A Novel Culture System for Inhibiting In Vitro Differentiation of Ovine Granulosa Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Isolation and Culture of GC
2.3. Immunofluorescence Analysis
2.4. Western Blot
2.5. Enzyme-Linked Immunosorbent Assay
2.6. RT-qPCR
2.7. Cell Growth Curve
2.8. Statistical Analysis
3. Results
3.1. Detection of FSHR and STAR Expression in Sheep GCs During Primary Culture
3.2. Detection of Luteinization-Related Indicators in GCs During Primary Culture
3.3. Inducing Factors of GC Luteinization During Primary Culture
3.4. Effects of BAY-899 on Luteinization of Second-Generation GCs
3.5. Effects of BAY-899 on In Vitro Proliferation Activity of Fifth-Generation GCs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, Y.; Zhang, R.; Zhang, S.; Ji, Y.; Zhou, Q.; Leng, L.; Meng, F.; Gong, F.; Lu, G.; Lin, G.; et al. Transcriptomic profiles reveal the characteristics of oocytes and cumulus cells at GV, MI, and MII in follicles before ovulation. J. Ovarian Res. 2023, 16, 225. [Google Scholar] [CrossRef] [PubMed]
- Bartholomeusz, R.K.; Bertoncello, I.; Chamley, W.A. A correlation between ovarian follicular maturity and anchorage-independent growth of bovine granulosa cells. Int. J. Cell Cloning 1988, 6, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Pescador, N.; Stocco, D.M.; Murphy, B.D. Growth factor modulation of steroidogenic acute regulatory protein and luteinization in the pig ovary. Biol. Reprod. 1999, 60, 1453–1461. [Google Scholar] [CrossRef]
- Tosca, L.; Rame, C.; Chabrolle, C.; Tesseraud, S.; Dupont, J. Metformin decreases IGF1-induced cell proliferation and protein synthesis through AMP-activated protein kinase in cultured bovine granulosa cells. Reproduction 2010, 139, 409–418. [Google Scholar] [CrossRef]
- Breckwoldt, M.; Selvaraj, N.; Aharoni, D.; Barash, A.; Segal, I.; Insler, V.; Amsterdam, A. Expression of Ad4-BP/cytochrome P450 side chain cleavage enzyme and induction of cell death in long-term cultures of human granulosa cells. Mol. Hum. Reprod. 1996, 2, 391–400. [Google Scholar] [CrossRef]
- Bao, Y.; Yao, X.; Li, X.; Ei-Samahy, M.A.; Yang, H.; Liang, Y.; Liu, Z.; Wang, F. INHBA transfection regulates proliferation, apoptosis and hormone synthesis in sheep granulosa cells. Theriogenology 2021, 175, 111–122. [Google Scholar] [CrossRef]
- Li, X.; Lin, J.; Chen, Y.; Wang, L.; Han, B.; Jia, B.; Wu, Y.; Huang, J. FSH promotes the proliferation of sheep granulosa cells by inhibiting the expression of TSP1. Anim. Biotechnol. 2022, 33, 260–272. [Google Scholar] [CrossRef]
- Han, Q.; Guo, X.; Jia, K.; Jing, J.; Dang, W.; Li, Y.; Qin, X.; Li, P.; Ren, Y.; Liu, W.; et al. Effects of FOXO1 on the proliferation and cell cycle-, apoptosis- and steroidogenesis-related genes expression in sheep granulosa cells. Anim. Reprod. Sci. 2020, 221, 106604. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Baker, H.; Hancock, W.S.; Fawaz, F.; McCaman, M.; Pungor, E., Jr. Proteomic analysis for the assessment of different lots of fetal bovine serum as a raw material for cell culture. Part IV. Application of proteomics to the manufacture of biological drugs. Biotechnol. Prog. 2006, 22, 1294–1300. [Google Scholar] [CrossRef]
- Gstraunthaler, G.; Lindl, T.; van der Valk, J. A plea to reduce or replace fetal bovine serum in cell culture media. Cytotechnology 2013, 65, 791–793. [Google Scholar] [CrossRef]
- Caicedo Rivas, R.E.; Nieto, M.P.; Kamiyoshi, M. Effects of Steroid Hormone in Avian Follicles. Asian-Australas. J. Anim. Sci. 2016, 29, 487–499. [Google Scholar] [CrossRef]
- Hatzirodos, N.; Glister, C.; Hummitzsch, K.; Irving-Rodgers, H.F.; Knight, P.G.; Rodgers, R.J. Transcriptomal profiling of bovine ovarian granulosa and theca interna cells in primary culture in comparison with their in vivo counterparts. PLoS ONE 2017, 12, e0173391. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- McRae, R.S.; Johnston, H.M.; Mihm, M.; O’Shaughnessy, P.J. Changes in mouse granulosa cell gene expression during early luteinization. Endocrinology 2005, 146, 309–317. [Google Scholar] [CrossRef]
- Sugino, N. Molecular mechanisms of luteinization. Obstet. Gynecol. Sci. 2014, 57, 93–101. [Google Scholar] [CrossRef]
- Maoduo, Z.; Hao, Y.; Wei, W.; Feng, W.; Dagan, M. Effects of LPS on the accumulation of lipid droplets, proliferation, and steroidogenesis in goat luteinized granulosa cells. J. Biochem. Mol. Toxicol. 2019, 33, e22329. [Google Scholar] [CrossRef] [PubMed]
