; Gaziano, J.M.; Liu, S. Sex hormone-binding globulin and risk of type 2 diabetes in women and men. N. Engl. J. Med. 2009, 361, 1152–1163. [Google Scholar] [CrossRef]
- Khalil, S.H.A.; Dandona, P.; Osman, N.A.; Assaad, R.S.; Zaitoon, B.T.A.; Almas, A.A.; Amin, N.G. Diabetes surpasses obesity as a risk factor for low serum testosterone level. Diabetol. Metab. Syndr. 2024, 16, 143. [Google Scholar] [CrossRef]
- Grossmann, M. Hypogonadism and male obesity: Focus on unresolved questions. Clin. Endocrinol. 2018, 89, 11–21. [Google Scholar] [CrossRef]
- Infante, M.; Silvestri, F.; Padilla, N.; Pacifici, F.; Pastore, D.; Pinheiro, M.M.; Caprio, M.; Tesauro, M.; Fabbri, A.; Novelli, G.; et al. Unveiling the Therapeutic Potential of the Second-Generation Incretin Analogs Semaglutide and Tirzepatide in Type 1 Diabetes and Latent Autoimmune Diabetes in Adults. J. Clin. Med. 2025, 14, 1303. [Google Scholar] [CrossRef]
- Mulligan, T.; Frick, M.F.; Zuraw, Q.C.; Stemhagen, A.; McWhirter, C. Prevalence of hypogonadism in males aged at least 45 years: The HIM study. Int. J. Clin. Pract. 2006, 60, 762–769. [Google Scholar] [CrossRef]
- Traish, A.M. Androgens play a pivotal role in maintaining penile tissue architecture and erection: A review. J. Androl. 2009, 30, 363–369. [Google Scholar] [CrossRef]
- Cai, J.J.; Wen, J.; Jiang, W.H.; Lin, J.; Hong, Y.; Zhu, Y.S. Androgen actions on endothelium functions and cardiovascular diseases. J. Geriatr. Cardiol. 2016, 13, 183–196. [Google Scholar] [CrossRef]
- Traish, A.M.; Galoosian, A. Androgens modulate endothelial function and endothelial progenitor cells in erectile physiology. Korean J. Urol. 2013, 54, 721–731. [Google Scholar] [CrossRef]
- Varlamov, O.; White, A.E.; Carroll, J.M.; Bethea, C.L.; Reddy, A.; Slayden, O.; O’Rourke, R.W.; Roberts, C.T., Jr. Androgen effects on adipose tissue architecture and function in nonhuman primates. Endocrinology 2012, 153, 3100–3110. [Google Scholar] [CrossRef] [PubMed]
- Schardein, J.N.; Hotaling, J.M. The Impact of Testosterone on Erectile Function. Androgens 2022, 3, 113–124. [Google Scholar] [CrossRef]
- Long, L.; Qiu, H.; Cai, B.; Chen, N.; Lu, X.; Zheng, S.; Ye, X.; Li, Y. Hyperglycemia induced testicular damage in type 2 diabetes mellitus rats exhibiting microcirculation impairments associated with vascular endothelial growth factor decreased via PI3K/Akt pathway. Oncotarget 2018, 9, 5321–5336. [Google Scholar] [CrossRef]
- Schoeller, E.L.; Schon, S.; Moley, K.H. The effects of type 1 diabetes on the hypothalamic, pituitary and testes axis. Cell Tissue Res. 2012, 349, 839–847. [Google Scholar] [CrossRef]
- Noori, T.; Sureda, A.; Shirooie, S. Role of natural mTOR inhibitors in treatment of diabetes mellitus. Fundam. Clin. Pharmacol. 2023, 37, 461–479. [Google Scholar] [CrossRef]
- Kuryłowicz, A. Estrogens in Adipose Tissue Physiology and Obesity-Related Dysfunction. Biomedicines 2023, 11, 690. [Google Scholar] [CrossRef]
- Traish, A.M.; Toselli, P.; Jeong, S.J.; Kim, N.N. Adipocyte accumulation in penile corpus cavernosum of the orchiectomized rabbit: A potential mechanism for veno-occlusive dysfunction in androgen deficiency. J. Androl. 2005, 26, 242–248. [Google Scholar] [CrossRef]
- Begum, M.; Choubey, M.; Tirumalasetty, M.B.; Arbee, S.; Sadik, S.; Mohib, M.M.; Srivastava, S.; Minhaz, N.; Alam, R.; Mohiuddin, M.S. Exploring the Molecular Link Between Diabetes and Erectile Dysfunction Through Single-Cell Transcriptome Analysis. Genes 2024, 15, 1596. [Google Scholar] [CrossRef]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef]
- Müller, T.D.; Finan, B.; Bloom, S.R.; D’Alessio, D.; Drucker, D.J.; Flatt, P.R.; Fritsche, A.; Gribble, F.; Grill, H.J.; Habener, J.F.; et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 2019, 30, 72–130. [Google Scholar] [CrossRef]
- Yuan, X.; Gao, Z.; Hao, Z.; Ma, H.; Duan, K.; Yang, C. Effect of long-acting versus short-acting glucagon-like peptide-1 receptor agonists on improving body weight and related metabolic parameters in type 2 diabetes: A head-to-head meta-analysis. Medicine 2023, 102, e35739. [Google Scholar] [CrossRef] [PubMed]
- Lincoff, A.M.; Brown-Frandsen, K.; Colhoun, H.M.; Deanfield, J.; Emerson, S.S.; Esbjerg, S.; Hardt-Lindberg, S.; Hovingh, G.K.; Kahn, S.E.; Kushner, R.F.; et al. Semaglutide and Cardiovascular Outcomes in Obesity without Diabetes. N. Engl. J. Med. 2023, 389, 2221–2232. [Google Scholar] [CrossRef] [PubMed]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef]
- Perkovic, V.; Tuttle, K.R.; Rossing, P.; Mahaffey, K.W.; Mann, J.F.E.; Bakris, G.; Baeres, F.M.M.; Idorn, T.; Bosch-Traberg, H.; Lausvig, N.L.; et al. Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes. N. Engl. J. Med. 2024, 391, 109–121. [Google Scholar] [CrossRef]
- Moiz, A.; Filion, K.B.; Tsoukas, M.A.; Yu, O.H.; Peters, T.M.; Eisenberg, M.J. Mechanisms of GLP-1 Receptor Agonist-Induced Weight Loss: A Review of Central and Peripheral Pathways in Appetite and Energy Regulation. Am. J. Med. 2025, 138, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Herrera, M.A.; Mera-Carreiro, S.; Sánchez-Pernaute, A.; Ramos-Levi, A.M. Impact of Treatment with GLP1 Receptor Agonists, Liraglutide 3.0 mg and Semaglutide 1.0 mg, While on a Waiting List for Bariatric Surgery. Biomedicines 2023, 11, 2785. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Aronne, L.J.; Ahmad, N.N.; Wharton, S.; Connery, L.; Alves, B.; Kiyosue, A.; Zhang, S.; Liu, B.; Bunck, M.C.; et al. Tirzepatide Once Weekly for the Treatment of Obesity. N. Engl. J. Med. 2022, 387, 205–216. [Google Scholar] [CrossRef]
- Garvey, W.T.; Frias, J.P.; Jastreboff, A.M.; le Roux, C.W.; Sattar, N.; Aizenberg, D.; Mao, H.; Zhang, S.; Ahmad, N.N.; Bunck, M.C.; et al. Tirzepatide once weekly for the treatment of obesity in people with type 2 diabetes (SURMOUNT-2): A double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 2023, 402, 613–626. [Google Scholar] [CrossRef]
- Aronne, L.J.; Horn, D.B.; le Roux, C.W.; Ho, W.; Falcon, B.L.; Gomez Valderas, E.; Das, S.; Lee, C.J.; Glass, L.C.; Senyucel, C.; et al. Tirzepatide as Compared with Semaglutide for the Treatment of Obesity. N. Engl. J. Med. 2025, 393, 26–36. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J. Hepatol. 2024, 81, 492–542. [Google Scholar] [CrossRef]
- Kuchay, M.S.; Krishan, S.; Mishra, S.K.; Choudhary, N.S.; Singh, M.K.; Wasir, J.S.; Kaur, P.; Gill, H.K.; Bano, T.; Farooqui, K.J.; et al. Effect of dulaglutide on liver fat in patients with type 2 diabetes and NAFLD: Randomised controlled trial (D-LIFT trial). Diabetologia 2020, 63, 2434–2445. [Google Scholar] [CrossRef]
- Newsome, P.N.; Buchholtz, K.; Cusi, K.; Linder, M.; Okanoue, T.; Ratziu, V.; Sanyal, A.J.; Sejling, A.S.; Harrison, S.A.; NN9931-4296 Investigators. A Placebo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis. N. Engl. J. Med. 2021, 384, 1113–1124. [Google Scholar] [CrossRef]
- Fessel, J. All GLP-1 Agonists Should, Theoretically, Cure Alzheimer’s Dementia but Dulaglutide Might Be More Effective Than the Others. J. Clin. Med. 2024, 13, 3729. [Google Scholar] [CrossRef] [PubMed]
- Reiss, A.B.; Gulkarov, S.; Lau, R.; Klek, S.P.; Srivastava, A.; Renna, H.A.; De Leon, J. Weight Reduction with GLP-1 Agonists and Paths for Discontinuation While Maintaining Weight Loss. Biomolecules 2025, 15, 408. [Google Scholar] [CrossRef]
