Impact of D-Amino Acids in Schizophrenia
Abstract
1. Introduction
2. D-Serine
3. D-Aspartate
4. D-Alanine
5. D-Cysteine
6. Discussion and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
α-12G | Dodecagalloyl |
AKT | AKT serine–threonine protein kinase |
ASD | Autism spectrum disorder |
CSF | Cerebrospinal fluid |
DAAO | D-amino acid oxidase |
DASPO;DDO | D-aspartate oxidase |
DISC1 | Disrupted-in-schizophrenia 1 |
GABA | γ-aminobutyric acid |
GAMs | Generalized additive models |
H2S | Hydrogen sulfide |
HAMD17 | 17-Item Hamilton Depression Rating Scale |
IML | Interpretable machine learning |
5-HT | 5-Hydroxytryptamine, serotonin |
Lasso | Least absolute shrinkage and selection operator |
LTP | Long-term potentiation |
MARCKS | Myristoylated alanine rich protein kinase C |
MCP | Mercaptopyruvate |
MK-801 | Dizocilpine |
NMDA | N-Methyl-D-aspartate |
NMDAR | N-Methyl-D-aspartate glutamate receptor |
NPCs | Neural progenitor cells |
OCF | Overall cognitive function |
PANSS | Positive and Negative Syndrome Scale |
PCP | Phencyclidine |
PFC | Prefrontal cortex |
PPI | Prepulse inhibition |
QLS | Quality of Life Scale |
ROC | Receiver Operating Characteristic |
SANS | Scale for Assessment of Negative Symptoms |
SR | Serine racemase |
SNPs | Single nucleotide polymorphisms |
TRS | Treatment-resistant schizophrenia |
References
- Owen, M.J.; O’Donovan, M.C.; Thapar, A.; Craddock, N. Neurodevelopmental Hypothesis of Schizophrenia. Br. J. Psychiatry 2011, 198, 173–175. [Google Scholar] [CrossRef] [PubMed]
- McGrath, J.; Saha, S.; Chant, D.; Welham, J. Schizophrenia: A Concise Overview of Incidence, Prevalence, and Mortality. Epidemiol. Rev. 2008, 30, 67–76. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; Text Revision; American Psychiatric Association: Washington, DC, USA, 2022. [Google Scholar]
- Correll, C.U.; Schooler, N.R. Negative Symptoms in Schizophrenia: A Review and Clinical Guide for Recognition, Assessment, and Treatment. Neuropsychiatry Dis. Treat. 2020, 16, 519–534. [Google Scholar] [CrossRef] [PubMed]
- Tandon, R.; Nasrallah, H.; Akbarian, S.; Carpenter, W.T., Jr.; DeLisi, L.E.; Gaebel, W.; Green, M.F.; Gur, R.E.; Heckers, S.; Kane, J.M.; et al. The Schizophrenia Syndrome, circa 2024: What We Know and How That Informs Its Nature. Schizophr. Res. 2024, 264, 1–28. [Google Scholar] [CrossRef]
- Fišar, Z. Biological Hypotheses, Risk Factors, and Biomarkers of Schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2023, 120, 110626. [Google Scholar] [CrossRef]
- Murray, R.M.; Lewis, S.W. Is Schizophrenia a Neurodevelopmental Disorder? Br. Med. J. 1987, 295, 681–682. [Google Scholar] [CrossRef]
- McGrath, J.J.; Feron, F.P.; Burne, T.H.; Mackay-Sim, A.; Eyles, D.W. The Neurodevelopmental Hypothesis of Schizophrenia: A Review of Recent Developments. Ann. Med. 2003, 35, 86–93. [Google Scholar] [CrossRef]
- Ariciloglu, F.; Ozkartal, C.S.; Unal, G.; Dursun, S.; Cetin, M.; Muller, N. Neuroinflammation in Schizophrenia: A Critical Review and the Future. Bull. Clin. Psychopharmacol. 2017, 26, 429–437. [Google Scholar] [CrossRef]
- Stanca, S.; Rossetti, M.; Bokulic Panichi, L.; Bongioanni, P. The Cellular Dysfunction of the Brain–Blood Barrier from Endothelial Cells to Astrocytes: The Pathway Towards Neurotransmitter Impairment in Schizophrenia. Int. J. Mol. Sci. 2024, 25, 1250. [Google Scholar] [CrossRef]
- Smigielski, L.; Jagannath, V.; Rössler, W.; Walitza, S.; Grünblatt, E. Epigenetic Mechanisms in Schizophrenia and Other Psychotic Disorders: A Systematic Review of Empirical Human Findings. Mol. Psychiatry 2020, 25, 1718–1748. [Google Scholar] [CrossRef]
- Li, M.; Xian, L.; Chen, X. Histone Acetylation and Methylation Underlie Oligodendroglial and Myelin Susceptibility in Schizophrenia. Front. Cell. Neurosci. 2022, 16, 823708. [Google Scholar] [CrossRef]
- Zhu, B.; Ainsworth, R.I.; Wang, Z.; Liu, Z.; Sierra, S.; Deng, C.; Callado, L.F.; Meana, J.J.; Wang, W.; Lu, C.; et al. Antipsychotic-Induced Epigenomic Reorganization in Frontal Cortex of Individuals with Schizophrenia. eLife 2023, 12, RP92393. [Google Scholar] [CrossRef]
- Insel, T.R. Rethinking Schizophrenia. Nature 2010, 468, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Dietz, A.G.; Goldman, S.A.; Nedergaard, M. Glial Cells in Schizophrenia: A Unified Hypothesis. Lancet Psychiatry 2020, 7, 272–281. [Google Scholar] [CrossRef] [PubMed]
- van Rossum, J.M. The Significance of Dopamine-Receptor Blockade for the Mechanism of Action of Neuroleptic Drugs. Arch. Int. Pharmacodyn. Ther. 1966, 160, 492–494. [Google Scholar] [PubMed]
- Seeman, P. Dopamine Receptors and the Dopamine Hypothesis of Schizophrenia. Synapse 1987, 1, 133–152. [Google Scholar] [CrossRef]
- Carlsson, M.L.; Carlsson, A.; Nilsson, M. Schizophrenia: From Dopamine to Glutamate and Back. Curr. Med. Chem. 2004, 11, 267–277. [Google Scholar] [CrossRef]
- Davis, K.L.; Kahn, R.S.; Ko, G.; Davidson, M. Dopamine in Schizophrenia: A Review and Reconceptualization. Am. J. Psychiatry 1991, 148, 1474–1486. [Google Scholar] [CrossRef]
- Howes, O.D.; Kapur, S. The Dopamine Hypothesis of Schizophrenia: Version III—The Final Common Pathway. Schizophr. Bull. 2009, 35, 549–562. [Google Scholar] [CrossRef]
- Maia, T.V.; Frank, M.J. An Integrative Perspective on the Role of Dopamine in Schizophrenia. Biol. Psychiatry 2017, 81, 52–66. [Google Scholar] [CrossRef]
- McCutcheon, R.A.; Beck, K.; Jauhar, S.; Howes, D.O. Defining the Locus of Dopamine Dysfunction in Schizophrenia: A Meta-Analysis and Test of the Mesolimbic Hypothesis. Schizophr. Res. 2018, 44, 1301–1311. [Google Scholar]
- Cumming, P.; Abi-Dargham, A.; Grunder, G. Molecular Imaging of Schizophrenia: Neurochemical Findings in a Heterogenous and Evolving Disorder. Behav. Brain Res. 2021, 398, 113004. [Google Scholar] [CrossRef]
- Downar, J.; Kapur, S. Biological Theories. In Clinical Handbook of Schizophrenia; Mueser, K.T., Jester, D.V., Eds.; The Guilford Press: New York, NY, USA, 2008; pp. 25–34. [Google Scholar]
- Stahl, S.M. Beyond the Dopamine Hypothesis of Schizophrenia to Three Neural Networks of Psychosis: Dopamine, Serotonin, and Glutamate. CNS Spectr. 2018, 23, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, B.; Javitt, D. From Revolution to Evolution: The Glutamate Hypothesis of Schizophrenia and Its Implication for Treatment. Neuropsychopharmacology 2012, 37, 4–15. [Google Scholar] [CrossRef]
- Correll, C.U.; Tusconi, M.; Carta, M.G.; Dursun, S.M. What Remains to be Discovered in Schizophrenia Therapeutics: Contributions by Advancing the Molecular Mechanisms of Drugs for Psychosis and Schizophrenia. Biomolecules 2024, 14, 906. [Google Scholar] [CrossRef] [PubMed]
- Kantrowitz, J.T. Targeting Serotonin 5-HT2A Receptors to Better Treat Schizophrenia: Rationale and Current Approaches. CNS Drugs 2020, 34, 947–959. [Google Scholar] [CrossRef] [PubMed]
- Eggers, A.E. A Serotonin Hypothesis of Schizophrenia. Med. Hypotheses 2013, 80, 791–794. [Google Scholar] [CrossRef]
- Nakahara, T.; Tsugawa, S.; Noda, Y.; Ueno, F.; Honda, S.; Kinjo, M.; Segawa, H.; Hondo, N.; Mori, Y.; Watanabe, H.; et al. Glutamatergic and GABAergic Metabolite Levels in Schizophrenia-Spectrum Disorders: A Meta-Analysis of 1H-Magentic Resonance Spectroscopy Studies. Mol. Psychiatry 2022, 27, 744–757. [Google Scholar] [CrossRef]
- Kantrowitz, J.T.; Correll, C.U.; Jain, R.; Cutler, A.J. New Developments in the Treatment of Schizophrenia: An Expert Roundtable. Int. J. Neuropsychopharmacol. 2023, 26, 322–330. [Google Scholar] [CrossRef]
- Labrie, V.; Wong, A.H.; Roder, J.C. Contributions of the D-Serine Pathway to Schizophrenia. Neuropharmacology 2012, 62, 1484–1503. [Google Scholar] [CrossRef]
- Rawani, N.S.; Chan, A.W.; Dursun, S.M.; Baker, G.B. The Underlying Neurobiological Mechanisms of Psychosis: Focus on Neurotransmission Dysregulation, Neuroinflammation, Oxidative Stress and Mitochondrial Dysfunction. Antioxidants 2024, 13, 709. [Google Scholar] [CrossRef]
- Rutigliano, G.; Chaumette, B.; Seeman, M.V. Psychoneuroendocrinology of Psychosis Disorders. Front. Psychiatry 2020, 11, 607590. [Google Scholar] [CrossRef] [PubMed]
- Mikulska, J.; Juszczyk, G.; Gawronska-Grzywacz, M.; Herbet, M. HPA Axis in the Pathomechanism of Depression and Schizophrenia: New Therapeutic Strategies Based on Its Participation. Brain Sci. 2021, 11, 1298. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.J.; Rogers, J.C.; Katshu, M.; Liddle, P.F.; Upthegrove, R. Oxidative Stress and the Pathophysiology and Symptom Profile of Schizophrenia Spectrum Disorders. Front. Psychiatry 2021, 12, 703452. [Google Scholar] [CrossRef]
- Roberts, R.C. Mitochondrial Dysfunction in Schizophrenia: With a Focus on Postmortem Studies. Mitochondrion 2021, 56, 91–101. [Google Scholar] [CrossRef]
- Kelly, J.R.; Minuto, C.; Cryan, J.F.; Clarke, G.; Dinan, T.G. The Role of the Gut Microbiome in the Development of Schizophrenia. Schizophr. Res. 2021, 234, 4–23. [Google Scholar] [CrossRef] [PubMed]
- Murray, N.; Ghomi, R.H.; Nemani, K.; O’Connor, K. The Influence of Gut Microbiota in Psychosis. In The Gut-Brain Axis, 2nd ed.; Hyland, N., Stanton, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 161–169. [Google Scholar]
- Ju, S.; Shin, Y.; Han, S.; Kwon, J.; Choi, T.G.; Kang, I.; Kim, S.S. The Gut-Brain Axis in Schizophrenia: The Implications of the Gut Microbiome and SCFA Production. Nutrients 2023, 15, 4391. [Google Scholar] [CrossRef]
- Wei, N.; Ju, M.; Su, X.; Zhang, Y.; Huang, Y.; Rao, X.; Cui, L.; Lin, Z.; Dong, Y. Transplantation of Gut Microbiota From Patients with Schizophrenia Induces Schizophrenia-Like Behaviors and Dysregulated Brain Transcript Response in Mice. Schizophrenia 2024, 10, 44. [Google Scholar] [CrossRef]
- Kamath, S.; Sokolenko, E.; Collins, K.; Chan, N.S.L.; Mills, N.; Clark, S.R.; Marques, F.Z.; Joyce, P. IUPHAR Themed Review: The Gut Microbiome in Schizophrenia. Pharmacol. Res. 2025, 211, 107561. [Google Scholar] [CrossRef]
- Pollak, T.A.; Drndarski, S.; Stone, J.M.; David, A.S.; McGuire, P.; Abbott, N.J. The Blood-Brain Barrier in Psychosis. Lancet Psychiatry 2018, 5, 79–92. [Google Scholar] [CrossRef]
- Laricchiuta, D.; Papi, M.; Decandia, D.; Panuccio, A.; Cutuli, D.; Peciccia, M.; Mazzeschi, C.; Petrosini, I. The Role of Glial Cells in Mental Illness: A Systematic Review on Astroglia and Microglia as Potential Players in Schizophrenia and its Cognitive and Emotional Aspects. Front. Cell. Neurosci. 2024, 18, 1358450. [Google Scholar] [CrossRef] [PubMed]
- Rawani, N.S.; Chan, A.W.; Todd, K.G.; Baker, G.B.; Dursun, S.M. The Role of Neuroglia in the Development and Progression of Schizophrenia. Biomolecules 2025, 15, 10. [Google Scholar] [CrossRef]
- Seckler, J.M.; Lewis, S.J. Advances in D-Amino Acids in Neurological Research. Int. J. Mol. Sci 2020, 21, 7325. [Google Scholar] [CrossRef]
- Sasabe, J.; Suzuki, M. Distinctive Roles of D-Amino Acids in the Homochiral World: Chirality of Amino Acids Modulates Mammalian Physiology and Pathology. Keio J. Med. 2019, 68, 1–16. [Google Scholar] [CrossRef]
- Donoso, M.V.; Catalan-Salas, V.; Pulgar-Sepulveda, R.; Eugenin, J.; Huidobro-Toro, J.P. Physiology, Pathophysiology and Clinical Relevance of D-Amino Acids Dynamics: From Neurochemistry to Pharmacotherapy. Chem. Rec. 2024, 24, e202400013. [Google Scholar] [CrossRef]
- Javitt, D.C.; Zukin, S.R.; Heresco-Levy, U.; Umbricht, D. Has an Angel Shown the Way? Etiological and Therapeutic Implications of the PCP/NMDA Model of Schizophrenia. Schizophr. Bull. 2012, 38, 958–966. [Google Scholar] [CrossRef]
- Coyle, J.T. Glutamate and Schizophrenia: Beyond the Dopamine Hypothesis. Cell. Mol. Neurobiol. 2006, 26, 365–384. [Google Scholar] [CrossRef]
- Javitt, D.C.; Kantrowitz, J.T. The Glutamate/N-Methyl-D-Aspartate Receptor (NMDAR) Model of Schizophrenia at 35: On the Path from Syndrome to Disease. Schizophr. Res. 2022, 242, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Semenza, E.R.; Harraz, M.M.; Abramson, E.; Malla, A.P.; Vasavda, C.; Gadalla, M.M.; Kornberg, M.D.; Snyder, S.H.; Roychaudhuri, R. D-Cysteine is an Endogenous Regulator of Neural Progenitor Cell Dynamics in the Mammalian Brain. Proc. Natl. Acad. Sci. USA 2021, 118, e21106101118. [Google Scholar] [CrossRef]
- Roychaudhuri, R.; Snyder, S.H. Mammalian D-Cysteine: A Novel Regulator of Neural Progenitor Cell Proliferation. BioEssays 2022, 44, e2200002. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, A.; Nishikawa, T.; Hayashi, T.; Fujii, N.; Harada, K.; Oka, T.; Takahashi, K. The Presence of Free D-Serine in Rat Brain. FEBS Lett. 1992, 296, 33–36. [Google Scholar] [CrossRef]
- Hashimoto, A.; Nishikawa, T.; Konno, R.; Niwa, A.; Yasamura, Y.; Oka, T.; Takahashi, K. Free D-Serine, D-Aspartate, and D-Alanine in Central Nervous System and Serum in Mutant Mice Lacking D-Amino Acid Oxidase. Neurosci. Lett. 1993, 152, 33–36. [Google Scholar] [CrossRef]
- Hashimoto, A.; Oka, T. Free D-Aspartate and D-Serine in the Mammalian Brain and Periphery. Progr. Neurobiol. 1997, 52, 325–353. [Google Scholar] [CrossRef]
- Schell, M.J.; Brady, R.O., Jr.; Molliver, M.E.; Snyder, S.H. D-Serine as a Neuromodulator: Regional and Developmental Localizations in Rat Brain Glia Resemble NMDA Receptors. J. Neurosci. 1997, 17, 1604–1615. [Google Scholar] [CrossRef]
- Kleckner, N.W.; Dingledine, R. Requirement for Glycine in Activation of NMDA-Receptors Expressed in Xenopus oocytes. Science 1988, 241, 835–837. [Google Scholar] [CrossRef] [PubMed]
- Wolosker, H. NMDA Receptor Regulation by D-Serine: New Findings and Perspectives. Mol. Neurobiol. 2007, 36, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Popouin, T.; Ladepeche, L.; Ruel, J.; Sacchi, S.; Labasque, M.; Hanini, M.; Groc, L.; Pollegioni, L.; Mothet, J.-P.; Oliet, S.H.R. Synaptic and Extrasynaptic NMDA Receptors are Gated by Different Endogenous Coagonists. Cell 2012, 150, 633–646. [Google Scholar] [CrossRef] [PubMed]
- LeBail, M.; Martineau, M.; Sacchi, S.; Yatsenko, N.; Radzishevsky, I.; Conrod, S.; Ait Ouares, K.; Wolosker, H.; Pollegioini, L.; Billard, J.-M.; et al. Identity of the NMDA Receptor Coagonist is Synapse Specific and Developmentally Regulated in the Hippocampus. Proc. Natl. Acad. Sci. USA 2015, 112, E204–E213. [Google Scholar]
- Billard, J.-M. D-Amino Acids in Brain Neurotransmission and Synaptic Plasticity. Amino Acids 2012, 43, 1851–1860. [Google Scholar] [CrossRef]
- Balu, D.T.; Basu, A.C.; Corradi, J.P.; Cacace, A.M.; Coyle, J.T. The NMDA Receptor Co-agonists, D-Serine and Glycine, Regulate Neuronal Dendritic Architecture in the Somatosensory Cortex. Neurobiol. Dis. 2012, 45, 671–682. [Google Scholar] [CrossRef]
- Durrant, A.R.; Heresco-Levy, U. D-Serine in Neuropsychiatric Disorders: New Advances. Adv. Psychiatry 2014, 2014, 859735. [Google Scholar] [CrossRef]
- Balu, D.T.; Coyle, J.T. The NMDA Receptor ‘Glycine Modulatory Site’ in Schizophrenia: D-Serine, Glycine, and Beyond. Curr. Opin. Pharmacol. 2015, 20, 109–115. [Google Scholar] [CrossRef]
- Balu, D.T.; Coyle, J.T. Neuronal D-Serine Regulates Dendritic Architecture in the Somatorsensory Cortex. Neurosci. Lett. 2012, 517, 77–81. [Google Scholar] [CrossRef]
- Kantrowitz, J.T.; Epstein, M.I.; Beggle, O.; Rohrig, S.; Lehrfeld, J.M.; Revheim, M.; Lehrfeld, N.P.; Reep, J.; Parker, E.; Silipo, G.; et al. Neurophysiological Mechanisms of Cortical Plasticity Impairments in Schizophrenia and Modulation by the NMDA Receptor Agonist D-Serine. Brain 2016, 139, 3281–3295. [Google Scholar] [CrossRef]
- Wolosker, H. The Neurobiology of D-Serine Signaling. Adv. Pharmacol. 2018, 82, 325–348. [Google Scholar]
- Coyle, J.T.; Balu, D.T. The Role of Serine Racemase in the Pathophysiology of Brain Disorders. Adv. Pharmacol. 2018, 82, 35–56. [Google Scholar]
- Verrall, L.; Walker, M.; Rawlings, N.; Benzel, I.; Kew, J.N.; Harrison, P.J.; Burnet, P.W.J. D-Amino Acid Oxidase and Serine Racemase in Human Brain: Normal Distribution and Altered Expression in Schizophrenia. Eur. J. Neurosci. 2007, 26, 1657–1669. [Google Scholar] [CrossRef]
- Caldinelli, L.; Molla, G.; Bracci, L.; Lelli, B.; Pileri, S.; Cappeletti, P.; Sacchi, S.; Pollegioni, L. Effect of Ligand Binding on Human D-Amino Acid Oxidase: Implications for the Development of New Drugs for Schizophrenia Treatment. Protein Sci. 2010, 19, 1500–1512. [Google Scholar] [CrossRef]
- Labrie, V.; Duffy, S.; Wang, W.; Barger, S.W.; Baker, G.B.; Roder, J.C. Genetic Inactivation of D-Amino Acid Oxidase Enhances Extinction and Reversal Learning in Mice. Learn. Mem. 2009, 16, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Sershen, H.; Hashim, A.; Dunlop, D.S.; Sucknow, R.F.; Cooper, T.B.; Javitt, D.C. Modulating NMDA Receptor Function with D-Amino Acid Oxidase Inhibitors: Understanding Functional Activity in PCP-Treated Mouse Model. Neurochem. Res. 2016, 41, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Foltyn, V.N.; Bendikov, I.; de Miranda, J.; Panizutti, R.; Dumin, E.; Shleper, M.; Li, P.; Toney, M.D.; Kartvelishvily, E.; Wolosker, H. Serine Racemase Modulates Intracellular D-Serine Levels Through alpha, beta-Elimination Activity. J. Biol. Chem. 2005, 280, 1754–1763. [Google Scholar] [CrossRef]
- Osaki, A.; Aoyama, M.; Mita, M.; Hamase, K.; Yasui, M. Endogenous D-Serine Exists in the Mammalian Brain Independent of Synthesis by Serine Racemase. Biochem. Biophys. Res. Commun. 2023, 641, 186–191. [Google Scholar] [CrossRef]
- Moreno, S.; Nardacci, R.; Cimini, A.M.; Ceru, M.P. Immunohistochemical Localization of D-Amino Acid Oxidase in Rat Brain. J. Neurocytol. 1999, 28, 169–185. [Google Scholar] [CrossRef] [PubMed]
- Verrall, L.; Burnet, P.W.J.; Betts, J.F.; Harrison, P.J. The Neurobiology of D-Amino Acid Oxidase (DAO) and its Involvement in Schizophrenia. Mol. Psychiatry 2010, 15, 122. [Google Scholar] [CrossRef]
- Sacchi, S.; Rosini, E.; Pollegioni, L.; Molla, G. D-Amino Acid Oxidase Inhibitors as a Novel Class of Drugs for Schizophrenia Therapy. Curr. Pharmaceut. Des. 2013, 19, 2499–2511. [Google Scholar] [CrossRef]
- Sacchi, S.; Cappelletti, P.; Murtas, G. Biochemical Properties of Human D-Amino Acid Oxidase Variants and Their Potential Significance in Pathologies. Front. Mol. Biosci. 2018, 5, 55. [Google Scholar] [CrossRef]
- Hashimoto, K.; Fukushima, T.; Shimizu, E.; Komatsu, N.; Watanabe, H.; Shinoda, N.; Nakazato, M.; Kumakiri, C.; Okada, S.-I.; Hisanori, H.; et al. Decreased Serum Levels of D-Serine in Patients with Schizophrenia: Evidence in Support of the N-Methyl-D-Aspartate Receptor Hypofunction Hypothesis of Schizophrenia. Arch. Gen. Psychiatry 2003, 60, 572–576. [Google Scholar] [CrossRef]
- Bendikov, I.; Nadri, C.; Amar, S.; Panizzutti, R.; De Miranda, J.; Wolosker, H.; Agam, G. A CSF and Postmortem Brain Study of D-Serine Metabolic Parameters in Schizophrenia. Schizophr. Res. 2007, 90, 41–51. [Google Scholar] [CrossRef]
- Yamada, K.; Ohnishi, T.; Hashimoto, K.; Ohba, H.; Iwayama-Shigeno, Y.; Toyoshima, M.; Okuno, A.; Takao, H.; Toyota, T.; Minabe, Y.; et al. Identification of Multiple Serine Racemase (SRR) mRNA Isoforms and Genetic Analyses of SRR and DAO in Schizophrenia and D-Serine Levels. Biol. Psychiatry 2005, 57, 1493–1503. [Google Scholar] [CrossRef] [PubMed]
- Calcia, M.A.; Madeira, C.; Alheira, F.V.; Silva, T.V.S.; Tannos, F.M.; Vargos-Lopes, C.; Goldenstein, N.; Brasil, M.A.; Ferreira, S.; Panizzutti, R. Plasma Levels of D-Serine in Brazilian Individuals with Schizophrenia. Schizophr. Res. 2012, 142, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Yamamori, H.; Hashimoto, R.; Fujita, Y.; Numata, S.; Yasuda, Y.; Fujimoto, M.; Ohi, K.; Umeda-Yano, S.; Ito, A.; Ohmari, T.; et al. Changes in Plasma D-Serine, L-Serine and Glycine Levels in Treatment-Resistant Schizophrenia Before and After Clozapine Treatment. Neurosci. Lett. 2014, 582, 93–98. [Google Scholar] [CrossRef]
- Liu, R.; Dang, W.; Du, Y.; Zhou, Q.; Liu, Z.; Jiao, K. Correlation of Functional GRIN2A Gene Promoter Polymorphisms with Schizophrenia and Serum D-Serine Levels. Gene 2015, 568, 25–30. [Google Scholar] [CrossRef]
- Cho, S.E.; Na, K.-S.; Cho, S.-J.; Kang, S.G. Low-D-Serine Levels in Schizophrenia; A Systematic Review and Meta-Analysis. Neurosci. Lett. 2016, 634, 42–51. [Google Scholar] [CrossRef]
- Hons, J.; Zirko, R.; Vasatova, M.; Doubek, P.; Klimova, B.; Masopust, J.; Valis, M.; Kuca, K. Impairment of Executive Functions Associated with Lower D-Serine Serum Levels in Patients with Schizophrenia. Front. Psychiatry 2021, 12, 514579. [Google Scholar] [CrossRef]
- Uysal, E.U.; Tomruk, N.B.; Şen, C.Ç.; Yildizhan, E. D-Serine and D-Amino Acid Oxidase Levels in Patients with Schizophrenia Spectrum Disorders in the First Episode and 6-Month Follow-Up. J. Psychiatric Res. 2024, 175, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Engberg, G.; Shimizu, E.; Nordin, C.; Lindström, L.H.; Iyo, M. Reduced D-Serine to Total Serine Ratio in the Cerebrospinal Fluid of Drug Naïve Schizophrenic Patients. Progr. Neuropsychopharmacol. Biol. Psychiatry 2005, 29, 767–769. [Google Scholar] [CrossRef]
- Fuchs, S.A.; De Barse, M.M.J.; Scheepers, F.E.; Cahn, W.; Dorland, L.; de Sain-van der Velden, M.G.; Klomp, L.W.J.; Berger, R.; Kahn, R.S.; de Koning, T.J. Cerebrospinal D-Serine and Glycine Concentrations are Unaltered and Unaffected by Olanzapine Therapy in Male Schizophrenic Patients. Eur. Neuropsychopharmacol. 2008, 18, 333–338. [Google Scholar] [CrossRef]
- Ohnuma, T.; Sakai, Y.; Maeshima, H.; Hatano, T.; Hanzawa, R.; Abe, S.; Kida, S.; Shibata, N.; Suzuki, T.; Arai, H. Changes in Plasma Glycine, L-Serine, and D-Serine Levels in Patients with Schizophrenia as their Clinical Symptoms Improve: Results from the Juntendo University Schizophrenia Projects (JUSP). Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2008, 32, 1905–1912. [Google Scholar] [CrossRef]
- Ozeki, Y.; Sekine, M.; Fujii, K.; Watanabe, T.; Okayasu, H.; Takano, Y.; Shinozaki, T.; Aoki, A.; Akiyama, K.; Homma, H.; et al. Phosphoserine Phosphatase Activity is Elevated and Correlates Negatively with Plasma D-Serine Concentration in Patients with Schizophrenia. Psychiatry Res. 2016, 237, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, A.; Luykx, J.; van Boxmeer, L.; Bakker, S.C.; Kahn, R.S. NMDA-Receptor Coagonists in Serum, Plasma, and Cerebrospinal Fluid of Schizophrenia Patients: A Meta-Analysis of Case-Control Studies. Neurosci. Biobehav. Rev. 2013, 37, 1587–1596. [Google Scholar] [CrossRef] [PubMed]
- Rampino, A.; Garofalo, M.; Nuzzo, T.; Favia, M.; Saltarellii, S.; Masellis, R.; Asselti, M.G.; Pennacchio, T.C.; Bruzzese, D.; Errico, F.; et al. Variations of Blood D-Serine and D-Aspartate Homeostasis Track Psychosis Stages. Schizophrenia 2024, 10, 115. [Google Scholar] [CrossRef]
- Kantrowitz, J.T.; Woods, S.W.; Petkova, E.; Cornblatt, B.; Corcoran, C.M.; Chen, H.; Silipo, G.; Javitt, D.C. D-Serine for the Treatment of Negative Symptoms in Individuals at Clinical High Risk of Schizophrenia: A Pilot, Double-Blind, Placebo-Controlled, Randomized Parallel Group Mechanistic Proof-of-Concept Trial. Lancet Psychiatry 2015, 2, 403–412. [Google Scholar] [CrossRef]
- Kantrowitz, J.T.; Epstein, M.L.; Lee, M.; Lehrfeld, N.; Nolan, K.A.; Shope, C.; Petkova, E.; Silipo, G.; Javitt, D.C. Improvement in Mismatch Negativity Generation During D-Serine Treatment in Schizophrenia: Correlation with Symptoms. Schizophr. Res. 2018, 191, 70–79. [Google Scholar] [CrossRef]
- Ermilov, M.; Gelfin, E.; Levin, R.; Lichtenberg, P.; Hashimoto, K.; Javitt, D.C.; Heresco-Levy, U. A Pilot Double-Blind Comparison of D-Serine and High Dose Olanzapine in Treatment-Resistant Patients with Schizophrenia. Schizophr. Res. 2013, 150, 604–605. [Google Scholar] [CrossRef] [PubMed]
- Tsai, G.; Yang, P.; Chung, L.C.; Lange, N.; Coyle, J.T. D-Serine Added to Antipsychotics for the Treatment of Schizophrenia. Biol. Psychiatry 1998, 44, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Heresco-Levy, U.; Javitt, D.C.; Ebstein, R.; Vass, A.; Lichtenberg, P.; Bar, G.; Catinari, S.; Ermilov, M. D-Serine Efficacy as Add-On Pharmacotherapy to Risperidone and Olanzapine for Treatment-Refractory Schizophrenia. Biol. Psychiatry 2005, 57, 577–585. [Google Scholar] [CrossRef]
- Choi, K.H.; Til, W.; Kurtz, M.M. Adjunctive Pharmacotherapy for Cognitive Deficits in Schizophrenia: Meta-Analytical Investigation of Efficacy. Br. J. Psychiatry 2013, 203, 172–178. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, V. Meta-Analysis of the Efficacy of Adjunctive NMDA Receptor Modulators in Chronic Schizophrenia. CNS Drugs 2011, 25, 859–885. [Google Scholar] [CrossRef]
- Lane, H.Y.; Chang, Y.C.; Liu, Y.C.; Chiu, C.C.; Tsai, G.E. Sarcosine or D-Serine Add-On Treatment for Acute Exacerbation of Schizophrenia: A Randomized, Double-Blind, Placebo-Controlled Study. Arch. Gen. Psychiatry 2005, 62, 1196–1204. [Google Scholar] [CrossRef] [PubMed]
- Lane, H.Y.; Lin, C.H.; Huang, Y.J.; Liao, C.H.; Chang, Y.C.; Tsai, G.E. A Randomized, Double-Blind, Placebo-Controlled Comparison Study of Sarcosine (N-Methylglycine) and D-Serine Add-on Treatment for Schizophrenia. Int. J. Neuropsychpharmacol. 2010, 13, 451–460. [Google Scholar] [CrossRef]
- Tsai, G.E.; Lin, P.Y. Strategies to Enhance N-Methyl-D-Aspartate Receptor-Mediated Neurotransmission in Schizophrenia: A Critical Review and Meta-Analysis. Curr. Pharm. Des. 2010, 16, 522–537. [Google Scholar] [CrossRef] [PubMed]
- Weiser, M.; Heresco-Levy, U.; Davidson, M.; Javitt, D.C.; Werbeloff, N.; Gershon, A.A.; Abramovich, Y.; Amital, D.; Doron, A.; Konas, S.; et al. A Multi-Center, Add-On Randomized Controlled Trial of Low-Dose D-Serine for Negative and Cognitive Symptoms of Schizophrenia. J. Clin. Psychiatry 2012, 73, e728–e734. [Google Scholar] [CrossRef]
- Iwata, Y.; Nakajima, S.; Suzuki, T.; Keefe, R.S.; Plitman, E.; Chung, J.K.; Caravaggio, F.; Mimura, M.; Graff-Guerrero, A.; Uchida, H. Effects of Glutamate Positive Modulators on Cognitive Deficits in Schizophrenia: A Systematic Review and Meta-Analysis of Double-Blind Randomized Controlled Studies. Mol. Psychiatry 2015, 20, 1151–1160. [Google Scholar] [CrossRef]
- Tsai, G.E.; Yang, P.; Chung, L.-C.; Tsai, I.-C.; Tsai, C.-W.; Coyle, J.T. D-Serine Added to Clozapine for the Treatment of Schizophrenia. Am. J. Psychiatry 1999, 156, 1822–1825. [Google Scholar] [CrossRef]
- de Bartolomeis, A.; Vellucci, L.; Austin, M.C.; De Simone, G.; Barone, A. Rational and Translational Implications of D-Amino Acids for Treatment-Resistant Schizophrenia: From Neurobiology to the Clinics. Biomolecules 2022, 12, 909. [Google Scholar] [CrossRef]
- MacKay, M.-A.B.; Kravtsenyuk, M.; Thomas, R.; Mitchell, N.D.; Dursun, S.M.; Baker, G.B. D-Serine: Potential Therapeutic Agent and/or Biomarker in Schizophrenia and Depression? Front. Psychiatry 2019, 10, 25. [Google Scholar] [CrossRef] [PubMed]
- Inoue, R.; Hashimoto, K.; Harai, T.; Mori, H. NMDA- and β-Amyloid1-42-Induced Neurotoxicity is Attenuated in Serine Racemase Knock-Out Mice. J. Neurosci. 2008, 28, 14486–14491. [Google Scholar] [CrossRef]
- Basu, A.C.; Tsai, G.E.; Ma, C.-L.; Ehmsen, J.T.; Mustafa, A.K.; Han, L.; Jiang, Z.I.; Benneyworth, M.A.; Froimowitz, M.P.; Lange, N.; et al. Targeted Disruption of Serine Racemase Affects Glutamatergic Neurotransmission and Behavior. Mol. Psychiatry 2009, 14, 719–727. [Google Scholar] [CrossRef]
- Horio, M.; Kohno, M.; Fujita, Y.; Ishima, T.; Inoue, R.; Mori, H.; Hashimoto, K. Levels of D-Serine in the Brain and Peripheral Organs of Serine Racemase (Srr) Knock-Out Mice. Neurochem. Int. 2011, 59, 853–859. [Google Scholar] [CrossRef]
- Labrie, V.; Fukumura, R.; Rastogi, A.; Fick, L.J.; Wang, W.; Boutros, P.C.; Kennedy, J.L.; Semeralul, M.O.; Lee, F.H.; Baker, G.B.; et al. Serine Racemase is Associated with Schizophrenia Susceptibility in Humans and in a Mouse Model. Hum. Mol. Genet. 2009, 18, 3227–3243. [Google Scholar] [CrossRef] [PubMed]
- Bardaweel, S.K.; Alzweiri, M.; Ishaqat, A.A. D-Serine in Neurobiology: CNS Neurotransmission and Neuromodulation. Can. J. Neurol. Sci. 2014, 41, 164–176. [Google Scholar] [CrossRef]
- Wolosker, H.; Dumin, E.; Balan, L.; Foltyn, V.N. D-Amino Acids in the Brain: D-Serine in Neurotransmission and Neurodegeneration. FEBS J. 2008, 275, 3514–3526. [Google Scholar] [CrossRef] [PubMed]
- Balu, D.T.; Li, Y.; Puhl, M.D.; Benneyworth, M.A.; Basu, A.C.; Takagi, S.; Bolshakov, V.Y.; Coyle, J.T. Multiple Risk Pathways for Schizophrenia Converge in Serum Racemase Knockout Mice, a Mouse Model of NMDA Receptor Hypofunction. Proc. Natl. Acad. Sci. USA 2013, 110, E2400–E2409. [Google Scholar] [CrossRef]
- Puhl, M.D.; Mintzopoulos, D.; Jensen, J.E.; Gillis, T.E.; Konopaske, G.T.; Kaufman, M.J.; Coyle, J.T. In Vivo Magnetic Resonance Studies Reveal Neuroanatomical and Neurochemical Abnormalities in the Serine Racemase Knockout Mouse Model of Schizophrenia. Neurobiol. Dis. 2015, 73, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, H.; Iyo, M.; Hashimoto, K. Neonatal Disruption of Serine Racemase Causes Schizophrenia-Like Behavioral Abnormalities in Adulthood: Clinical Rescue by D-Serine. PLoS ONE 2013, 8, e62438. [Google Scholar] [CrossRef]
- Lahogue, C.; Boulouard, M.; Menager, F.; Freret, T.; Billard, J.-M.; Bouet, V. A New 2-Hit Model Combining Serine Racemase Deletion and Maternal Separation Displays Behavioral and Cognitive Deficits Associated with Schizophrenia. Behav. Brain Res. 2025, 477, 115301. [Google Scholar] [CrossRef]
- Arizanovska, D.; Emodogo, J.A.; Lally, A.P.; Palavicino-Maggio, C.B.; Liebl, D.J.; Folorunso, O.O. Cross Species Review of the Physiological Role of D-Serine in Translationally Relevant Behaviors. Amino Acids 2023, 55, 1501–1517. [Google Scholar] [CrossRef]
- Yazici, S.; Sasani, H.; Erbas, O. Understanding the Role of DISC1 in Psychiatric Disorders. J. Exp. Basic Med. Sci. 2022, 3, 68–78. [Google Scholar]
- Ma, T.M.; Abazyan, S.; Abazyan, B.; Nomura, J.; Yang, C.; Seshadri, S.; Sawa, A.; Snyder, S.H.; Pletnikov, M.V. Pathogenic Disruption of DISC1-Serine Racemase Binding Elicits Schizophrenia-Like Behavior via D-Serine Depletion. Mol. Psychiatry 2013, 18, 557–567. [Google Scholar] [CrossRef]
- Jacobi, A.A.; Halawani, S.; Lynch, D.R.; Lin, H. Neuronal Serine Racemase Associates with Disrupted-in-Schizophrenia -1 and DISC1 Agglomerates: Implications for Schizophrenia. Neurosci. Lett. 2019, 692, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, H.E.; Jiraskova, J.; Cigler, P.; Sanda, M.; Schraml, J.; Konvalinka, J. Hydroxamic Acids as a Novel Family of Serine Racemase Inhibitors: Mechanistic Analysis Reveals Different Modes of Interaction with the Pyridoxal-5′-Phosphate Cofactor. J. Med. Chem. 2009, 52, 6032–6041. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.A.; Mack, V.; Ebneth, A.; Moraes, I.; Felicetti, B.; Wood, M.; Schonfeld, D.; Mather, O.; Cesura, A.; Barker, J. The Structure of Mammalian Serine Racemase: Evidence for Conformational Changes Upon Inhibitor Binding. J. Biol. Chem. 2010, 285, 12873–12881. [Google Scholar] [CrossRef] [PubMed]
- Rani, K.; Tyagi, M.; Mazumder, M.; Singh, A.; Shanmugam, A.; Dalal, K.; Pillai, M.; Samudrala, G.; Kumar, S.; Srinavasan, A. Accelerated Identification of Serum Racemase Inhibitor from Centella asiatica. Sci. Rep. 2020, 10, 4640. [Google Scholar] [CrossRef]
- Koulouris, C.R.; Gardiner, S.E.; Harris, T.K.; Elvers, K.T.; Mark Roe, S.; Gillespie, J.A.; Ward, S.E.; Grubisha, O.; Nicholls, R.A.; Atack, J.R.; et al. Tyrosine 121 Moves Revealing a Ligandable Pocket that Couples Catalysis to ATP-Binding in Serine Racemase. Commun. Biol. 2022, 5, 346. [Google Scholar] [CrossRef]
- Lu, C.H.; Chang, H.T.; Hsu, L.F.; Lee, M.H.; Cheng, J.; Wu, D.C.; Ling, W.Y. In Silico and In Vitro Screening of Serine Racemase Agonist and In Vivo Efficacy on Alzheimer’s Disease Drosophila melanogaster. Pharmaceuticals 2023, 16, 280. [Google Scholar] [CrossRef]
- Lu, L.P.; Chang, W.-H.; Mao, Y.-W.; Cheng, M.-C.; Zhuang, X.-Y.; Kuo, C.-S.; Lai, Y.-A.; Shih, T.-M.; Chou, T.-Y.; Tsai, G.E. The Development of a Regulator of Human Serine Racemase for N-Methyl-D-Aspartate Function. Biomedicines 2024, 12, 853. [Google Scholar] [CrossRef] [PubMed]
- Maekawa, M.; Watanabe, M.; Yamaguchi, S.; Konno, R.; Hori, Y. Spatial Learning and Long-Term Potentiation of Mutant Mice Lacking D-Amino Acid Oxidase. Neurosci. Res. 2005, 53, 34–38. [Google Scholar] [CrossRef]
- Almond, S.I.; Fradley, R.I.; Armstrong, E.J.; Heavens, R.B.; Rutter, A.R.; Newman, R.J.; Chiu, C.S.; Konno, R.; Hutson, P.H.; Brandon, N.J. Behavioral and Biochemical Characterization of a Mutant Mouse Strain Lacking D-Amino Acid Oxidase Activity and Its Implications for Schizophrenia. Mol. Cell. Neurosci. 2006, 32, 324–334. [Google Scholar] [CrossRef]
- Morikawa, A.; Hamase, K.; Inoue, T.; Konno, R.; Niwa, A.; Zaitzu, K. Determination of Free D-Aspartic Acid, D-Serine and D-Alanine in the Brain of Mutant Mice Lacking D-Amino-Acid Oxidase Activity. J. Chromatogr. B 2001, 757, 119–125. [Google Scholar] [CrossRef]
- Myoshi, Y.; Hamase, K.; Okamura, T.; Konno, R.; Kasai, N.; Tojo, Y.; Zaitsu, K. Simultaneous Two-Dimensional HPLC. Determination of Free D-Serine and D-Alanine in the Brain and Periphery of Mutant Rats lacking D-Amino-Acid Oxidase. J. Chromatogr. B 2011, 879, 3184–3189. [Google Scholar] [CrossRef]
- Yamanaka, M.; Miyoshi, Y.; Ohide, H.; Hamse, K.; Konno, R. D-Amino Acids in the Brain and Rodents Lacking D-Amino Acid Oxidase Activity. Amino Acids 2012, 43, 1811–1821. [Google Scholar] [CrossRef] [PubMed]
- Gonda, Y.; Ishii, C.; Mita, M.; Nishizaki, N.; Ohtomo, Y.; Hamase, K.; Shimizu, T.; Sasabe, J. Astrocytic D-Amino Acid Oxidase Degrades D-Serine in the Hindbrain. FEBS Lett. 2022, 596, 2889–2897. [Google Scholar] [CrossRef]
- Rais, R.; Thomas, A.G.; Wozniak, K.; Wu, Y.; Jaaro-Peled, H.; Sawa, A.; Strick, C.A.; Engle, S.J.; Brandon, N.J.; Rojas, C.; et al. Pharmacokinetics of Oral D-Serine in D-Amino Acid Oxidase Knockout Mice. Drug Metab. Dispos. 2012, 40, 2067–2073. [Google Scholar] [CrossRef]
- Matsuura, A.; Fujita, Y.; Iyo, M.; Hashimoto, K. Effects of Sodium Benzoate on Prepulse Inhibition Deficits and Hyperlocomotion in Mice after Administration of Phencyclidine. Acta Neuropsychiatrica 2015, 27, 159–167. [Google Scholar] [CrossRef]
- Mahmoud, G.S.; Sayed, S.A.; Abdelmawla, S.N.; Amer, M.A. Positive Effects of Systemic Sodium Benzoate and Olanzapine Treatment on Activities of Daily Life, Spatial Learning and Working Memory in Ketamine-Induced Rat Model of Schizophrenia. Int. J. Physiol. Pathophysiol. Pharmacol. 2019, 11, 21–30. [Google Scholar] [PubMed]
- Huang, C.-C.; Wei, I.-H.; Yang, H.-T.; Lane, H.-Y. Determination of D-Serine and D-Alanine Tissue Levels in the Prefrontal Cortex and Hippocampus of Rats After a Single Dose of Sodium Benzoate, a D-Amino Acid Oxidase Inhibitor, with Potential Antipsychotic and Antidepressant Properties. Neurochem. Res. 2023, 48, 2066–2076. [Google Scholar] [CrossRef]
- Walczak-Nowicka, L.C.; Herbet, M. Sodium Benzoaate—Harmfulness and Potential Use in Therapies for Disorders Related to the Nervous System: A Review. Nutrients 2022, 14, 1497. [Google Scholar] [CrossRef] [PubMed]
- Hejazi, L.; Mahboubi-Rabbani, M.; Mahdavi, V.; Alemi, M.; Khanniri, E.; Bayanati, M. A Critical Review on Sodium Benzoate from Health Effects to Analytical Methods. Results Chem. 2024, 11, 101798. [Google Scholar] [CrossRef]
- Faris, P.; Pischedda, D.; Palesi, F.; D’Angelo, E. New Clues for the Role of Cerebellum in Schizophrenia and the Associated Cognitive Impairment. Front. Cell. Neurosci. 2024, 18, 1386583. [Google Scholar] [CrossRef]
- de Oliveira Souza, I.N.; Roychaudhuri, R.; de Belleroche, J.; Mothet, J.-P. D-Amino Acids: New Clinical Pathways for Brain Diseases. Trends Mol. Med. 2023, 29, 1014–1028. [Google Scholar] [CrossRef]
- Chunakov, I.; Blumenfeld, M.; Guerassimenko, O.; Cavarec, L.; Palicio, M.; Abderrahim, H.; Bougueleret, L.; Barry, C.; Tanaka, H.; LaRosa, P.; et al. Genetic and Physiological Data Implicating the New Human Gene G72 and the Gene for D-Amino Acid Oxidase in Schizophrenia. Proc. Natl. Acad. Sci. USA 2002, 99, 13675–13680. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; He, G.; Gu, N.; Yang, J.; Tang, J.; Chen, Q.; Liu, X.; Shen, Y.; Qian, X.; Lin, W.; et al. Association of G72/G30 with Schizophrenia in the Chinese Population. Biochem. Biophys. Res. Commun. 2004, 319, 1281–1286. [Google Scholar] [CrossRef]
- Schumacher, J.; Jamra, R.A.; Freudenberg, J.; Becker, T.; Ohlraun, S.; Otte, A.C.J.; Tullius, M.; Kovalenko, S.; Bogaert, A.V.D.; Maier, W.; et al. Examination of G72 and D-Amino Acid Oxidase as Genetic Risk Factors for Schizophrenia and Bipolar Affective Disorder. Mol. Psychiatry 2004, 9, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Addington, A.M.; Gornick, M.; Sporn, A.L.; Gogtay, N.; Greenstein, D.; Lenane, M.; Gochman, P.; Baker, N.; Balkisson, R.; Vakkalanka, R.K.; et al. Polymorphisms in the 13q33.2 Gene G72/G30 are Associated with Childhood-Onset Schizophrenia and Psychosis not Otherwise Specified. Biol. Psychiatry 2004, 55, 976–980. [Google Scholar] [CrossRef] [PubMed]
- Korostishevsky, M.; Kaganovich, M.; Cholostoy, A.; Ashkenazi, M.; Ratner, Y.; Dahary, D.; Bernstein, J.; Bening-Abu-Shach, U.; Lancet, D.; Ritsner, M.; et al. Is the G72/G30 Locus Associated with Schizophrenia? Single Nucleotide Polymorphisms, Haplotypes, and Gene Expression Analysis. Biol. Psychiatry 2004, 56, 169–176. [Google Scholar] [CrossRef]
- Lin, C.H.; Chang, H.T.; Chen, Y.J.; Lin, C.H.; Huang, C.H.; Tun, R.; Tsai, G.E.; Lane, H.Y. Distinctively Higher Plasma G72 Protein Levels in Patients with Schizophrenia Than in Healthy Individuals. Mol. Psychiatry 2014, 19, 636–637. [Google Scholar] [CrossRef]
- Cheng, Y.-J.; Lin, C.-H.; Lane, H.-Y. D-Amino Acids and pLG72 in Alzheimer’s Disease and Schizophrenia. Int. J. Mol. Sci. 2021, 22, 10917. [Google Scholar] [CrossRef]
- Sacchi, S.; Binelli, G.; Pollegioni, L. G72 Primate-Specific Gene: A Still Enigmatic Element in Psychiatric Disorders. Cell. Mol. Life Sci. 2016, 73, 2029–2039. [Google Scholar] [CrossRef]
- Benzel, I.; Kew, J.N.C.; Viknaraja, R.; Kelly, F.; de Belleroche, J.; Hirsch, S.; Sanderson, T.H.; Maycox, P.R. Investigation of G72 (DAOA) Expression in the Human Brain. BMC Psychiatry 2008, 8, 94. [Google Scholar] [CrossRef]
- Boks, M.P.M.; Rietkerk, T.; van de Beek, M.H.; Sommer, I.E.; de Koning, T.J.; Kahn, R.S. Reviewing the Role of the Genes G72 and DAAO in Glutamate Neurotransmission in Schizophrenia. Eur. Neuropsychopharmacol. 2007, 17, 567–572. [Google Scholar] [CrossRef]
- Akoyl, E.S.; Albayrak, Y.; Aksoy, N.; Sahin, B.; Bayazuyz, M.; Kuloglu, M.; Hashimoto, K. Increased G72 Protein Levels in Patients with Schizophrenia: A Potential Candidate Biomarker. Acta Neuropsychiatry 2004, 29, 80–86. [Google Scholar] [CrossRef]
- Yilmaz, M.; Kaya, H.; Asut, G.; Ciftci, H.; Bayram, S.; Firat Oguz, E.; Turhan, T.; Goka, E. Plasma G72 Protein in Schizophrenia: A Comparative Analysis of Drug-Naive Schizophrenia Patients, Patients in Acute Exacerbation and Healthy Controls. J. Psychiatric Res. 2024, 176, 8–14. [Google Scholar] [CrossRef]
- Ishiwata, S.; Hattori, K.; Sasayama, D.; Teraishi, T.; Miyakawa, T.; Yokota, Y.; Matsumura, R.; Yoshida, F.; Nishikawa, T.; Kunugi, H. Plasma and Cerebrospinal Fluid G72 Protein Levels in Schizophrenia and Major Depressive Disorder. Psychiatry Res. 2017, 254, 244–250. [Google Scholar] [CrossRef]
- Lin, E.; Lin, C.-H.; Lai, Y.-L.; Huang, C.-H.; Huang, Y.-J.; Lane, H.-Y. Combination of G72 Genetic Variation and G72 Protein Level to Detect Schizophrenia: Machine Leaning Approaches. Front. Psychiatry 2018, 9, 566. [Google Scholar] [CrossRef]
- Lin, E.; Lin, C.-H.; Hung, C.-C.; Lane, H.-Y. An Ensemble Approach to Predict Schizophrenia Using Protein Data in the N-Methyl-D-Aspartate Receptor (NMDAR) and Tryptophan Catabolic Pathways. Front. Bioengin. Biotechnol. 2020, 8, 569. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Lin, E.; Lane, H.-Y. Interpretable Machine Learning to Evaluate Relationships Between DAO/DAOA (pLG72) Protein Data and Features in Clinical Assessments, Functional Outcome, and Cognitive Function in Schizophrenia Patients. Schizophrenia 2025, 11, 27. [Google Scholar] [CrossRef] [PubMed]
- Burnet, P.W.J.; Eastwood, S.L.; Bristow, G.C.; Godlewska, B.R.; Sikka, P.; Walker, M.; Harrison, P.J. D-Amino Acid Oxidase (DAO) Activity and Expression are Increased in Schizophrenia. Mol. Psychiatry 2008, 13, 658. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, R.; Lim, K.S.; Cheng, A.; Garrick, T.; Kapoor, V. Preliminary Evidence for a Link Between Schizophrenia and NMDA-Glycine Site Receptor Ligand Metabolic Enzymes, D-Amino Acid Oxidase (DAAO) and Kynurenine Aminotransferase-1 (KAT-1). Brain Res. 2006, 1106, 205–210. [Google Scholar] [CrossRef]
- Habl, G.; Zink, M.; Petroianu, G.; Bauer, M.; Schneider-Axmann, T.; Von Wilmsdorff, M.; Falkai, P.; Henn, F.A.; Schmitt, A. Increased D-Amino Acid Oxidase Expression in the Bilateral Hippocampal CA4 of Schizophrenic Patients: A Post-Mortem Study. J. Neural Transm. 2009, 116, 1657. [Google Scholar] [CrossRef]
- Madeira, C.; Freitas, M.E.; Vargas-Lopes, C.; Wolosker, H.; Panizzutti, R. Increased Brain D-Amino Acid Oxidase (DAAO) Activity in Schizophrenia. Schizophr. Res. 2008, 101, 76–83. [Google Scholar] [CrossRef]
- Ono, K.; Shishido, Y.; Park, H.K.; Kawazoe, T.; Iwana, S.; Chung, S.P.; El-Magd, R.M.A.; Yorita, K.; Okano, M.; Watanabe, T.; et al. Potential Pathophysiological Role of D-Amino Acid Oxidase in Schizophrenia: Immunohistochemical and In Situ Hybridization Study of the Expression in Human and Rat Brain. J. Neural Transm. 2009, 116, 1335–1347. [Google Scholar] [CrossRef]
- Lane, H.Y.; Lin, C.H.; Green, M.F.; Hellemann, G.; Huang, C.C.; Chen, P.W.; Tun, R.; Chang, Y.C.; Tsai, G.E. Add-On Treatment of Benzoate for Schizophrenia: A Randomized, Double-Blind, Placebo-Controlled Trial of D-Amino Acid Oxidase Inhibitor. JAMA Psychiatry 2013, 70, 1267–1275. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Lin, C.H.; Chang, Y.C.; Huang, Y.J.; Chen, P.W.; Yang, H.T.; Lane, H.Y. Sodium Benzoate, a D-Amino Acid Oxidase Inhibitor, Added to Clozapine for the Treatment of Schizophrenia: A Randomized, Double-Blind, Placebo-Controlled Trial. Biol. Psychiatry 2018, 84, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-Y.; Liang, S.-Y.; Chang, Y.-C.; Ting, S.-Y.; Kao, C.-L.; Wu, Y.-H.; Tsai, G.E.; Lane, H.-Y. Adjunctive Sarcosine plus Benzoate Improved Cognitive Function in Chronic Schizophrenia Patients with Constant Clinical Symptoms: A Randomized, Double-Blind, Placebo-Controlled Trial. World J. Biol. Psychiatry 2017, 18, 357–368. [Google Scholar] [CrossRef]
- Scott, J.G.; Baker, A.; Lim, C.C.W.; Foley, S.; Dark, F.; Gordon, A.; Ward, D.; Richardson, D.; Bruxner, G.; Beckmann, K.M.; et al. Effect of Sodium Benzoate vs. Placebo Among Individuals with Early Psychosis: A Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e2024335. [Google Scholar] [CrossRef]
- Seetharam, J.C.; Maiti, R.; Mishra, A.; Mishra, B.R. Efficacy and Safety of Add-on Sodium Benzoate, a D-Amino Acid Oxidase Inhibitor, in Treatment of Schizophrenia: A Systematic Review and Meta-Analysis. Asian J. Psychiatry 2022, 68, 102947. [Google Scholar] [CrossRef]
- Liang, C.-W.; Cheng, H.-Y.; Meg Tseng, M.-C. Effects of Sodium Benzoate on Cognitive Function in Neuropsychiatirc Disorders: A Systematic Review and Meta-Analysis. Front. Psychiatry 2024, 15, 1370431. [Google Scholar] [CrossRef] [PubMed]
- Victor, R.; Avinash, P.; Singhania, R. Effect of Sodium Benzoate as an Add-on Therapy on the Clinical and Cognitive Symptoms of Schizophrenia: A Case Series. J. Clin. Diagnostic. Res. 2024, 18, VR01–VR03. [Google Scholar] [CrossRef]
- SyneuRx Press Release. Ω-NaBen, a Novel Crystalline Form of Sodium Benzoate. Los Angeles, CA, USA, 18 March 2025. Available online: https://www.syneurx.com (accessed on 15 May 2025).
- Howley, E.; Bestwick, M.; Fradley, R.; Harrison, H.; Leveridge, M.; Okada, K.; Fieldhouse, C.; Farnaby, W.; Canning, H.; Sykes, A.P.; et al. Assessment of the Target Engagement and D-Serine Biomarker Profiles of the D-Amino Acid Inhibitors Sodium Benzoate and PGM030756. Neurochem. Res. 2017, 42, 3279–3288. [Google Scholar] [CrossRef]
- Terry-Lorenzo, R.T.; Fan, R.H.; Khin, N.A.; Singh, J.B. Therapeutic Potential of D-Amino Oxidase Inhibitors for Cognitive Impairment Associated with Schizophrenia: Learnings from Luvadaxistat. Int. J. Psychopharmacol. 2025, 28, pyae066. [Google Scholar] [CrossRef]
- Szilagyi, B.; Ferenczy, G.G.; Keseru, G.M. Drug Discovery Strategies and the Preclinical Development of D-Amino Acid Oxidase Inhibitors as Antipsychotic Therapies. Expert Opin. Drug Discov. 2018, 13, 973–982. [Google Scholar] [CrossRef]
- Kuo, C.-Y.; Lin, C.-H.; Lane, H.-Y. Targeting D-Amino Acid Oxidase (DAAO) for the Treatment of Schizophrenia: Rationale and Current Status of Research. CNS Drugs 2022, 36, 1143–1153. [Google Scholar] [CrossRef]
- O’Donnell, P.; Dong, C.; Murthy, V.; Asgharnejad, M.; Du, X.; Summerfelt, A.; Lu, H.; Xu, L.; Wendland, J.R.; Dunayevich, E.; et al. The D-Amino Acid Oxidise Inhibitor Luvadaxistat Improves Mismatch Negativity in Patients with Schizophrenia in a Randomized Trial. Neuropsychopharmacology 2023, 48, 1052–1059. [Google Scholar] [CrossRef]
- Fradley, R.; Goetghebeur, P.; Miller, D.; Burley, R.; Serrats, J. Pre-clinical Assessment of TAK-831, a Selective D-Amino Oxidase Inhibitor, in Animal Models of Schizophrenia. Schizophr. Bull. 2019, 45, S313–S314. [Google Scholar] [CrossRef]
- Serrats, J.; Fradley, R.; Murphy, V.; O’Donnell, P.; Asgharnejad, M. Pre-clinical Evaluation of Hippocampal Long-Term Potentiation after Acute and Sub-chronic Oral Dosing with Luvadaxistat in Mice. Neuropsychopharmacology 2021, 46, 322–323. [Google Scholar]
- Fradley, R.; Goetghebeur, P.; Miller, D.; Burley, R.; Almond, S.; Gruart-Masso, A.; Delgado Garcia, J.M.; Zhu, B.; Howley, E.; Neill, J.C.; et al. Luvadaxistat: A Novel Potent and Selective D-Amino Acid Oxidase Inhibitor Improves Cognitive and Social Deficits in Rodent Models for Schizophrenia. Neurochem. Res. 2023, 48, 3027–3041. [Google Scholar] [CrossRef] [PubMed]
- Murthy, V.; Hanson, E.; DeMartinis, N.; Asgharnejad, M.; Dong, C.; Evans, R.; Ge, T.; Dunayevich, E.; Singh, J.B.; Ratti, E.; et al. INTERACT: A Randomized Phase 2 Study of the DAAO Inhibitor Luvadaxistat in Adults with Schizophrenia. Schizophr. Res. 2024, 270, 249–257. [Google Scholar] [CrossRef] [PubMed]
- PR Newswire Press Release. Neurocrine Biosciences Provides Update on ERUDITETM Phase 2 Data for Luvadaxistat in Adults with Cognitive Impairment Associated with Schizophrenia. Neurocrine Biosciences, Inc. 12, Sept. 2024. Available online: https://www.prnewswire.com (accessed on 15 May 2025).
- Chang, C.-H.; Hsia, Y.-D.; Liu, W.-C.; Lee, J.H.; Lin, C.-H.; Lane, H.-Y. Symptomatic and Cognitive Effects of D-Amino Acid Oxidase Inhibitors in Patients with Schizophrenia: A Meta-Analysis of Double-Blind Randomized Controlled Trials. Schizophrenia 2025, 11, 73. [Google Scholar] [CrossRef]
- Garofalo, M.; De Simone, G.; Motta, Z.; Nuzzo, T.; De Grandis, E.; Bruno, C.; Boeri, S.; Pia Riccio, M.; Pastore, L.; Bravaccio, C.; et al. Decreased Free D-Aspartate Levels in the Blood Serum of Patients with Schizophrenia. Front. Psychiatry 2024, 15, 1408175. [Google Scholar] [CrossRef]
- Horio, M.; Ishima, T.; Fujita, Y.; Inoue, R.; Mori, H.; Hashimoto, K. Decreased Levels of D-Aspartic Acid in the Forebrain of of Serine Racemase (Srr) Knock-Out Mice. Neurochem. Int. 2013, 62, 843–847. [Google Scholar] [CrossRef]
- Errico, F.; Nuzzo, T.; Carella, M.; Bertolino, A.; Usiello, A. The Emerging Role of Altered D-Aspartate Metabolism in Schizophrenia: New Insights from Preclinical Models and Human Studies. Front. Psychiatry 2018, 9, 559. [Google Scholar] [CrossRef]
- Dunlop, D.S.; Neidle, A.; McHale, D.; Dunlop, D.M.; Lajtha, A. The Presence of Free D-Aspartic Acid in Rodents and Man. Biochem. Biophys. Res. Commun. 1986, 141, 27–32. [Google Scholar] [CrossRef]
- Ito, T.; Hayashida, M.; Kobayashi, S.; Muto, N.; Hayashi, A.; Yoshimura, T.; Mori, H. Serine Racemase is Involved in D-Aspartate Biosynthesis. J. Biochem. 2016, 160, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Molla, G.; Chaves-Sanjuan, A.; Savinelli, A.; Nardini, M.; Pollegioni, L. Structure and Kinetic Properties of Human D-Aspartate Oxidase, the Enzyme Controlling D-Aspartate Levels in Brain. FASEB J. 2020, 34, 1182–1197. [Google Scholar] [CrossRef] [PubMed]
- Pollegoni, I.; Molla, G.; Sacchi, S.; Murtas, G. Human D-Aspartate Oxidase: A Key Player in D-Aspartate Metabolism. Front. Mol. Biosci. 2021, 8, 689719. [Google Scholar] [CrossRef]
- Friedman, M. Origin, Microbiology, Nutrition and Pharmacology of D-Amino Acids. Chem. Biodivers. 2010, 7, 1491–1530. [Google Scholar] [CrossRef]
- Genchi, G. An Overview on D-Amino Acids. Amino Acids 2017, 49, 1521–1533. [Google Scholar] [CrossRef]
- Marcocne, G.L.; Rosini, E.; Crespi, E.; Pollegioni, L. D-Amino Acids in Foods. Apppl. Microbiol. Biotechnol. 2020, 104, 555–574. [Google Scholar] [CrossRef] [PubMed]
- Nasyrova, R.F.; Khasanova, A.K.; Altynbekov, K.S.; Asadullin, A.R.; Markina, E.A.; Gayduk, A.J.; Shipulin, G.A.; Petrova, M.M.; Shnayder, N.A. The Role of D-Serine and D-Aspartate in the Pathogenesis and Therapy of Treatment-Resistant Schizophrenia. Nutrients 2022, 14, 5142. [Google Scholar] [CrossRef]
- Taniguchi, K.; Sawamura, H.; Ikeda, Y.; Tsuji, A.; Kitagishi, Y.; Matsuda, S. D-Amino Acids as a Biomarker in Schizophrenia. Diseases 2022, 10, 9. [Google Scholar] [CrossRef]
- Billard, J.-M. D-Serine Signalling as a Prominent Determinant of Neuronal-Glial Dialogue in the Healthy and Diseased Brain. J. Cell. Mol. Biol. 2008, 12, 1872–1884. [Google Scholar] [CrossRef]
- Madeira, C.; Lourenco, M.V.; Vargas-Lopes, C.; Suemoto, C.K.; Brandao, C.O.; Reis, T.; Leite, R.E.P.; Laks, J.; Jacob-Filho, W.; Pasqualucci, C.A.; et al. D-Serine Levels in Alzheimer’s Disease: Implications for Novel Biomarker Development. Transl. Psychiatry 2015, 5, e561. [Google Scholar] [CrossRef]
- Orzylowski, M.; Fujiwara, E.; Mousseau, D.D.; Baker, G.B. An Overview of the Involvement of D-Serine in Cognitive Impairment in Normal Aging and Dementia. Front. Psychiatry 2021, 12, 754032. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-H.; Kuo, H.-L.; Ma, W.-F.; Tsai, H.-C. Cerebrospinal Fluid and Serum D-Serine Levels in Patients with Alzheimer’s Disease: A Systematic Review and Meta-Analysis. J. Clin. Med. 2020, 9, 3840. [Google Scholar] [CrossRef] [PubMed]
- Errico, F.; Rossi, S.; Napolitano, F.; Catuogno, V.; Topo, E.; Fisone, G.; D’Aniello, A.; Centonze, D.; Usiello, A. D-Aspartate Prevents Corticostriatal Long-Term Depression and Attenuates Schizophrenia-Like Symptoms Induced by Amphetamine and MK-801. J. Neurosci. 2008, 28, 10404–10414. [Google Scholar] [CrossRef] [PubMed]
- Errico, F.; Mothet, J.-P.; Usiello, A. D-Aspartate: An Endogenous NMDA Receptor Agonist Enriched in the Developing Brain with Potential Involvement in Schizophrenia. J. Pharmaceut. Biomed. Anal. 2015, 116, 7–17. [Google Scholar] [CrossRef]
- Errico, F.; Cuomo, M.; Canu, N.; Caputo, V.; Usiello, A. New Insights on the Influence of of Free D-Aspartate Metabolism in the Mammalian Brain During Prenatal and Postnatal Life. BBA Prot. Proteom. 2020, 1868, 140471. [Google Scholar] [CrossRef]
- Errico, F.; D’Argenio, V.; Storazzini, F.; Iasevoli, F.; Squillace, M.; Guerri, G.; Napolitano, F.; Angrisano, T.; Di Maio, A.; Keller, S.; et al. A Role for D-Aspartate Oxidase in Schizophrenia and in Schizophrenia-Related Symptoms Induced by Phencyclidine in Mice. Transl. Psychiatry 2015, 5, e512. [Google Scholar] [CrossRef]
- Kitamura, A.; Hojo, Y.; Ikeda, M.; Karakawa, S.; Kuwahara, T.; Kim, J.; Soma, M.; Kawato, S.; Tsurugizawa, T. Ingested D-Aspartate Facilitates the Functional Connectivity and Modifies Dendritic Spine Morphology in Rat Hippocampus. Cereb. Cortex 2019, 29, 2499–2508. [Google Scholar] [CrossRef]
- Sacchi, S.; De Novellis, V.; Paolone, G.; Nuzzo, T.; Iannotta, M.; Balardo, C.; Squillace, M.; Bolognesi, P.; Rosini, E.; Motta, Z.; et al. Olanzapine, but not Clozapine, Increases Glutamate Release in the Prefrontal Cortex of Freely Moving Mice by Inhibiting D-Aspartate Oxidase Activity. Sci. Rep. 2017, 7, 46288. [Google Scholar] [CrossRef]
- De Rosa, A.; Mastrostefano, F.; Di Maio, A.; Nuzzo, T.; Saitoh, Y.; Katane, M.; Isodori, A.M.; Caputo, V.; Marotta, P.; Falco, G.; et al. Prenatal Expression of D-Aspartate Oxidase Causes Early Cerebral D-Aspartate Depletion and Influences Brain Morphology and Cognitive Functions at Adulthood. Amino Acids 2020, 52, 597–617. [Google Scholar] [CrossRef]
- Grimaldi, M.; Marino, C.; Buonocore, M.; