Association of Inflammatory and Oxidative Stress Biomarkers Adjusted by Personal, Psychological, Biochemical, Anthropometric, and Physiological Variables with Global DNA Methylation in a Sample of Mexican Individuals
Abstract
1. Introduction
2. Subjects and Methods
2.1. Ethical Considerations and Study Population
2.2. Subjects
2.3. Study Design: This Is an Observational, Cross-Sectional Study
2.4. Procedures
2.4.1. Personal and Psychological Variables
Personal Variables
Psychological Variables
Lifestyle Scales
2.4.2. Biological Sample Collection
2.4.3. Biochemical Variable Measurement
2.4.4. Serum Levels of Inflammatory and Oxidative Stress Biomarker Analysis
2.4.5. DNA Extraction
2.4.6. Inmmunoquantification of Global DNA Methylation
2.4.7. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holliday, R. The inheritance of epigenetic defects. Science 1987, 238, 163–170. [Google Scholar] [CrossRef]
- Bird, A.P. DNA methylation patterns and epigenetic memory. Genes Dev. 2002, 16, 6–21. [Google Scholar] [CrossRef]
- Lister, R.; Pelizzola, M.; Dowen, R.H.; Hawkins, R.D.; Hon, G.; Tonti-Filippini, J.; Nery, J.R.; Lee, L.; Ye, Z.; Ngo, Q.M.; et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009, 462, 315–322. [Google Scholar] [CrossRef]
- Andersen, G.B.; Tost, J. A summary of the biological processes, disease-associated changes, and clinical applications of DNA methylation. In DNA Methylation Protocols, 3rd ed.; Tost, J., Ed.; Humana Press: New York, NY, USA, 2018; Volume 1708, pp. 3–30. [Google Scholar]
- Ehrlich, M.; Gama-Sosa, M.A.; Huang, L.H.; Midgett, R.M.; Kuo, K.C.; McCune, R.A.; Gehrke, C. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res. 1982, 10, 2709–2721. [Google Scholar] [CrossRef]
- Bird, A.P. CpG-rich islands and the function of DNA methylation. Nature 1986, 321, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Illingworth, R.S.; Bird, A.P. CpG islands—‘a rough guide’. FEBS Lett. 2009, 583, 1713–1720. [Google Scholar] [CrossRef] [PubMed]
- Youk, J.; An, Y.; Park, S.; Lee, J.-K.; Ju, Y.S. The genome-wide landscape of C:G > T:A polymorphism at the CpG contexts in the human population. BMC Genom. 2020, 21, 270. [Google Scholar] [CrossRef]
- Li, S.; Christiansen, L.; Christensen, K.; Kruse, T.A.; Redmond, P.; Marioni, R.E.; Deary, I.J.; Tan, Q. Identification, replication and characterization of epigenetic remodelling in the aging genome: A cross population analysis. Sci. Rep. 2017, 7, 8183. [Google Scholar] [CrossRef] [PubMed]
- Murphy, T.M.; O’Donovan, A.; Mullins, N.; O’Farrelly, C.; McCann, A.; Malone, K. Anxiety is associated with higher levels of global DNA methylation and altered expression of epigenetic and interleukin-6 genes. Psychiatr. Genet. 2015, 25, 71–78. [Google Scholar] [CrossRef]
- Hou, L.; Li, S.; Zhao, M. Obesity promotes the global hypomethylation of CD4+ T cells in patients with systemic lupus erythematosus via downregulating DNMT1. Panminerva Med. 2024, 66, 237–241. [Google Scholar] [CrossRef]
- Choi, J.-Y.; James, S.R.; Link, P.A.; McCann, S.E.; Hong, C.-C.; Davis, W.; Nesline, M.K.; Ambrosone, C.B.; Karpf, A.R. Association between global DNA hypomethylation in leukocytes and risk of breast cancer. Carcinogenesis 2009, 30, 1889–1897. [Google Scholar] [CrossRef]
- van Veldhoven, K.; Polidoro, S.; Baglietto, L.; Severi, G.; Sacerdote, C.; Panico, S.; Mattiello, A.; Palli, D.; Masala, G.; Krogh, V.; et al. Epigenome-wide association study reveals decreased average methylation levels years before breast cancer diagnosis. Clin. Epigenetics 2015, 7, 67. [Google Scholar] [CrossRef] [PubMed]
- Putra, S.E.D.; Reichetzeder, C.; von Websky, K.; Neuber, C.; Halle, H.; Kleuser, B.; Krämer, B.K.; Hocher, B. Association between placental global DNA methylation and blood pressure during human pregnancy. J. Hypertens. 2022, 40, 1002–1009. [Google Scholar] [CrossRef] [PubMed]
- Holmes, L.; Lim, A.; Comeaux, C.R.; Dabney, K.W.; Okundaye, O. DNA methylation of candidate genes (ACE II, IFN-γ, AGTR 1, CKG, ADD1, SCNN1B and TLR2) in essential hypertension: A systematic review and quantitative evidence synthesis. Int. J. Environ. Res. Public Health 2019, 16, 4829. [Google Scholar] [CrossRef] [PubMed]
- Chatzidavid, S.; Kontandreopoulou, C.-N.; Giannakopoulou, N.; Diamantopoulos, P.T.; Stafylidis, C.; Kyrtsonis, M.-C.; Dimou, M.; Panayiotidis, P.; Viniou, N.-A. The role of methylation in chronic lymphocytic leukemia and its prognostic and therapeutic impacts in the disease: A systematic review. Adv. Hematol. 2024, 2024, 1370364. [Google Scholar] [CrossRef]
- Hill, R.A.; Gibbons, A.; Suwakulsiri, W.; Taseska, A.; Darke, H.; Malhotra, A.; Yee, H.; Fahey, M.; Hunt, R.W.; Lim, I.; et al. Investigating the impact of severe maternal SARS-CoV-2 infection on infant DNA methylation and neurodevelopment. Mol. Psychiatry 2025, 30, 1976–1984. [Google Scholar] [CrossRef]
- Lorente-Sorolla, C.; Garcia-Gomez, A.; Català-Moll, F.; Toledano, V.; Ciudad, L.; Avendaño-Ortiz, J.; Maroun-Eid, C.; Martín-Quirós, A.; Martínez-Gallo, M.; Ruiz-Sanmartín, A.; et al. Inflammatory cytokines and organ dysfunction associate with the aberrant DNA methylome of monocytes in sepsis. Genome Med. 2019, 11, 66. [Google Scholar] [CrossRef]
- Vujcic, S.; Kotur-Stevuljevic, J.; Vujcic, Z.; Stojanovic, S.; Beljic Zivkovic, T.; Vuksanovic, M.; Marjanovic Petkovic, M.; Perovic Blagojevic, I.; Koprivica-Uzelac, B.; Ilic-Mijailovic, S.; et al. Global DNA methylation in poorly controlled type 2 diabetes mellitus: Association with redox and inflammatory biomarkers. Int. J. Mol. Sci. 2025, 26, 6716. [Google Scholar] [CrossRef]
- Gierk, B.; Kohlmann, S.; Kroenke, K.; Spangenberg, L.; Zenger, M.; Brähler, E.; Löwe, B. The somatic symptom scale-8 (SSS-8): A brief measure of somatic symptom burden. JAMA Intern. Med. 2014, 174, 399–407. [Google Scholar] [CrossRef]
- Petrides, K.V. Psychometric properties of the trait emotional intelligence questionnaire (TEIQue). In Assessing Emotional Intelligence, 1st ed.; The Springer Series on Human Exceptionality; Parker, J., Saklofske, D., Stough, C., Eds.; Springer: Boston, MA, USA, 2009; pp. 85–101. [Google Scholar]
- Antonovsky, A. The structure and properties of the sense of coherence scale. Soc. Sci. Med. 1993, 36, 725–733. [Google Scholar] [CrossRef]
- Guzmán, L.G.C.; Gom, S.B. Traducción al español y propiedades psicométricas del instrumento positivity self test. Psicol. Iberoam. 2013, 21, 53–64. [Google Scholar] [CrossRef]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.W.; Löwe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef] [PubMed]
- Carstensen, T.B.W.; Ørnbøl, E.; Fink, P.; Jørgensen, T.; Dantoft, T.M.; Madsen, A.L.; Buhmann, C.C.B.; Eplov, L.F.; Frostholm, L. Adverse life events in the general population—A validation of the cumulative lifetime adversity measure. Eur. J. Psychotraumatol. 2020, 11, 1717824. [Google Scholar] [CrossRef] [PubMed]
- Baik, S.H.; Fox, R.S.; Mills, S.D.; Roesch, S.C.; Sadler, G.R.; Klonoff, E.A.; Malcarne, V.L. Reliability and validity of the perceived stress scale-10 in hispanic americans with english or spanish language preference. J. Health Psychol. 2019, 24, 628–639. [Google Scholar] [CrossRef]
- Cohen, S.; Williamson, G.M. Perceived stress in a probability sample of the United States. In The Social Psychology of Health, 1st ed.; Spacapan, S., Oskamp, S., Eds.; Sage Publications, Inc.: Newbury Park, CA, USA, 1988; pp. 31–67. [Google Scholar]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Díaz, D.; Rodríguez-Carvajal, R.; Blanco, A.; Moreno-Jiménez, B.; Gallardo, I.; Valle, C.; Van Dierendonck, D. Adaptación española de las escalas de bienestar psicológico de Ryff. Psicothema 2006, 18, 572–577. [Google Scholar]
- Ryff, C.D.; Keyes, C.L. The structure of psychological well-being revisited. J. Pers. Soc. Psychol. 1995, 69, 719–727. [Google Scholar] [CrossRef]
- Bobes-Garcia, J.; González, G.; Portilla, P.; Sáiz-Martínez, D.A.; Bascarán-Fdez, M.; Iglesias-Álvarez, G.; Fdez-Domínguez, J.M. Propiedades psicométricas del cuestionario Oviedo de sueño. Psicothema 2000, 12, 107–112. [Google Scholar]
- Bernal-Orozco, M.F.; Badillo-Camacho, N.; Macedo-Ojeda, G.; González-Gómez, M.; Orozco-Gutiérrez, J.F.; Prado-Arriaga, R.J.; Márquez-Sandoval, F.; Altamirano-Martínez, M.B.; Vizmanos, B. Design and reproducibility of a mini-survey to evaluate the quality of food intake (Mini-ECCA) in a Mexican population. Nutrients 2018, 10, 524. [Google Scholar] [CrossRef]
- Brambila-Tapia, A.J.L.; Saldaña-Cruz, A.M.; Meléndez-Monreal, K.C.; Esparza-Guerrero, Y.; Martínez-Hernández, A.; Rosales-Torres, B.G.; Ríos-González, B.E. Association of personal, behavioral and positive psychological variables with somatization and number of diseases in Mexican general population: The influence of gender. Psychol. Health Med. 2023, 28, 995–1003. [Google Scholar] [CrossRef]
- Ladwig, K.-H.; Marten-Mittag, B.; Erazo, N.; Gündel, H. Identifying somatization disorder in a population-based health examination survey: Psychosocial burden and gender differences. Psychosomatics 2001, 42, 511–518. [Google Scholar] [CrossRef]
- Vargas-Prada, S.; Coggon, D.; Ntani, G.; Walker-Bone, K.; Palmer, K.T.; Felli, V.E.; Harari, R.; Barrero, L.H.; Felknor, S.A.; Gimeno, D.; et al. Descriptive epidemiology of somatising tendency: Findings from the CUPID study. PLoS ONE 2016, 11, e0153748. [Google Scholar] [CrossRef] [PubMed]
- Garaigordobil, M.; Pérez, J.I.; Mozaz, M. Self-concept, self-esteem and psychopathological symptoms. Psicothema 2008, 20, 114–123. [Google Scholar] [PubMed]
- Ríos-González, B.E.; Saldaña-Cruz, A.M.; Gallardo-Moya, S.G.; Brambila-Tapia, A.J.L. Sex differences in the relationship between personal, psychological and biochemical factors with blood pressure in a healthy adult Mexican population: A cross-sectional study. J. Clin. Med. 2024, 13, 378. [Google Scholar] [CrossRef] [PubMed]
- Schlarb, A.A.; Claßen, M.; Hellmann, S.M.; Vögele, C.; Gulewitsch, M.D. Sleep and somatic complaints in university students. J. Pain Res. 2017, 10, 1189–1199. [Google Scholar] [CrossRef]
- Brambila-Tapia, A.J.L.; González-Gómez, A.S.; Carrillo-Delgadillo, L.A.; Saldaña-Cruz, A.M.; Dávalos-Rodríguez, I.P. Sex differences in biochemical analyses, cardiometabolic risk factors and their correlation with CRP in healthy Mexican individuals. J. Pers. Med. 2024, 14, 904. [Google Scholar] [CrossRef]
- Flores, Y.N.; Zhang, Z.-F.; Bastani, R.; Leng, M.; Crespi, C.M.; Ramírez-Palacios, P.; Stevens, H.; Salmerón, J. Risk factors for liver disease among adults of Mexican descent in the United States and Mexico. World J. Gastroenterol. 2018, 24, 4281–4290. [Google Scholar] [CrossRef]
- Brambila-Tapia, A.J.L.; Jacquez-Castañeda, A.L.; Carrillo-Delgadillo, L.A.; Dávila-Flores, J.N.; Macías-Espinoza, F.; Ramírez-De Los Santos, S.; Gutiérrez-Hurtado, I.A. Association between psychological, biochemical and personal factors with the inflammatory marker high-sensitive C reactive protein (Hs-CRP) in Mexican healthy population. J. Pers. Med. 2023, 13, 876. [Google Scholar] [CrossRef]
- Lockwood, K.G.; Marsland, A.L.; Cohen, S.; Gianaros, P.J. Sex differences in the association between stressor-evoked interleukin-6 reactivity and C-reactive protein. Brain Behav. Immun. 2016, 58, 173–180. [Google Scholar] [CrossRef]
- Butkiewicz, A.M.; Kemona, H.; Dymicka-Piekarska, V.; Matowicka-Karna, J.; Radziwon, P.; Lipska, A. Platelet count, mean platelet volume and thrombocytopoietic indices in healthy women and men. Thromb. Res. 2006, 118, 199–204. [Google Scholar] [CrossRef]
- Murphy, W.G. The sex difference in haemoglobin levels in adults—Mechanisms, causes, and consequences. Blood Rev. 2014, 28, 41–47. [Google Scholar] [CrossRef]
- El-Maarri, O.; Becker, T.; Junen, J.; Manzoor, S.S.; Diaz-Lacava, A.; Schwaab, R.; Wienker, T.; Oldenburg, J. Gender specific differences in levels of DNA methylation at selected loci from human total blood: A tendency toward higher methylation levels in males. Hum. Genet. 2007, 122, 505–514. [Google Scholar] [CrossRef]
- Singmann, P.; Shem-Tov, D.; Wahl, S.; Grallert, H.; Fiorito, G.; Shin, S.-Y.; Schramm, K.; Wolf, P.; Kunze, S.; Baran, Y.; et al. Characterization of whole-genome autosomal differences of DNA methylation between men and women. Epigenetics Chromatin 2015, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Hedman, Å.K.; Zilmer, M.; Sundström, J.; Lind, L.; Ingelsson, E. DNA methylation patterns associated with oxidative stress in an ageing population. BMC Med. Genom. 2016, 9, 72. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Zhang, T.; Su, S.; Hao, G.; Chen, T.; Li, Q.-Z.; Bazzano, L.; He, J.; Wang, X.; Li, S.; et al. Body mass index drives changes in DNA methylation: A longitudinal study. Circ. Res. 2019, 125, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Brorson, I.S.; Eriksson, A.M.; Høgestøl, E.; Leikfoss, I.S.; Harbo, H.F.; Berge, T.; Vitelli, V.; Bos, S.D. Global DNA methylation changes in treated and untreated MS patients measured over time. J. Neuroimmunol. 2022, 364, 577808. [Google Scholar] [CrossRef]
- Smith, A.K.; Conneely, K.N.; Kilaru, V.; Mercer, K.B.; Weiss, T.E.; Bradley, B.; Tang, Y.; Gillespie, C.F.; Cubells, J.F.; Ressler, K.J. Differential immune system DNA methylation and cytokine regulation in post-traumatic stress disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2011, 156B, 700–708. [Google Scholar] [CrossRef]
- Mychasiuk, R.; Harker, A.; Ilnytskyy, S.; Gibb, R. Paternal stress prior to conception alters DNA methylation and behaviour of developing rat offspring. Neuroscience 2013, 241, 100–105. [Google Scholar] [CrossRef]
- Caliri, A.W.; Caceres, A.; Tommasi, S.; Besaratinia, A. Hypomethylation of LINE-1 repeat elements and global loss of DNA hydroxymethylation in vapers and smokers. Epigenetics 2020, 15, 816–829. [Google Scholar] [CrossRef]
Variables | Total | Female | Male | p |
---|---|---|---|---|
N = 157 | N = 83 | N = 74 | ||
Sociodemographics | ||||
Age (years), median (range) | 24.0 (18–58) | 23.0 (18–58) | 25.5 (18–54) | 0.535 |
Highest education level, n (%)
| ||||
7 (4.5) | 4 (4.8) | 3 (4.1) | ||
66 (42.0) | 41 (49.4) | 25 (33.8) | ||
66 (42.0) | 35 (42.2) | 31 (41.8) | 0.019 | |
11 (7.0) | 2 (2.4) | 9 (12.2) | ||
7 (4.5) | 1 (1.2) | 6 (8.1) | ||
With a romantic partner, n (%) | 88 (56.1) | 42 (50.6) | 46 (62.2) | 0.145 |
Having children, n (%) | 44 (28.0) | 22 (26.5) | 22 (29.7) | 0.653 |
Employed, n (%) | 105 (66.9) | 52 (62.7) | 53 (71.6) | 0.233 |
Monthly income (MXN), n (%)
| ||||
8 (5.1) | 7 (8.4) | 1 (1.4) | ||
48 (30.6) | 33 (39.8) | 15 (20.3) | ||
61 (38.8) | 33 (39.8) | 28 (37.7) | ||
25 (15.9) | 6 (7.2) | 19 (25.7) | <0.001 | |
15 (9.6) | 4 (4.8) | 11 (14.9) | ||
Free time (hours), median (range) | 4.0 (0.0–12.0) | 4.0 (0–12.0) | 4.0 (0–12.0) | 0.077 |
Daily exercise (hours), n (%)
| ||||
64 (40.7) | 35 (42.2) | 29 (39.2) | ||
59 (37.6) | 34 (41.0) | 25 (33.8) | ||
24 (15.3) | 10 (12.0) | 14 (18.9) | 0.476 | |
10 (6.4) | 4 (4.8) | 6 (8.1) | ||
Weekly dietary supplement use, n (%)
| ||||
87 (55.5) | 41 (49.4) | 46 (62.1) | ||
31 (19.7) | 16 (19.3) | 15 (20.3) | ||
12 (7.6) | 8 (9.6) | 4 (5.4) | ||
12 (7.6) | 6 (7.2) | 6 (8.1) | 0.161 | |
15 (9.6) | 12 (14.5) | 3 (4.1) | ||
Total number of illnesses, median (range) | 2.0 (0–10) | 3.0 (0–10) | 2.0 (0–8) | 0.003 |
Daily drug intake | 0.0 (0.0–4.0) | 0.0 (0.0–4.0) | 0.0 (0.0–3.0) | 0.081 |
Sleep quality (OVIEDO scale), median (range) | 3.0 (0.0–4.0) | 2.8 (0.4–4.0) | 3.2 (0.0–4.0) | 0.122 |
Alcohol use frequency, n (%)
| ||||
23 (14.6) | 12 (14.5) | 11 (14.9) | ||
41 (26.1) | 27 (32.5) | 14 (18.9) | ||
63 (40.2) | 36 (43.4) | 27 (36.4) | 0.009 | |
27 (17.2) | 6 (7.2) | 21 (28.4) | ||
3 (1.9) | 2 (2.4) | 1 (1.4) | ||
Smoking frequency, n (%)
| ||||
130 (82.8) | 71 (85.6) | 59 (79.6) | ||
8 (5.1) | 5 (6.0) | 3 (4.1) | ||
5 (3.2) | 2 (2.4) | 3 (4.1) | 0.369 | |
5 (3.2) | 3 (3.6) | 2 (2.7) | ||
9 (5.7) | 2 (2.4) | 7 (9.5) | ||
Consumption of the seven evaluated illicit substances, mean ± SD | ||||
0.0 (0.0–07) | 0.0 (0.0–0.3) | 0.0 (0.0–0.7) | 0.091 | |
Psychological | ||||
Positive emotions, mean ± SD | 2.8 ± 0.7 | 2.6 ± 0.8 | 2.9 ± 0.6 | 0.015 |
TEIQue: Assertiveness, mean ± SD | 4.6 ± 1.3 | 4.5 ± 1.2 | 4.8 ± 1.3 | 0.183 |
TEIQue: Emotion identification, median (range) | 5.4 (1.2–7.0) | 5.4 (1.2–7.0) | 5.4 (1.2–7.0) | 0.931 |
TEIQue: Self-motivation, median (range) | 5.2 (1.6–7.0) | 5.2 (1.6–7.0) | 5.2 (2.2–7.0) | 0.272 |
SOC_13: Comprehensibility, median (range) | 4.4 (1.6–7.0) | 4.2 (1.6–6.6) | 4.8 (2.0–7.0) | 0.033 |
SOC_13: Manageability, mean ± SD | 4.3 ± 1.4 | 4.1 ± 1.4 | 4.5 ± 1.4 | 0.078 |
SOC_13: Meaningfulness, median (range) | 5.3 (1.8–7.0) | 5.3 (1.8–7.0) | 5.3 (2.8–7.0) | 0.895 |
GAD-7, median (range) | 0.9 (0.0–3.0) | 1.0 (0.0–3.0) | 0.9 (0.0–3.0) | 0.405 |
Mini-ECCA, median (range) | 7.0 (2.0–12.0) | 8.0 (3.0–12.0) | 6.5 (2.0–12.0) | 0.083 |
PHQ-9, median (range) | 0.6 (0.0–2.7) | 0.7 (0.0–2.7) | 0.4 (0.0–2.1) | 0.029 |
SSS-8, median (range) | 1.6 (1.0–2.9) | 1.8 (1.0–2.9) | 1.5 (1.0–2.8) | 0.004 |
PSS-10, mean ± SD | 1.5 ± 0.7 | 1.6 ± 0.8 | 1.4 ± 0.6 | 0.048 |
Traumatic events in life, median (range) | 0.4 (0.0–2.0) | 0.4 (0.0–1.2) | 0.4 (0.0–2.0) | 0.605 |
PWBS: Self-acceptance, median (range) | 4.8 (1.0–6.0) | 4.8 (1.0–6.0) | 5.0 (2.0–6.0) | 0.075 |
PWBS: Autonomy, median (range) | 4.3 (1.5–6.0) | 4.2 (1.5–6.0) | 4.5 (2.2–6.0) | 0.020 |
PWBS: Environmental mastery, Mean ± SD | 4.6 ± 1.0 | 4.47 ± 1.1 | 4.71 ± 0.9 | 0.136 |
PWBS: Positive relations, median (range) | 4.8 (1.0–6.0) | 5.0 (1.0–6.0) | 4.7 (1.8–6.0) | 0.475 |
PWBS: Life purpose, median (range) | 5.0 (1.4–6.0) | 4.8 (1.4–6.0) | 5.0 (1.6–6.0) | 0.101 |
PWBS: Personal growth, median (range) | 5.7 (1.3–6.0) | 5.7 (1.3–6.0) | 5.7 (3.0–6.0) | 0.323 |
Biochemicals | ||||
Leukocytes (1 × 103/uL), median (range) | 5.8 (3.4–11.0) | 5.9 (3.4–11.0) | 5.8 (3.5–8.5) | 0.524 |
Lymphocytes (1 × 103/uL), median (range) | 1.8 (0.8–3.5) | 1.7 (0.9–3.0) | 1.8 (0.8–3.5) | 0.456 |
Monocytes (1 × 103/uL), median (range) | 0.2 (0.1–0.4) | 0.2 (0.1–0-4.0) | 0.2 (0.1–0.4) | 0.105 |
Granulocytes (1 × 103/uL), median (range) | 3.8 (1.9–7.9) | 3.9 (2.0–7.9) | 3.8 (1.9–6.3) | 0.187 |
Platelets (1 × 103/uL), mean ± SD | 223.7 ± 47.0 | 236.5 ± 48.9 | 209.4 ± 40.7 | <0.001 |
Hemoglobin (g/dL), median (range) | 13.4 (7.3–19.2) | 12.7 (7.3–17.4) | 14.5 (12.9–19.2) | <0.001 |
Triglycerides (mg/dL), median (range) | 97.8 (21.7–625.8) | 97.6 (23.7–357.9) | 99.6 (21.7–625.8) | 0.256 |
Cholesterol (mg/dL), mean ± SD | 185.1 ± 38.1 | 180.8 ± 33.7 | 189.9 ± 42.1 | 0.140 |
Glucose (mg/dL), median (range) | 88.5 (59.4–232.0) | 83.8 (59.4–120.6) | 92.3 (61.6–232.0) | <0.001 |
Urea (mg/dL), median (range) | 27.0 (10.0–143.7) | 26.2 (14.2–143.7) | 27.0 (10.0–58.7) | 0.306 |
Global DNA methylation (%), median (range) | 0.44 (0.0–2.1) | 0.43 (0.0–1.9) | 0.50 (0.1–2.1) | 0.045 |
Levels of inflammatory and oxidative stress biomarkers | ||||
TNF-α (pg/mL), median (range) | 177.2 (15.6–1000.0) | 62.9 (15.6–1000.0) | 403.5 (15.6–1000.0) | 0.132 |
IL-8 (pg/mL), median (range) | 9.5 (7.8–462.0) | 9.8 (7.8–462.0) | 9.4 (7.8–380.5) | 0.259 |
IL-6 (pg/mL), median (range) | 5.0 (3.1–329.0) | 6.2 (3.1–329.0) | 4.2 (3.1–23.3) | 0.006 |
IL-1β (pg/mL), median (range) | 13.4(7.8–1000.0) | 13.7 (7.8–1000.0) | 13.3 (8.3–27.4) | 0.410 |
IL-10 (pg/mL), median (range) | 61.1 (7.8–1741.6) | 43.3 (7.8–1741.6) | 105.8 (7.8–1741.6) | 0.399 |
8-Isoprostane (pg/mL), median (range) | 296.8 (230.1–418.3) | 291.0 (230.1–418.3) | 300.9 (246.4–364.4) | 0.175 |
8-OHdG, median (range) | 1.9 (0.6–10.0) | 1.9 (0.6–10.0) | 2.0 (1.1–2.9) | 0.218 |
Anthropometrics and blood pressure | ||||
BMI, median (range) | 25.6 (16.4–39.9) | 25.9 (16.4–39.9) | 25.2 (18.7–38.9) | 0.783 |
WHR, median (range) | 0.8 (0.7–1.2) | 0.8 (0.7–1.0) | 0.9 (0.7–1.2) | <0.001 |
Systolic BP (mmHg), median (range) | 112.0 (80.0–164.0) | 106.0 (80.0–155.0) | 120.0 (90.0–164.0) | <0.001 |
Diastolic BP (mmHg), median (range) | 77.0 (57.0–120.0) | 75.0 (57.0–106.0) | 79.0 (62.0–120.0) | 0.025 |
Variables | Total Sample | Women | Men |
---|---|---|---|
N = 157 | N = 83 | N = 74 | |
Sociodemographics | |||
Age | −0.181 * | — | −0.333 ** |
Having a romantic partner | — | — | −0.295 * |
Having children | −0.169 * | — | −0.242 * |
Employed | — | — | −0.236 * |
Monthly income | 0.197 * | — | — |
Free time | 0.190 * | — | 0.269 * |
Daily drug intake | −0.173 * | −0.243 ** | — |
Levels of inflammatory and oxidative stress biomarkers | |||
8-Isoprostane | 0.160 * | — | — |
TNF-α | 0.210 ** | — | 0.252 * |
IL-8 | 0.265 ** | — | 0.368 ** |
IL-10 | 0.211 ** | — | 0.268 * |
Biochemicals | |||
Hemoglobin | — | — | −0.269 * |
Granulocytes | −0.192 * | — | −0.225 † |
Triglycerides | −0.157 † | — | −0.240 * |
Anthropometrics and blood pressure | |||
BMI | −0.292 ** | −0.244 * | −0.362 ** |
WHR | — | — | −0.336 ** |
Systolic BP | — | — | −0.232 * |
Diastolic BP | −0.163 * | — | −0.295 * |
Variables | B | Beta Coefficient | Significance | Change in R2 | Tolerance |
---|---|---|---|---|---|
Total sample | |||||
Constant | 0.888 | — | 0.000 | — | — |
IL-8 | 0.001 | 0.283 | 0.000 | 0.123 | 0.898 |
Free time | 0.025 | 0.247 | 0.001 | 0.065 | 0.930 |
BMI | −0.007 | −0.139 | 0.078 | 0.041 | 0.826 |
Male sex | 0.110 | 0.210 | 0.005 | 0.025 | 0.913 |
Diastolic BP | −0.005 | −0.193 | 0.015 | 0.028 | 0.822 |
TEIQue: Assertiveness | −0.035 | −0.169 | 0.025 | 0.026 | 0.914 |
Women | |||||
Constant | 0.457 | — | 0.054 | — | — |
BMI | −0.010 | −0.247 | 0.019 | 0.074 | 0.908 |
Daily drug intake | −0.046 | −0.214 | 0.041 | 0.048 | 0.913 |
8-Isoprostane | 0.002 | 0.288 | 0.006 | 0.045 | 0.939 |
PSS-10 | −0.159 | −0.591 | <0.001 | 0.031 | 0.425 |
SOC-13: comprehensibility | −0.058 | −0.398 | 0.006 | 0.052 | 0.486 |
Smoking frequency | −0.057 | −0.243 | 0.024 | 0.061 | 0.871 |
SSS-8 | 0.114 | 0.229 | 0.069 | 0.033 | 0.632 |
Men | |||||
Constant | 1.199 | — | <0.001 | — | — |
SOC-13: comprehensibility | −0.056 | −0.245 | 0.007 | 0.372 | 0.845 |
IL-8 | 0.002 | 0.524 | <0.001 | 0.082 | 0.945 |
Diastolic BP | −0.009 | −0.297 | 0.001 | 0.051 | 0.986 |
Monthly income (MXN) | 0.071 | 0.241 | 0.007 | 0.045 | 0.879 |
Having a romantic partner | −0.094 | −0.152 | 0.074 | 0.032 | 0.934 |
Free time | 0.016 | 0.152 | 0.089 | 0.019 | 0.846 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacobo-Cuevas, H.; Gamez-Nava, J.I.; Ramírez-De los Santos, S.; Mercado-Calderón, C.A.; Ríos-González, B.E.; Ponce-Guarneros, J.M.; Brambila-Tapia, A.J.L. Association of Inflammatory and Oxidative Stress Biomarkers Adjusted by Personal, Psychological, Biochemical, Anthropometric, and Physiological Variables with Global DNA Methylation in a Sample of Mexican Individuals. Biomolecules 2025, 15, 1271. https://doi.org/10.3390/biom15091271
Jacobo-Cuevas H, Gamez-Nava JI, Ramírez-De los Santos S, Mercado-Calderón CA, Ríos-González BE, Ponce-Guarneros JM, Brambila-Tapia AJL. Association of Inflammatory and Oxidative Stress Biomarkers Adjusted by Personal, Psychological, Biochemical, Anthropometric, and Physiological Variables with Global DNA Methylation in a Sample of Mexican Individuals. Biomolecules. 2025; 15(9):1271. https://doi.org/10.3390/biom15091271
Chicago/Turabian StyleJacobo-Cuevas, Heriberto, Jorge Ivan Gamez-Nava, Saúl Ramírez-De los Santos, Carlos Alfonso Mercado-Calderón, Blanca Estela Ríos-González, Juan Manuel Ponce-Guarneros, and Aniel Jessica Leticia Brambila-Tapia. 2025. "Association of Inflammatory and Oxidative Stress Biomarkers Adjusted by Personal, Psychological, Biochemical, Anthropometric, and Physiological Variables with Global DNA Methylation in a Sample of Mexican Individuals" Biomolecules 15, no. 9: 1271. https://doi.org/10.3390/biom15091271
APA StyleJacobo-Cuevas, H., Gamez-Nava, J. I., Ramírez-De los Santos, S., Mercado-Calderón, C. A., Ríos-González, B. E., Ponce-Guarneros, J. M., & Brambila-Tapia, A. J. L. (2025). Association of Inflammatory and Oxidative Stress Biomarkers Adjusted by Personal, Psychological, Biochemical, Anthropometric, and Physiological Variables with Global DNA Methylation in a Sample of Mexican Individuals. Biomolecules, 15(9), 1271. https://doi.org/10.3390/biom15091271