- Wan, J.; Ferrari, C.; Tadros, M. GLP-1RA Essentials in Gastroenterology: Side Effect Management, Precautions for Endoscopy and Applications for Gastrointestinal Disease Treatment. Gastroenterol. Insights 2024, 15, 191–212. [Google Scholar] [CrossRef]
- He, L.; Wang, J.; Ping, F.; Yang, N.; Huang, J.; Li, Y.; Xu, L.; Li, W.; Zhang, H. Association of Glucagon-Like Peptide-1 Receptor Agonist Use with Risk of Gallbladder and Biliary Diseases: A Systematic Review and Meta-analysis of Randomized Clinical Trials. JAMA Intern. Med. 2022, 182, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Ernst, S.A.; Heidenreich, K.; Williams, J.A. Glucagon-like peptide-1 receptor is present in pancreatic acinar cells and regulates amylase secretion through cAMP. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 310, G26–G33. [Google Scholar] [CrossRef]
- Guo, H.; Guo, Q.; Li, Z.; Wang, Z. Association between different GLP-1 receptor agonists and acute pancreatitis: Case series and real-world pharmacovigilance analysis. Front. Pharmacol. 2024, 15, 1461398. [Google Scholar] [CrossRef]
- Ayoub, M.; Chela, H.; Amin, N.; Hunter, R.; Anwar, J.; Tahan, V.; Daglilar, E. Pancreatitis Risk Associated with GLP-1 Receptor Agonists, Considered as a Single Class, in a Comorbidity-Free Subgroup of Type 2 Diabetes Patients in the United States: A Propensity Score-Matched Analysis. J. Clin. Med. 2025, 14, 944. [Google Scholar] [CrossRef] [PubMed]
- Lomeli, L.D.; Kodali, A.M.; Tsushima, Y.; Mehta, A.E.; Pantalone, K.M. The incidence of acute pancreatitis with GLP-1 receptor agonist therapy in individuals with a known history of pancreatitis. Diabetes Res. Clin. Pract. 2024, 215, 111806. [Google Scholar] [CrossRef] [PubMed]
- Koehler, J.A.; Baggio, L.L.; Lamont, B.J.; Ali, S.; Drucker, D.J. Glucagon-like peptide-1 receptor activation modulates pancreatitis-associated gene expression but does not modify the susceptibility to experimental pancreatitis in mice. Diabetes 2009, 58, 2148–2161. [Google Scholar] [CrossRef]
- Kounatidis, D.; Vallianou, N.G.; Karampela, I.; Rebelos, E.; Kouveletsou, M.; Dalopoulos, V.; Koufopoulos, P.; Diakoumopoulou, E.; Tentolouris, N.; Dalamaga, M. Anti-Diabetic Therapies and Cancer: From Bench to Bedside. Biomolecules 2024, 14, 1479. [Google Scholar] [CrossRef]
- Burke, O.; Sa, B.; Cespedes, D.A.; Sechi, A.; Tosti, A. Glucagon-like peptide-1 receptor agonist medications and hair loss: A retrospective cohort study. J. Am. Acad. Dermatol. 2025, 92, 1141–1143. [Google Scholar] [CrossRef]
- Godfrey, H.; Leibovit-Reiben, Z.; Jedlowski, P.; Thiede, R. Alopecia associated with the use of semaglutide and tirzepatide: A disproportionality analysis using the FDA adverse event reporting system (FAERS) from 2022 to 2023. J. Eur. Acad. Dermatol. Venereol. 2025, 39, e153–e154. [Google Scholar] [CrossRef]
- Buontempo, M.G.; Santos, B.T. Exploring the hair loss risk in glucagon-like peptide-1 agonists: Emerging concerns and clinical implications. J. Eur. Acad. Dermatol. Venereol. 2025, 39, 263–264. [Google Scholar] [CrossRef]
- Sharma, A.; Parachuri, N.; Kumar, N.; Saboo, B.; Tripathi, H.N.; Kuppermann, B.D.; Bandello, F. Semaglutide and the risk of diabetic retinopathy-current perspective. Eye 2022, 36, 10–11. [Google Scholar] [CrossRef]
- Lakhani, M.; Kwan, A.T.H.; Mihalache, A.; Popovic, M.M.; Nanji, K.; Xie, J.S.; Feo, A.; Rabinovitch, D.; Shor, R.; Sadda, S.; et al. Association of Glucagon-Like Peptide-1 Receptor Agonists with Optic Nerve and Retinal Adverse Events: A Population-Based Observational Study Across 180 Countries. Am. J. Ophthalmol. 2025, 277, 148–168. [Google Scholar] [CrossRef]
- Cigrovski Berkovic, M.; Strollo, F. Semaglutide-eye-catching results. World J. Diabetes. 2023, 14, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Joo, J.H.; Sharma, N.; Shaia, J.; Wu, A.K.; Skugor, M.; Singh, R.P.; Rachitskaya, A.V. The Effect of Glucagon-Like Peptide-1 Receptor Agonists on Diabetic Retinopathy at a Tertiary Care Center. Ophthalmol. Sci. 2024, 4, 100547. [Google Scholar] [CrossRef]
- Wang, F.; Mao, Y.; Wang, H.; Liu, Y.; Huang, P. Semaglutide and Diabetic Retinopathy Risk in Patients with Type 2 Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials. Clin. Drug Investig. 2022, 42, 17–28. [Google Scholar] [CrossRef]
- Wei, L.; Mo, W.; Lan, S.; Yang, H.; Huang, Z.; Liang, X.; Li, L.; Xian, J.; Xie, X.; Qin, Y.; et al. GLP-1 RA Improves Diabetic Retinopathy by Protecting the Blood-Retinal Barrier through GLP-1R-ROCK-p-MLC Signaling Pathway. J. Diabetes Res. 2022, 2022, 1861940. [Google Scholar] [CrossRef] [PubMed]
- Anastasiou, I.A.; Tentolouris, A.; Sarantis, P.; Katsaouni, A.; Rebelos, E.; Mourouzis, I.; Pantos, C.; Tentolouris, N. Semaglutide Enhances Cellular Regeneration in Skin and Retinal Cells In Vitro. Pharmaceutics 2025, 17, 1115. [Google Scholar] [CrossRef]
- Varnum, A.A.; Pozzi, E.; Deebel, N.A.; Evans, A.; Eid, N.; Sadeghi-Nejad, H.; Ramasamy, R. Impact of GLP-1 Agonists on Male Reproductive Health-A Narrative Review. Medicina 2023, 60, 50. [Google Scholar] [CrossRef]
- Lisco, G.; Bartolomeo, N.; De Tullio, A.; De Pergola, G.; Guastamacchia, E.; Jirillo, E.; Piazzolla, G.; Triggiani, V.; Giagulli, V.A. Long-acting glucagon-like peptide 1 receptor agonists boost erectile function in men with type 2 diabetes mellitus complaining of erectile dysfunction: A retrospective cohort study. Andrology 2024, 12, 633–642. [Google Scholar] [CrossRef]
- Pourabhari Langroudi, A.; Chen, A.L.; Basran, S.; Sommer, E.R.; Stinson, J.; Cheng, Y.S.; Del Giuduce, F.; Scott, M.; Eisenberg, M.L. Male sexual dysfunction associated with GLP-1 receptor agonists: A cross-sectional analysis of FAERS data. Int. J. Impot. Res. 2025, 37, 661–667. [Google Scholar] [CrossRef]
- Helmstädter, J.; Frenis, K.; Filippou, K.; Grill, A.; Dib, M.; Kalinovic, S.; Pawelke, F.; Kus, K.; Kröller-Schön, S.; Oelze, M.; et al. Endothelial GLP-1 (Glucagon-Like Peptide-1) Receptor Mediates Cardiovascular Protection by Liraglutide In Mice with Experimental Arterial Hypertension. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 145–158. [Google Scholar] [CrossRef]
- Fu, Z.; Gong, L.; Liu, J.; Wu, J.; Barrett, E.J.; Aylor, K.W.; Liu, Z. Brain Endothelial Cells Regulate Glucagon-Like Peptide 1 Entry Into the Brain via a Receptor-Mediated Process. Front. Physiol. 2020, 11, 555. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, Y.; Matsui, T.; Takeuchi, M.; Yamagishi, S. Glucagon-like peptide-1 (GLP-1) inhibits advanced glycation end product (AGE)-induced up-regulation of VCAM-1 mRNA levels in endothelial cells by suppressing AGE receptor (RAGE) expression. Biochem. Biophys. Res. Commun. 2010, 391, 1405–1408. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.T.; Tang, H.Q.; Su, H.; Wang, Y.; Zhou, Q.; Zhang, Q.; Wang, Y.; Zhu, H.Q. Glucagon-like peptide-1 attenuates endothelial barrier injury in diabetes via cAMP/PKA mediated down-regulation of MLC phosphorylation. Biomed. Pharmacother. 2019, 113, 108667. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; She, M.; Xu, M.; Chen, H.; Li, J.; Chen, X.; Zheng, D.; Liu, J.; Chen, S.; Zhu, J.; et al. GLP-1 treatment protects endothelial cells from oxidative stress-induced autophagy and endothelial dysfunction. Int. J. Biol. Sci. 2018, 14, 1696–1708. [Google Scholar] [CrossRef]
- Koska, J.; Sands, M.; Burciu, C.; D’Souza, K.M.; Raravikar, K.; Liu, J.; Truran, S.; Franco, D.A.; Schwartz, E.A.; Schwenke, D.C.; et al. Exenatide Protects Against Glucose- and Lipid-Induced Endothelial Dysfunction: Evidence for Direct Vasodilation Effect of GLP-1 Receptor Agonists in Humans. Diabetes 2015, 64, 2624–2635. [Google Scholar] [CrossRef]
- Abdel-Latif, R.G.; Heeba, G.H.; Taye, A.; Khalifa, M.M.A. Lixisenatide ameliorates cerebral ischemia-reperfusion injury via GLP-1 receptor dependent/independent pathways. Eur. J. Pharmacol. 2018, 833, 145–154. [Google Scholar] [CrossRef]
- Wu, H.; Xiao, C.; Zhao, Y.; Yin, H.; Yu, M. Liraglutide Improves Endothelial Function via the mTOR Signaling Pathway. J. Diabetes Res. 2021, 2021, 2936667. [Google Scholar] [CrossRef]
- Jojima, T.; Uchida, K.; Akimoto, K.; Tomotsune, T.; Yanagi, K.; Iijima, T.; Suzuki, K.; Kasai, K.; Aso, Y. Liraglutide, a GLP-1 receptor agonist, inhibits vascular smooth muscle cell proliferation by enhancing AMP-activated protein kinase and cell cycle regulation, and delays atherosclerosis in ApoE deficient mice. Atherosclerosis 2017, 261, 44–51. [Google Scholar] [CrossRef]
- Bretón-Romero, R.; Weisbrod, R.M.; Feng, B.; Holbrook, M.; Ko, D.; Stathos, M.M.; Zhang, J.Y.; Fetterman, J.L.; Hamburg, N.M. Liraglutide Treatment Reduces Endothelial Endoplasmic Reticulum Stress and Insulin Resistance in Patients with Diabetes Mellitus. J. Am. Heart Assoc. 2018, 7, e009379. [Google Scholar] [CrossRef]
- Mei, X.; Li, Y.; Wu, J.; Liao, L.; Lu, D.; Qiu, P.; Yang, H.L.; Tang, M.W.; Liang, X.Y.; Liu, D. Dulaglutide restores endothelial progenitor cell levels in diabetic mice and mitigates high glucose-induced endothelial injury through SIRT1-mediated mitochondrial fission. Biochem. Biophys. Res. Commun. 2024, 716, 150002. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Hu, Y.; He, S.; Ye, Q.; Lv, Z.; Liu, J.; Chen, X. Dulaglutide inhibits high glucose- induced endothelial dysfunction and NLRP3 inflammasome activation. Arch. Biochem. Biophys. 2019, 671, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Yang, L.; Wang, S.; Liu, Y.; Yue, L.; Chen, S. Semaglutide alleviates inflammation-Induced endothelial progenitor cells injury by inhibiting MiR-155 expression in macrophage exosomes. Int. Immunopharmacol. 2023, 119, 110196. [Google Scholar] [CrossRef]
- Yue, L.; Chen, S.; Ren, Q.; Niu, S.; Pan, X.; Chen, X.; Li, Z.; Chen, X. Effects of semaglutide on vascular structure and proteomics in high-fat diet-induced obese mice. Front. Endocrinol. 2022, 13, 995007. [Google Scholar] [CrossRef] [PubMed]
- Estato, V.; Obadia, N.; Chateaubriand, P.H.; Figueiredo, V.; Curty, M.; Costa Silva, M.; Ferreira, R.G.L.; Santa-Ritta, J.; Campos Baroni, M.; Aragão, A.; et al. Semaglutide restores astrocyte-vascular interactions and blood-brain barrier integrity in a model of diet-induced metabolic syndrome. Diabetol. Metab. Syndr. 2025, 17, 2. [Google Scholar] [CrossRef] [PubMed]
- Withaar, C.; Meems, L.M.G.; Nollet, E.E.; Schouten, E.M.; Schroeder, M.A.; Knudsen, L.B.; Niss, K.; Madsen, C.T.; Hoegl, A.; Mazzoni, G.; et al. The Cardioprotective Effects of Semaglutide Exceed Those of Dietary Weight Loss in Mice with HFpEF. JACC Basic Transl. Sci. 2023, 8, 1298–1314. [Google Scholar] [CrossRef] [PubMed]
- Berg, G.; Barchuk, M.; Lobo, M.; Nogueira, J.P. Effect of glucagon-like peptide-1 (GLP-1) analogues on epicardial adipose tissue: A meta-analysis. Diabetes Metab. Syndr. 2022, 16, 102562. [Google Scholar] [CrossRef]
- Bednarz, K.; Kowalczyk, K.; Cwynar, M.; Czapla, D.; Czarkowski, W.; Kmita, D.; Nowak, A.; Madej, P. The Role of Glp-1 Receptor Agonists in Insulin Resistance with Concomitant Obesity Treatment in Polycystic Ovary Syndrome. Int. J. Mol. Sci. 2022, 23, 4334. [Google Scholar] [CrossRef]
- Randrup, E.; Baum, N.; Feibus, A. Erectile dysfunction and cardiovascular disease. Postgrad. Med. 2015, 127, 166–172. [Google Scholar] [CrossRef]
- Dalaklioglu, S.; Tasatargil, A.; Kuscu, N.; Celik, S.; Celik-Ozenci, C.; Ozdem, S.; Barutcigil, A.; Kucukcetin, I. Protective effect of exendin-4 treatment on erectile dysfunction induced by chronic methylglyoxal administration in rats. Peptides 2018, 106, 1–8. [Google Scholar] [CrossRef]
- Yuan, P.; Ma, D.; Gao, X.; Wang, J.; Li, R.; Liu, Z.; Wang, T.; Wang, S.; Liu, J.; Liu, X. Liraglutide Ameliorates Erectile Dysfunction via Regulating Oxidative Stress, the RhoA/ROCK Pathway and Autophagy in Diabetes Mellitus. Front. Pharmacol. 2020, 11, 1257. [Google Scholar] [CrossRef]
- Yue, L.; Xu, J.L.; Dong, J.; Xjang, G.D.; Xiang, L.; Zhao, L.S.; Zhang, J.X.; Zhai, Z.Y.; Zhu, G.P.; Liu, M.; et al. Regulatory effect of liraglutide on the expression of eNOS in the corpus cavernosum of diabetic rats. Zhonghua Nan Ke Xue 2016, 22, 212–218. [Google Scholar]
- Hurt, K.J.; Musicki, B.; Palese, M.A.; Crone, J.K.; Becker, R.E.; Moriarity, J.L.; Snyder, S.H.; Burnett, A.L. Akt-dependent phosphorylation of endothelial nitric-oxide synthase mediates penile erection. Proc. Natl. Acad. Sci. USA 2002, 99, 4061–4066. [Google Scholar] [CrossRef]
- Model, J.F.A.; Lima, M.V.; Ohlweiler, R.; Sarapio, E.; Vogt, É.L.; Rocha, D.S.; de Souza, S.K.; Vinagre, A.S. Liraglutide treatment counteracts alterations in adipose tissue metabolism induced by orchiectomy in rats. Life Sci. 2021, 278, 119586. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Z.; Zang, Z.; Liang, X.; Jia, B.; Ye, T.; Lan, Y.; Shi, X. A Mitochondrion-Targeting Piezoelectric Nanosystem for the Treatment of Erectile Dysfunction via Autophagy Regulation. Adv. Mater. 2025, 37, e2413287. [Google Scholar] [CrossRef] [PubMed]
- Vallianou, N.G.; Dalamaga, M.; Pavlou, A.; Rebelos, E.; Karamanolis, N.N.; Papachristoforou, E.; Mavrothalassitis, E.; Eleftheriadou, I.; Tentolouris, N.; Kounatidis, D. The Transformative Role of Nanotechnology in the Management of Diabetes Mellitus: Insights from Current Research. Biomolecules 2025, 15, 653. [Google Scholar] [CrossRef]
- Jensterle, M.; Podbregar, A.; Goricar, K.; Gregoric, N.; Janez, A. Effects of liraglutide on obesity-associated functional hypogonadism in men. Endocr. Connect. 2019, 8, 195–202. [Google Scholar] [CrossRef] [PubMed]
- La Vignera, S.; Condorelli, R.A.; Calogero, A.E.; Cannarella, R.; Aversa, A. Sexual and Reproductive Outcomes in Obese Fertile Men with Functional Hypogonadism after Treatment with Liraglutide: Preliminary Results. J. Clin. Med. 2023, 12, 672. [Google Scholar] [CrossRef] [PubMed]
- Lisco, G.; Ramunni, M.I.; De Pergola, G.; Jirillo, E.; Guastamacchia, E.; Triggiani, V.; Giagulli, V.A. GLP-1 Receptor Agonists and Erectile Dysfunction in Diabetic Men with and without Hypogonadism: A 1-Year Retrospective Observational Study. Endocr. Abstr. 2022, 81, P355. [Google Scholar] [CrossRef]
- Giagulli, V.A.; Carbone, M.D.; Ramunni, M.I.; Licchelli, B.; De Pergola, G.; Sabbà, C.; Guastamacchia, E.; Triggiani, V. Adding liraglutide to lifestyle changes, metformin and testosterone therapy boosts erectile function in diabetic obese men with overt hypogonadism. Andrology 2015, 3, 1094–1103. [Google Scholar] [CrossRef]
- An, H.; Xie, K.; Gan, H. Glucagon-like peptide-1 receptor agonists and the risk of erectile dysfunction: A drug target Mendelian randomization study. Front. Endocrinol. 2024, 15, 1448394. [Google Scholar] [CrossRef]
- Bajaj, H.S.; Gerstein, H.C.; Rao-Melacini, P.; Basile, J.; Colhoun, H.; Conget, I.; Cushman, W.C.; Dagenais, G.R.; Franek, E.; Hanefeld, M.; et al. Erectile function in men with type 2 diabetes treated with dulaglutide: An exploratory analysis of the REWIND placebo-controlled randomised trial. Lancet Diabetes Endocrinol. 2021, 9, 484–490. [Google Scholar] [CrossRef]
- Able, C.; Liao, B.; Saffati, G.; Maremanda, A.; Applewhite, J.; Nasrallah, A.A.; Sonstein, J.; Alzweri, L.; Kohn, T.P. Prescribing semaglutide for weight loss in non-diabetic, obese patients is associated with an increased risk of erectile dysfunction: A TriNetX database study. Int. J. Impot. Res. 2025, 37, 315–319. [Google Scholar] [CrossRef]
- Labazi, H.; Wynne, B.M.; Tostes, R.; Webb, R.C. Metformin treatment improves erectile function in an angiotensin II model of erectile dysfunction. J. Sex. Med. 2013, 10, 2154–2164. [Google Scholar] [CrossRef]
- Defeudis, G.; Mazzilli, R.; Tenuta, M.; Rossini, G.; Zamponi, V.; Olana, S.; Faggiano, A.; Pozzilli, P.; Isidori, A.M.; Gianfrilli, D. Erectile dysfunction and diabetes: A melting pot of circumstances and treatments. Diabetes Metab. Res. Rev. 2022, 38, e3494. [Google Scholar] [CrossRef]
- Cai, T.; Hu, Y.; Ding, B.; Yan, R.; Liu, B.; Cai, L.; Jing, T.; Jiang, L.; Xie, X.; Wang, Y.; et al. Effect of Metformin on Testosterone Levels in Male Patients with Type 2 Diabetes Mellitus Treated with Insulin. Front. Endocrinol. 2021, 12, 813067. [Google Scholar] [CrossRef]
- Hu, Y.; Ding, B.; Shen, Y.; Yan, R.N.; Li, F.F.; Sun, R.; Jing, T.; Lee, K.O.; Ma, J.H. Rapid Changes in Serum Testosterone in Men with Newly Diagnosed Type 2 Diabetes with Intensive Insulin and Metformin. Diabetes Care 2021, 44, 1059–1061. [Google Scholar] [CrossRef] [PubMed]
- Kounatidis, D.; Vallianou, N.G.; Rebelos, E.; Kouveletsou, M.; Kontrafouri, P.; Eleftheriadou, I.; Diakoumopoulou, E.; Karampela, I.; Tentolouris, N.; Dalamaga, M. The Many Facets of PPAR-γ Agonism in Obesity and Associated Comorbidities: Benefits, Risks, Challenges, and Future Directions. Curr. Obes. Rep. 2025, 14, 19. [Google Scholar] [CrossRef]
- Idris-Khodja, N.; Ouerd, S.; Trindade, M.; Gornitsky, J.; Rehman, A.; Barhoumi, T.; Offermanns, S.; Gonzalez, F.J.; Neves, M.F.; Paradis, P.; et al. Vascular smooth muscle cell peroxisome proliferator-activated receptor γ protects against endothelin-1-induced oxidative stress and inflammation. J. Hypertens. 2017, 35, 1390–1401. [Google Scholar] [CrossRef]
- Hamblin, M.; Chang, L.; Fan, Y.; Zhang, J.; Chen, Y.E. PPARs and the cardiovascular system. Antioxid. Redox Signal. 2009, 11, 1415–1452. [Google Scholar] [CrossRef]
- Palacios-Ramírez, R.; Hernanz, R.; Martín, A.; Pérez-Girón, J.V.; Barrús, M.T.; González-Carnicero, Z.; Aguado, A.; Jaisser, F.; Briones, A.M.; Salaices, M.; et al. Pioglitazone Modulates the Vascular Contractility in Hypertension by Interference with ET-1 Pathway. Sci. Rep. 2019, 9, 16461. [Google Scholar] [CrossRef]
- Heidenberg, D.J.; Haney, N.M.; Rezk, B.M.; Talwar, S.; Okpechi, S.C.; Srivastav, S.K.; Honda, M.; Song, B.; Swan, K.; Awadallah, S.; et al. Pioglitazone’s beneficial effects on erectile function preservation after cavernosal nerve injury in the rat are negated by inhibition of the insulin-like growth factor-1 receptor: A preclinical study. Int. J. Impot. Res. 2019, 31, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gholamine, B.; Shafiei, M.; Motevallian, M.; Mahmoudian, M. Effects of pioglitazone on erectile dysfunction in sildenafil poor-responders: A randomized, controlled study. J. Pharm. Pharm. Sci. 2008, 11, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, Y.; Li, H.; Lei, H.; Guan, R.; Gao, Z.; Xin, Z. Antioxidant icariside II combined with insulin restores erectile function in streptozotocin-induced type 1 diabetic rats. J. Cell. Mol. Med. 2015, 19, 960–969. [Google Scholar] [CrossRef]
- Yamanaka, M.; Shirai, M.; Shiina, H.; Tanaka, Y.; Tsujimura, A.; Matsumiya, K.; Okuyama, A.; Dahiya, R. Diabetes induced erectile dysfunction and apoptosis in penile crura are recovered by insulin treatment in rats. J. Urol. 2003, 170, 291–297. [Google Scholar] [CrossRef]
- Shirai, M.; Yamanaka, M.; Shiina, H.; Igawa, M.; Ogishima, T.; Fujime, M.; Ishii, N.; Okuyama, A.; Lue, T.F.; Dahiya, R. Androgen, estrogen, and progesterone receptor gene regulation during diabetic erectile dysfunction and insulin treatment. Urology 2004, 64, 1244–1249. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Jinhua, W.; Shulin, G.; Jiangping, X.; Zhongxiang, L.; Xiaohong, L. Causal association between antidiabetic drugs and erectile dysfunction: Evidence from Mendelian randomization. Front. Endocrinol. 2024, 15, 1414958. [Google Scholar] [CrossRef] [PubMed]
- Ruiz Rubio, J.L.; Hernández, M.; Rivera de los Arcos, L.; Benedito, S.; Recio, P.; García, P.; García-Sacristán, A.; Prieto, D. Role of ATP-sensitive K+ channels in relaxation of penile resistance arteries. Urology 2004, 63, 800–805. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I. Erectile Dysfunction and Low Sex Drive in Men with Type 2 DM: The Potential Role of Diabetic Pharmacotherapy. J. Clin. Diagn. Res. 2016, 10, FC21–FC26. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.Y. Outbreaks of severe hypoglycaemia due to illegal sexual enhancement products containing undeclared glibenclamide. Pharmacoepidemiol. Drug Saf. 2009, 18, 1250–1251. [Google Scholar] [CrossRef]
- Kao, S.L.; Chan, C.L.; Tan, B.; Lim, C.C.; Dalan, R.; Gardner, D.; Pratt, E.; Lee, M.; Lee, K.O. An unusual outbreak of hypoglycemia. N. Engl. J. Med. 2009, 360, 734–736. [Google Scholar] [CrossRef]
- Altabas, V.; Altabas, K. DPP-4 inhibition improves a sexual condition? Med. Hypotheses 2015, 85, 124–126. [Google Scholar] [CrossRef]
- Sun, T.; Xu, W.; Wang, J.; Wang, T.; Wang, S.; Liu, K.; Liu, J. Saxagliptin alleviates erectile dysfunction through increasing stromal cell-derived factor-1 in diabetes mellitus. Andrology 2023, 11, 295–306. [Google Scholar] [CrossRef]
- Kataoka, T.; Sanagawa, A.; Hotta, Y.; Kimura, K. Effect of DPP-4 Inhibitors on Erectile Dysfunction Caused by Vincristine in Rats. J. Sex. Med. 2022, 19, S141. [Google Scholar] [CrossRef]
- Simon, D.; Detournay, B.; Eschwege, E.; Bouée, S.; Bringer, J.; Attali, C.; Dejager, S. Use of Vildagliptin in Management of Type 2 Diabetes: Effectiveness, Treatment Persistence and Safety from the 2-Year Real-Life VILDA Study. Diabetes Ther. 2014, 5, 207–224. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lee, D.M.; Battson, M.L.; Jarrell, D.K.; Hou, S.; Ecton, K.E.; Weir, T.L.; Gentile, C.L. SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice. Cardiovasc. Diabetol. 2018, 17, 62. [Google Scholar] [CrossRef]
- Uthman, L.; Homayr, A.; Juni, R.P.; Spin, E.L.; Kerindongo, R.; Boomsma, M.; Hollmann, M.W.; Preckel, B.; Koolwijk, P.; van Hinsbergh, V.W.M.; et al. Empagliflozin and Dapagliflozin Reduce ROS Generation and Restore NO Bioavailability in Tumor Necrosis Factor α-Stimulated Human Coronary Arterial Endothelial Cells. Cell. Physiol. Biochem. 2019, 53, 865–886. [Google Scholar] [CrossRef]
- Assaly, R.; Gorny, D.; Compagnie, S.; Mayoux, E.; Bernabe, J.; Alexandre, L.; Giuliano, F.; Behr-Roussel, D. The Favorable Effect of Empagliflozin on Erectile Function in an Experimental Model of Type 2 Diabetes. J. Sex. Med. 2018, 15, 1224–1234. [Google Scholar] [CrossRef]
- Ali, A.B.H.; Abdel-Aal, F.A.M.; Rageh, A.H.; Mohamed, A.I. Cytochrome P450 3A4-mediated pharmacokinetic interaction study between tadalafil and canagliflozin using high-performance thin-layer chromatography. J. Sep. Sci. 2022, 45, 4187–4197. [Google Scholar] [CrossRef]
- Cannarella, R.; Condorelli, R.A.; Leanza, C.; Garofalo, V.; Aversa, A.; Papa, G.; Calogero, A.E.; La Vignera, S. Dapagliflozin improves erectile dysfunction in patients with type 2 diabetes mellitus: An open-label, non-randomized pilot study. Diabet. Med. 2024, 41, e15217. [Google Scholar] [CrossRef]
- Hu, W.S.; Lin, C.L. Erectile Dysfunction Risk Among Patients with Diabetes Mellitus Using Sodium-Glucose Cotransporter 2 Inhibitors. J. Cardiovasc. Pharmacol. 2024, 84, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Shao, N.; Yu, X.Y.; Yu, Y.M.; Li, B.W.; Pan, J.; Wu, W.H.; Zhang, H.J.; Ma, X.F.; Hao, M.; Kuang, H.Y. Short-term combined treatment with exenatide and metformin is superior to glimepiride combined metformin in improvement of serum testosterone levels in type 2 diabetic patients with obesity. Andrologia 2018, 50, e13039. [Google Scholar] [CrossRef] [PubMed]
- Defeudis, G.; Di Tommaso, A.M.; Di Rosa, C.; Cimadomo, D.; Khazrai, Y.M.; Faggiano, A.; Cincione, R.I.; Napoli, N.; Mazzilli, R. The Role of Antihyperglycemic Drugs and Diet on Erectile Function: Results from a Perspective Study on a Population with Prediabetes and Diabetes. J. Clin. Med. 2022, 11, 3382. [Google Scholar] [CrossRef]
- Yang, B.; Cheng, H.; Hu, Y.; Chen, Y.; Xu, Y.; Huang, W.; Long, Y.; Gao, C. Effects of Anti-Diabetic Drugs on Erectile Dysfunction: A Systematic Review and Meta-Analysis. Diabetes Metab. Syndr. Obes. 2025, 18, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Rastrelli, G.; Corona, G.; Sparano, C.; Vignozzi, L.; Sforza, A.; Maggi, M. Impact of Diabetic Medications on Erectile Function: A Meta-Analysis. J. Sex. Med. 2025, 22 (Suppl. 2), qdaf077.056. [Google Scholar] [CrossRef]
- Corona, G.; Rastrelli, G.; Sparano, C.; Vignozzi, L.; Sforza, A.; Maggi, M. Role of Glucagon-Like Peptide Type 1 Analogues on Hypothalamus-Pituitary-Testis Axis and Sexual Function in Men: A Systematic Review and Meta-Analysis. J. Sex. Med. 2025, 22 (Suppl. 2), qdaf077.063. [Google Scholar] [CrossRef]
- Van Cauwenberghe, J.; De Block, C.; Vanderschueren, D.; Antonio, L. Effects of treatment for diabetes mellitus on testosterone concentrations: A systematic review. Andrology 2023, 11, 225–233. [Google Scholar] [CrossRef]
- Salvio, G.; Ciarloni, A.; Ambo, N.; Bordoni, M.; Perrone, M.; Rossi, S.; Balercia, G. Effects of glucagon-like peptide 1 receptor agonists on testicular dysfunction: A systematic review and meta-analysis. Andrology, 2025; Ahead of print. [Google Scholar] [CrossRef]
- Graybill, S.; Hatfield, J.; Kravchenko, M.; Beckman, D.; Tate, J.; Beauvais, A.; Clerc, P.; Davila, D.; Forbes, W.; Wardian, J.; et al. Neutral effect of exenatide on serum testosterone in men with type 2 diabetes mellitus: A prospective cohort. Andrology 2021, 9, 792–800. [Google Scholar] [CrossRef]
- Mostafaei, H.; Mori, K.; Hajebrahimi, S.; Abufaraj, M.; Karakiewicz, P.I.; Shariat, S.F. Association of erectile dysfunction and cardiovascular disease: An umbrella review of systematic reviews and meta-analyses. BJU Int. 2021, 128, 3–11. [Google Scholar] [CrossRef]
- Nguyen Ngoc Dang, H.; Viet Luong, T.; Kiem Pham, A.; Trung Le, T.; Duc Le, N.; Minh Nguyen, H.; Anh Hoang, T.; Anh Ho, B. Exploring the bidirectional link between erectile dysfunction and 10-year cardiovascular risk in men with diabetes and hypertension. Sci. Rep. 2024, 14, 28816. [Google Scholar] [CrossRef]
- Peng, W.; Zhou, R.; Sun, Z.F.; Long, J.W.; Gong, Y.Q. Novel Insights into the Roles and Mechanisms of GLP-1 Receptor Agonists against Aging-Related Diseases. Aging Dis. 2022, 13, 468–490. [Google Scholar] [CrossRef]
- Lu, C.; Xu, C.; Li, S.; Ni, H.; Yang, J. Liraglutide and GLP-1(9-37) alleviated hepatic ischemia-reperfusion injury by inhibiting ferroptosis via GSK3β/Nrf2 pathway and SMAD159/Hepcidin/FTH pathway. Redox Biol. 2025, 79, 103468. [Google Scholar] [CrossRef]
- Yang, F.; Wang, X.; Qi, J.; Zhang, K.; Jiang, Y.; Feng, B.; Lv, T.; Yang, L.; Yang, Q.; Zhao, M.; et al. Glucagon-like Peptide 1 Receptor Activation Inhibits Microglial Pyroptosis via Promoting Mitophagy to Alleviate Depression-like Behaviors in Diabetic Mice. Nutrients 2022, 15, 38. [Google Scholar] [CrossRef] [PubMed]
- Rroji, M.; Spahia, N.; Figurek, A.; Spasovski, G. Targeting Diabetic Atherosclerosis: The Role of GLP-1 Receptor Agonists, SGLT2 Inhibitors, and Nonsteroidal Mineralocorticoid Receptor Antagonists in Vascular Protection and Disease Modulation. Biomedicines 2025, 13, 728. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Peng, Y.; Gu, J.; Li, T.; Wang, Q.; Qi, X.; Wei, A. Single-cell RNA sequencing reveals critical modulators of extracellular matrix of penile cavernous cells in erectile dysfunction. Sci. Rep. 2024, 14, 5886. [Google Scholar] [CrossRef]
- Papachristoforou, E.; Lambadiari, V.; Maratou, E.; Makrilakis, K. Association of Glycemic Indices (Hyperglycemia, Glucose Variability, and Hypoglycemia) with Oxidative Stress and Diabetic Complications. J. Diabetes Res. 2020, 2020, 7489795. [Google Scholar] [CrossRef]
- Wei, L.; Gao, J.; Wang, L.; Tao, Q.; Tu, C. Hippo/YAP signaling pathway: A new therapeutic target for diabetes mellitus and vascular complications. Ther. Adv. Endocrinol. Metab. 2023, 14, 20420188231220134. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zong, Y.; Ma, Y.; Tian, Y.; Pang, Y.; Zhang, C.; Gao, J. Glucagon-like peptide-1 receptor: Mechanisms and advances in therapy. Signal Transduct. Target Ther. 2024, 9, 234. [Google Scholar] [CrossRef]
- Li, Y.; Du, J.; Zhu, E.; Zhang, J.; Han, J.; Zhao, W.; Sun, B.; Tian, D. Liraglutide suppresses proliferation and induces adipogenic differentiation of 3T3-L1 cells via the Hippo-YAP signaling pathway. Mol. Med. Rep. 2018, 17, 4499–4507. [Google Scholar] [CrossRef]
- Bae, S.G.; Yin, G.N.; Ock, J.; Suh, J.K.; Ryu, J.K.; Park, J. Single-cell transcriptome analysis of cavernous tissues reveals the key roles of pericytes in diabetic erectile dysfunction. elife 2024, 12, RP88942. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.; Coucha, M.; Bolduc, D.R.; Burnett, F.N.; Barrett, A.C.; Ghaly, M.; Abdelsaid, M. GLP-1 receptor nitration contributes to loss of brain pericyte function in a mouse model of diabetes. Diabetologia 2022, 65, 1541–1554. [Google Scholar] [CrossRef]
- Zhu, L.; Zhou, J.; Pan, Y.; Lv, J.; Liu, Y.; Yu, S.; Zhang, Y. Glucagon-like peptide-1 receptor expression and its functions are regulated by androgen. Biomed. Pharmacother. 2019, 120, 109555. [Google Scholar] [CrossRef]
- Dudal, S.; Bissantz, C.; Caruso, A.; David-Pierson, P.; Driessen, W.; Koller, E.; Krippendorff, B.F.; Lechmann, M.; Olivares-Morales, A.; Paehler, A.; et al. Translating pharmacology models effectively to predict therapeutic benefit. Drug Discov. Today 2022, 27, 1604–1621. [Google Scholar] [CrossRef]
- Jensterle, M.; Janez, A.; Fliers, E.; DeVries, J.H.; Vrtacnik-Bokal, E.; Siegelaar, S.E. The role of glucagon-like peptide-1 in reproduction: From physiology to therapeutic perspective. Hum. Reprod. Update 2019, 25, 504–517. [Google Scholar] [CrossRef]
- Neijenhuijs, K.I.; Holtmaat, K.; Aaronson, N.K.; Holzner, B.; Terwee, C.B.; Cuijpers, P.; Verdonck-de Leeuw, I.M. The International Index of Erectile Function (IIEF)-A Systematic Review of Measurement Properties. J. Sex. Med. 2019, 16, 1078–1091. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Morris, R.; Bu, K.; Zhu, T.; Huang, H.; Cheng, F. Analysis of literature-derived duplicate records in the FDA Adverse Event Reporting System (FAERS) database. Can. J. Physiol. Pharmacol. 2025, 103, 56–69. [Google Scholar] [CrossRef]
- Lovegrove, M.C.; Stone, N.D.; Geller, A.I.; Weidle, N.J.; Lind, J.N.; Cohen, P.A. U.S. Emergency Department Visits Attributed by Clinicians to Semaglutide Adverse Events, 2022–2023. Ann. Intern. Med. 2025, 178, 898–900. [Google Scholar] [CrossRef]
- Hollander, J.E. Emergency department considerations regarding erectile dysfunction. Am. J. Cardiol. 2005, 96, 73M–75M. [Google Scholar] [CrossRef] [PubMed]
- Arillotta, D.; Floresta, G.; Papanti Pelletier, G.D.; Guirguis, A.; Corkery, J.M.; Martinotti, G.; Schifano, F. Exploring the Potential Impact of GLP-1 Receptor Agonists on Substance Use, Compulsive Behavior, and Libido: Insights from Social Media Using a Mixed-Methods Approach. Brain Sci. 2024, 14, 617. [Google Scholar] [CrossRef] [PubMed]
- Bain, S.C.; Klufas, M.A.; Ho, A.; Matthews, D.R. Worsening of diabetic retinopathy with rapid improvement in systemic glucose control: A review. Diabetes Obes. Metab. 2019, 21, 454–466. [Google Scholar] [CrossRef]
- Pitocco, D.; Zaccardi, F.; Di Stasio, E.; Romitelli, F.; Santini, S.A.; Zuppi, C.; Ghirlanda, G. Oxidative stress, nitric oxide, and diabetes. Rev. Diabet. Stud. 2010, 7, 15–25. [Google Scholar] [CrossRef]
- Jeibmann, A.; Zahedi, S.; Simoni, M.; Nieschlag, E.; Byrne, M.M. Glucagon-like peptide-1 reduces the pulsatile component of testosterone secretion in healthy males. Eur. J. Clin. Investig. 2005, 35, 565–572. [Google Scholar] [CrossRef]
- Memel, Z.; Gold, S.L.; Pearlman, M.; Muratore, A.; Martindale, R. Impact of GLP- 1 Receptor Agonist Therapy in Patients High Risk for Sarcopenia. Curr. Nutr. Rep. 2025, 14, 63. [Google Scholar] [CrossRef]
- Viken, A.F.; Siiak, S.P.; Schlünssen, V.; Thorarinsdottir, E.H.; Skulstad, S.M.; Gyawali, S.; Bertelsen, R.J.; Real, F.G. Muscle Strength and Male Sexual Function. J. Clin. Med. 2024, 13, 426. [Google Scholar] [CrossRef]
- Schulte, D.M.; Hahn, M.; Oberhäuser, F.; Malchau, G.; Schubert, M.; Heppner, C.; Müller, N.; Güdelhöfer, H.; Faust, M.; Krone, W.; et al. Caloric restriction increases serum testosterone concentrations in obese male subjects by two distinct mechanisms. Horm. Metab. Res. 2014, 46, 283–286. [Google Scholar] [CrossRef]
- Smith, S.J.; Teo, S.Y.M.; Lopresti, A.L.; Heritage, B.; Fairchild, T.J. Examining the effects of calorie restriction on testosterone concentrations in men: A systematic review and meta-analysis. Nutr. Rev. 2022, 80, 1222–1236. [Google Scholar] [CrossRef] [PubMed]
- Kohn, T.P.; Lipshultz, L.I. Comment on: Male sexual dysfunction associated with GLP-1 receptor agonists: A cross-sectional analysis of FAERS data. Int. J. Impot. Res. 2025; Ahead of print. [Google Scholar] [CrossRef]
- Salonia, A.; Capogrosso, P.; Boeri, L.; Cocci, A.; Corona, G.; Dinkelman-Smit, M.; Falcone, M.; Jensen, C.F.; Gül, M.; Kalkanli, A.; et al. European Association of Urology Guidelines on Male Sexual and Reproductive Health: 2025 Update on Male Hypogonadism, Erectile Dysfunction, Premature Ejaculation, and Peyronie’s Disease. Eur. Urol. 2025, 88, 76–102. [Google Scholar] [CrossRef] [PubMed]
- Bong, G.W.; Clarke, H.S., Jr.; Hancock, W.C.; Keane, T.E. Serum testosterone recovery after cessation of long-term luteinizing hormone-releasing hormone agonist in patients with prostate cancer. Urology 2008, 71, 1177–1180. [Google Scholar] [CrossRef]
- Lengsfeld, S.; Probst, L.; Emara, Y.; Werlen, L.; Vogt, D.R.; Bathelt, C.; Baur, F.; Caviezel, B.; Vukajlovic, T.; Fischer, M.; et al. Effects of the glucagon-like peptide-1 receptor agonist dulaglutide on sexuality in healthy men: A randomised, double-blind, placebo-controlled crossover study. EBioMedicine 2024, 107, 105284. [Google Scholar] [CrossRef]
- Zhong, Q.; Bollag, R.J.; Dransfield, D.T.; Gasalla-Herraiz, J.; Ding, K.H.; Min, L.; Isales, C.M. Glucose-dependent insulinotropic peptide signaling pathways in endothelial cells. Peptides 2000, 21, 1427–1432. [Google Scholar] [CrossRef]
- Lim, D.M.; Park, K.Y.; Hwang, W.M.; Kim, J.Y.; Kim, B.J. Difference in protective effects of GIP and GLP-1 on endothelial cells according to cyclic adenosine monophosphate response. Exp. Ther. Med. 2017, 13, 2558–2564. [Google Scholar] [CrossRef]
- Killion, E.A.; Hussien, R.; Shkumatov, A.; Davies, R.; Lloyd, D.J.; Véniant, M.M.; Lebrec, H.; Fort, M.M. GIPR gene expression in testis is mouse specific and can impact male mouse fertility. Andrology 2022, 10, 789–799. [Google Scholar] [CrossRef] [PubMed]
- La Vignera, S.; Cannarella, R.; Garofalo, V.; Crafa, A.; Barbagallo, F.; Condorelli, R.A.; Calogero, A.E. Short-term impact of tirzepatide on metabolic hypogonadism and body composition in patients with obesity: A controlled pilot study. Reprod. Biol. Endocrinol. 2025, 23, 92. [Google Scholar] [CrossRef]
- Małczak, P.; Wysocki, M.; Kawa, I.; Wikar, T.; Pisarska-Adamczyk, M.; Pędziwiatr, M.; Major, P. Improved erectile function after bariatric surgery: Role of testosterone and other factors-a cohort prospective study. Surg. Obes. Relat. Dis. 2025, 21, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Anastasiou, I.A.; Kounatidis, D.; Honka, M.-J.; Vallianou, N.G.; Rebelos, E.; Karamanolis, N.N.; Dalamaga, M.; Pantos, C.; Mourouzis, I. Metabolomic Alterations in Patients with Obesity and the Impact of Metabolic Bariatric Surgery: Insights for Future Research. Metabolites 2025, 15, 434. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.; Sands, C.; Alexiadou, K.; Minnion, J.; Tharakan, G.; Behary, P.; Ahmed, A.R.; Purkayastha, S.; Lewis, M.R.; Bloom, S.; et al. The Metabolomic Effects of Tripeptide Gut Hormone Infusion Compared to Roux-en-Y Gastric Bypass and Caloric Restriction. J. Clin. Endocrinol. Metab. 2022, 107, e767–e782. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Study Design | Results | Conclusions |
---|---|---|---|
Giagulli et al., 2015 [137] | ✓ Retrospective observational study ✓ Objective: To evaluate whether adding liraglutide to lifestyle changes, metformin, and TRT improves erectile function ✓ Population: 43 men aged 45–59 with obesity, T2D, overt hypogonadism, and recent-onset ED ✓ Groups (post-pubertal hypogonadism n = 30, pre-pubertal hypogonadism n = 13): ▪ Year 1 (all): TRT 1 g/12 weeks plus metformin 2–3 g/day ▪ Year 2: good responders continued TRT plus metformin; poor responders added liraglutide 1.2 mg/day ✓ Duration: 2 years | ✓ After 1 year: ▪ All patients showed improved erectile function and metabolic parameters ▪ No patients achieved HbA1c < 7.5% ▪ TT normalized to young adult range ✓ Good responders after 2 years: ▪ No further improvement in IIEF score ▪ ↑ HbA1c (p < 0.05) and ↑ body weight (p < 0.04) ✓ Liraglutide group after 2 years: ▪ ↓ HbA1c < 7.5% ▪ ↓ in body weight (p < 0.01) ▪ ↑ SHBG (p < 0.05) ▪ ↑ TT (p < 0.01) ▪ ↑ in IIEF score | ✓ TRT combined with metformin initially improves erectile and metabolic parameters, regardless of hypogonadism onset ✓ In patients with poor metabolic control, adding liraglutide restores testosterone, achieves glycemic targets, reduces body weight, and enhances erectile performance |
Jensterle et al., 2019 [134] | ✓ Prospective, randomized, open-label study ✓ Objective: To compare the effects of liraglutide versus TRT in men with obesity-related functional hypogonadism, who were poor responders to lifestyle modification ✓ Population: 30 men with obesity (BMI 41.2 ± 8.4 kg/m2) and functional hypogonadism, aged 46.5 ± 10.9 years ✓ Groups: ▪ 50 mg 1% TRT gel daily ▪ 3.0 mg liraglutide daily ✓ Duration: 16 weeks | ✓ ↑ TT in both groups: ▪ TRT: +5.9 ± 7.2 nmol/L ▪ Liraglutide: +2.6 ± 3.5 nmol/L ✓ Both arms improved sexual function ✓ Liraglutide group showed ↑ LH and FSH (p < 0.001 for between-treatment effect) ✓ Weight loss: ▪ TRT: 0.9 ± 4.5 kg ▪ Liraglutide: 7.9 ± 3.8 kg ✓ MetS resolved in 2 liraglutide patients vs. 0 in TRT | ✓ When lifestyle modification fails and MBS is not indicated, liraglutide should be preferred over TRT for overall health improvement in men with obesity-related functional hypogonadism |
Bajaj et al., 2021 [139] | ✓ Exploratory analysis of the double-blind, randomized, placebo-controlled REWIND trial ✓ Objective: To evaluate the incidence, prevalence, and progression of ED in men with T2D receiving dulaglutide vs. placebo, and to examine whether the drug’s impact on erectile function aligns with its broader effects on diabetes-related outcomes ✓ 3725 men with T2D: ▪ Mean age 65.5 years ▪ 39.9% with established CVD ▪ 56.5% presenting with moderate to severe ED at baseline ✓ Duration: approximately 5 years | ✓ Dulaglutide was associated with a lower incidence of moderate/severe ED compared with placebo (21.3 vs. 22.0 per 100 person-years; HR 0.92, 95% CI 0.85–0.99; p = 0.021) ✓ Dulaglutide group showed a smaller decline in IIEF scores compared with placebo (LS mean difference 0.61; 95% CI 0.18–1.05; p = 0.006). | ✓ Long-term dulaglutide treatment may lower the risk of developing moderate or severe ED in men with T2D |
Lisco et al., 2022 [136] | ✓ Retrospective observational study ✓ Objective: To explore the impact of GLP-1 RAs (liraglutide and dulaglutide) on erectile function in men with T2D, both with and without baseline hypogonadism, when used as an add-on to metformin ✓ Population: 110 men with T2D and ED: ▪ Men with hypogonadism (HP): n = 48 and eugonadal patients (EP): n = 62 ▪ Mean age 51–64 years ▪ Diabetes duration 5–10 years ▪ 6% with established CVD ▪ Patients with eGFR < 60 mL/min per 1.73 m2 were excluded ✓ Study protocol: ▪ Men with HbA1c < 7.2% received metformin (2 g/day) ▪ Men with HbA1c > 7.2% received a GLP-1RA (52% liraglutide, 1.2 mg/day; 48% dulaglutide, 1.5 mg/week) plus metformin ✓ Groups: ▪ 28 HP were treated with GLP-1RA plus metformin (HPs) ▪ 20 HP were treated with metformin alone (HPc) ▪ 38 EP were treated with GLP-1RA plus metformin (EPs) ▪ 30 EP were treated with metformin alone (EPc) ✓ Duration: 1 year | ✓ HPs and EPs: Significant ↓ in HbA1c (−0.7 ± 0.3%; p < 0.001) ✓ HPc and EPc: Slight ↑ in HbA1c (+0.4 ± 0.2) ✓ HPs and EPs: Significant improvement in erectile function (↑ IIEF-5 score, all p < 0.01) | ✓ Liraglutide and dulaglutide appear to improve erectile function in men with T2D, regardless of baseline hypogonadism status ✓ Additional controlled studies are required to confirm these preliminary findings |
La Vignera et al., 2023 [135] | ✓ Prospective interventional comparative study ✓ Objective: To investigate the effects of liraglutide on reproductive and sexual function in men of childbearing age with metabolic hypogonadism ✓ Population: 110 men aged 18–35 with metabolic hypogonadism, divided into three groups based on fertility intentions ✓ Groups: ▪ Group A (n = 35): Desiring fatherhood, treated with gonadotropins (urofollitropin 150 IU three times a week, plus hCG 2000 IU twice a week) ▪ Group B (n = 35): not seeking fatherhood, treated with liraglutide 3 mg/day ▪ Group C (n = 40): already fathered a child, treated with TRT 60 mg/day ✓ Duration: 4 months | ✓ Group B (liraglutide) showed: ▪ Significant improvement in conventional sperm parameters compared with baseline and Group A ▪ Improved erectile function compared with baseline and both Groups A and C ▪ Significantly ↑ levels of TT and SHBG both relative to baseline and in comparison with the other two Groups: 1. TT: 192.9% (1.4 ± 0.6 vs. 4.1 ± 0.5 ng/mL, p < 0.05) 2. SHBG: 157.1% (14.0 ± 3.0 vs. 36.0 ± 4.0 nmol/L, p < 0.05) ▪ Significantly ↑ gonadotropin levels compared with both Groups A and C: 1. FSH: Group A: 0.9 ± 0.2 IU/L vs. Group B: 2.6 ± 0.2 IU/L vs. Group C: 0.2 ± 0.1 IU/L, p < 0.05 2. LH: Group A: 1.0 ± 0.3 IU/L vs. Group B: 3.2 ± 0.2 IU/L vs. Group C: 0.3 ± 0.1 IU/L, p < 0.05 | ✓ Liraglutide is a promising and safe pharmacological option for men with obesity and metabolic hypogonadism, showing advantages over traditional therapies in improving both reproductive and sexual function |
Lisco et al., 2024 [106] | ✓ Retrospective cohort study ✓ Objective: To assess the effects of GLP-1 RAs combined with metformin vs. metformin alone on erectile function and metabolic parameters in men with T2D ✓ Population: 108 male outpatients with T2D and ED (median age 60 years) ✓ Groups: ▪ Metformin alone (n = 45) ▪ GLP-1RAs plus metformin (n = 63) ✓ Duration: 12 months | ✓ After 12 months, GLP-1RAs plus metformin improved glucose control more than metformin alone: HbA1c ↓ from 8.3 ± 0.2% to 7.0 ± 0.3% (p < 0.0001) vs. 7.0 ± 0.5% to 7.3 ± 0.4% (p = 0.0007) ✓ GLP-1RAs plus metformin vs. metformin alone: ▪ Significant weight loss: −5.82 ± 0.69 kg (p < 0.0001) ▪ ↓ in WC: −4.99 ± 0.6 cm (p < 0.0001) ▪ Improvement in HbA1c: −0.56% ± 0.13% (p < 0.0001) ▪ ↓ in FPG: −25.54 ± 3.09 mg/dL (p < 0.0001) ▪ ↑ in TT: +41.41 ± 6.11 ng/dL (p < 0.0001) ▪ ↑ in fT: +0.44 ± 0.09 ng/dL (p < 0.0001) ▪ Improvement in self-reported erectile function: IIEF5 score +2.26 ± 0.26 (p < 0.0001) ✓ Predictors of greater IIEF5 improvement: ▪ Higher baseline IIEF-5 score (p = 0.045) ▪ Presence of carotid stenosis (p = 0.045) ▪ Greater weight loss from baseline (p = 0.013) ✓ 1-year GLP-1RAs plus metformin treatment was the main determinant of improved IIEF5 score (2.74 ± 0.53, p < 0.0001) | ✓ GLP-1RAs combined with metformin improved erectile function in men with T2D compared with metformin alone, independent of baseline characteristics ✓ Improvements may be due to positive vascular effects ✓ Due to the retrospective nature of the study, a definitive cause-effect relationship cannot be established; RCTs are needed to confirm the efficacy of GLP-1RAs in treating ED in T2D |
Able et al., 2025 [140] | ✓ Retrospective cohort study ✓ Objective: To evaluate the risk of newly diagnosed ED or PDE5 inhibitor use, and testosterone deficiency, following at least one month of semaglutide prescription in non-diabetic men using it for weight loss ✓ Population: Population: 3094 non-diabetic men with obesity, aged 18–50, who received semaglutide, matched 1:1 to non-diabetic men with obesity without semaglutide exposure | ✓ ED and/or PDE5 inhibitor use: ↑ in semaglutide users vs. non-users (1.47% vs. 0.32%; RR 4.5, 95% CI 2.3–9.0) ✓ Testosterone deficiency: ↑ in semaglutide users vs. non-users (1.53% vs. 0.80%; RR 1.9, 95% CI 1.2–3.1) | ✓ ED, PDE5 inhibitor prescription, and testosterone deficiency were more frequent in non-diabetic men with obesity on semaglutide, despite weight loss benefits ✓ Patients should be informed of potential sexual health risks, particularly those at higher risk ✓ Further research is needed to clarify underlying mechanisms and optimize treatment outcomes- |
Pourabhari Langroudi et al., 2025 [107] | ✓ Pharmacovigilance study using the FAERS database (2003–2024) ✓ Objective: To investigate the association between GLP-1 RAs and male sexual dysfunction, including: ▪ ED ▪ Orgasmic dysfunction ▪ ↓ libido | ✓ Total cases: 182 ✓ Most common indication: T2D (43.9%), followed by weight loss (4.9%) ✓ Patient age: Predominantly 40–60 years ✓ Trends over time: Reports ↑ in recent years, especially 2023; semaglutide reports rising, tirzepatide surpassed semaglutide in 2023 and Q1 2024 ✓ Subcutaneous route of administration most common ✓ Drug distribution: Exenatide 24.2%, lixisenatide 0.5%, liraglutide 20.9%, dulaglutide 18.7%, semaglutide 21.4%, tirzepatide 14.3% ✓ Type of sexual dysfunction: ED: 71.4%; ↓ libido: 15.1%; orgasmic abnormalities: 1.6%; other sexual dysfunctions: 11.0% | ✓ The link between GLP-1 RAs and male sexual dysfunction appears weak, with current evidence not indicating a significant clinical risk ✓ Nevertheless, ongoing monitoring is advised as GLP-1 use grows, while further research is needed to clarify their impact on sexual function |
Author, Year, Reference | Yang et al., 2025 [171] | Rastrelli, et al., 2025 [172] | Corona, et al., 2025 [173] | Salvio et al., 2025 [175] |
---|---|---|---|---|
Meta-analysis characteristics | ✓ Objective: To evaluate the impact of different classes of antidiabetic drugs on ED in patients with diabetes ✓ 3 cohort studies included ✓ Number of participants: 314 (209 eligible) men ✓ Baseline characteristics: ▪ Mean age: 58.9 years ▪ Mean BMI 32.1 kg/m2 ✓ Mean follow-up: 2.3 years | ✓ Objective: To assess the impact of antidiabetic drugs on ED in individuals with diabetes or prediabetes ✓ 3 observational and 3 placebo-controlled RCTs included ✓ Number of participants: 4112 subjects ✓ Baseline characteristics: ▪ Mean age: 57.8 years ▪ Mean BMI: 31.4 kg/m2 ▪ Mean testosterone: 13.1 nmol/L ✓ Mean follow-up: 87.4 weeks | ✓ Objective: To explore the effects of GLP-1 RAS on the HPT axis and male sexual function ✓ 6 studies included (type not defined) ✓ Number of participants: 386 individuals ✓ Baseline characteristics: ▪ Mean age 47.1 ± 11.1 years ▪ Mean BMI 35.2 ± 3.9 kg/m2 ✓ Mean follow-up: 31.4 ± 19.1 weeks | ✓ Objective: To investigate the effects of GLP-1 RAs on hormone secretion in overweight and men with obesity, and to compare their impact on testicular and erectile function with other antidiabetic or weight-loss therapies ✓ 6 cohorts and 1 randomized open-label study included ✓ Number of participants: 680 overweight/men with obesity ✓ Baseline characteristics: ▪ Mean age: 47.65 years ▪ Mean BMI: 34.44 kg/m2 ✓ Mean follow-up: 8.43 months |
Results | ✓ GLP-1RAs were more effective than metformin in improving ED in diabetic patients (p = 0.02) and the effect was more pronounced in patients with higher BMI (p = 0.02) ✓ TZDs may offer benefits in sexual function, though further safety and efficacy studies are needed ✓ Insulin and SGLT-2is showed potential benefit but lack strong supporting evidence ✓ The effect of metformin and SUs remains unclear due to mixed or inconclusive data | ✓ Observational studies: ▪ Metformin, GLP1 RAs, and SGLT2is were associated with improved ED ▪ No significant benefit compared to diet (for all drugs including SUs and DPP-4is) ✓ RCTs showed significant improvement in IIEF score with metformin, pioglitazone, and dulaglutide | ✓ GLP-1 RA use was associated with: ▪ Significant ↑ in TT, calculated fT, and SHBG ▪ ↑ gonadotropins (either LH or FSH) at the study endpoint ▪ Improved erectile function across studies ✓ Meta-regression analysis: ▪ Significant positive correlation between the degree of GLP-1RA–induced weight loss and testosterone ↑ (p < 0.0001) ▪ No significant heterogeneity (p = 0.429) | ✓ GLP-1RAs significantly ↑ TT levels (p < 0.0001), with similar ↑ in FT, SHBG, LH, and FSH ✓ Weight, BMI, WC, and HbA1c were significantly ↓ following GLP-1RA treatment ✓ Meta-regression analysis showed a negative correlation between TT ↑ and ↓ in weight and BMI ✓ Compared with other treatments, GLP-1RAs had similar effects on serum androgens, but greater ↓ in BMI and greater ↑ in gonadotropins and erectile function indices |
Conclusions | ✓ GLP-1 RAs appear to outperform metformin in improving erectile function in diabetic men, especially those with obesity ✓ Other drug classes may also offer positive effects on ED, but more high-quality clinical trials are needed to confirm these findings and address safety considerations | ✓ Given the link between ED and future CVD risk, GLP-1 RAs and SGLT-2is are considered the preferred options, due to their broad role in reducing long-term complications ✓ Metformin is a suitable alternative for less complex patients | ✓ GLP-1 RAs may offer a viable alternative therapeutic option for men with severe obesity-related testosterone deficiency, showing both hormonal and sexual function benefits alongside weight loss | ✓ GLP-1RAs may play a beneficial role in managing functional hypogonadism and improving erectile function in overweight and men with obesity, primarily through weight loss–related mechanisms ✓ Current evidence does not confirm a direct effect of GLP-1 RAs on testicular function due to limitations in study design and available data |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kounatidis, D.; Vallianou, N.G.; Rebelos, E.; Vallianou, K.; Diakoumopoulou, E.; Makrilakis, K.; Tentolouris, N. The Impact of Glucagon-like Peptide-1 Receptor Agonists on Erectile Function: Friend or Foe? Biomolecules 2025, 15, 1284. https://doi.org/10.3390/biom15091284
Kounatidis D, Vallianou NG, Rebelos E, Vallianou K, Diakoumopoulou E, Makrilakis K, Tentolouris N. The Impact of Glucagon-like Peptide-1 Receptor Agonists on Erectile Function: Friend or Foe? Biomolecules. 2025; 15(9):1284. https://doi.org/10.3390/biom15091284
Chicago/Turabian StyleKounatidis, Dimitris, Natalia G. Vallianou, Eleni Rebelos, Kalliopi Vallianou, Evanthia Diakoumopoulou, Konstantinos Makrilakis, and Nikolaos Tentolouris. 2025. "The Impact of Glucagon-like Peptide-1 Receptor Agonists on Erectile Function: Friend or Foe?" Biomolecules 15, no. 9: 1284. https://doi.org/10.3390/biom15091284
APA StyleKounatidis, D., Vallianou, N. G., Rebelos, E., Vallianou, K., Diakoumopoulou, E., Makrilakis, K., & Tentolouris, N. (2025). The Impact of Glucagon-like Peptide-1 Receptor Agonists on Erectile Function: Friend or Foe? Biomolecules, 15(9), 1284. https://doi.org/10.3390/biom15091284