- Kishi, H.; Kitahara, Y.; Imai, F.; Nakao, K.; Suwa, H. Expression of the gonadotropin receptors during follicular development. Reprod. Med. Biol. 2018, 17, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Cheewasopit, W.; Laird, M.; Glister, C.; Knight, P.G. Myostatin is expressed in bovine ovarian follicles and modulates granulosal and thecal steroidogenesis. Reproduction 2018, 156, 375–386. [Google Scholar] [CrossRef]
- Mohammed, B.T.; Donadeu, F.X. Bovine Granulosa Cell Culture. Methods Mol. Biol. 2018, 1817, 79–87. [Google Scholar]
- Bai, Y.; Zhu, C.; Feng, M.; Pan, B.; Zhang, S.; Zhan, X.; Chen, H.; Wang, B.; Li, J. Establishment of A Reversibly Inducible Porcine Granulosa Cell Line. Cells 2020, 9, 156. [Google Scholar] [CrossRef]
- Baufeld, A.; Vanselow, J. A Tissue Culture Model of Estrogen-producing Primary Bovine Granulosa Cells. J. Vis. Exp. 2018, 139, 58208. [Google Scholar]
- Montano, E.; Olivera, M.; Ruiz-Cortes, Z.T. Association between leptin, LH and its receptor and luteinization and progesterone accumulation (P4) in bovine granulosa cell in vitro. Reprod. Domest. Anim. 2009, 44, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Versteegen, R.J.; Murray, J.; Doelger, S. Animal welfare and ethics in the collection of fetal blood for the production of fetal bovine serum. Altex 2021, 38, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Guimiot, F.; Chevrier, L.; Dreux, S.; Chevenne, D.; Caraty, A.; Delezoide, A.L.; de Roux, N. Negative fetal FSH/LH regulation in late pregnancy is associated with declined kisspeptin/KISS1R expression in the tuberal hypothalamus. J. Clin. Endocrinol. Metab. 2012, 97, E2221–E2229. [Google Scholar] [CrossRef]
- Jeppesen, J.V.; Kristensen, S.G.; Nielsen, M.E.; Humaidan, P.; Dal Canto, M.; Fadini, R.; Schmidt, K.T.; Ernst, E.; Yding Andersen, C. LH-receptor gene expression in human granulosa and cumulus cells from antral and preovulatory follicles. J. Clin. Endocrinol. Metab. 2012, 97, E1524–E1531. [Google Scholar] [CrossRef]
- Wortmann, L.; Lindenthal, B.; Muhn, P.; Walter, A.; Nubbemeyer, R.; Heldmann, D.; Sobek, L.; Morandi, F.; Schrey, A.K.; Moosmayer, D.; et al. Discovery of BAY-298 and BAY-899: Tetrahydro-1,6-naphthyridine-Based, Potent, and Selective Antagonists of the Luteinizing Hormone Receptor Which Reduce Sex Hormone Levels in Vivo. J. Med. Chem. 2019, 62, 10321–10341. [Google Scholar] [CrossRef]
- Kitasaka, H.; Kawai, T.; Hoque, S.A.M.; Umehara, T.; Fujita, Y.; Shimada, M. Inductions of granulosa cell luteinization and cumulus expansion are dependent on the fibronectin-integrin pathway during ovulation process in mice. PLoS ONE 2018, 13, e0192458. [Google Scholar] [CrossRef]
- Casarini, L.; Lispi, M.; Longobardi, S.; Milosa, F.; La Marca, A.; Tagliasacchi, D.; Pignatti, E.; Simoni, M. LH and hCG action on the same receptor results in quantitatively and qualitatively different intracellular signalling. PLoS ONE 2012, 7, e46682. [Google Scholar] [CrossRef] [PubMed]
- Men, Y.; Fan, Y.; Shen, Y.; Lu, L.; Kallen, A.N. The Steroidogenic Acute Regulatory Protein (StAR) Is Regulated by the H19/let-7 Axis. Endocrinology 2017, 158, 402–409. [Google Scholar] [CrossRef] [PubMed]
Primer | Sequence (5′→3′) | Length (bp) | Accession Number |
---|---|---|---|
β-actin | F: CCATCGGCAATGAGCGGT R: CGTGTTGGCTAGAGGTC | 146 | NM_001009784.3 |
LHR | F: TGCTTACCCAAGACACTCR: ATCAGCCAAATCAGGAC | 101 | NM_001278566.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Liu, H.; Mu, Z.; Li, H.; Qi, W. A Novel Culture System for Inhibiting In Vitro Differentiation of Ovine Granulosa Cells. Biomolecules 2025, 15, 1280. https://doi.org/10.3390/biom15091280
Zhao Y, Liu H, Mu Z, Li H, Qi W. A Novel Culture System for Inhibiting In Vitro Differentiation of Ovine Granulosa Cells. Biomolecules. 2025; 15(9):1280. https://doi.org/10.3390/biom15091280
Chicago/Turabian StyleZhao, Yufen, Haijiang Liu, Zhe Mu, Haijun Li, and Wangmei Qi. 2025. "A Novel Culture System for Inhibiting In Vitro Differentiation of Ovine Granulosa Cells" Biomolecules 15, no. 9: 1280. https://doi.org/10.3390/biom15091280
APA StyleZhao, Y., Liu, H., Mu, Z., Li, H., & Qi, W. (2025). A Novel Culture System for Inhibiting In Vitro Differentiation of Ovine Granulosa Cells. Biomolecules, 15(9), 1280. https://doi.org/10.3390/biom15091280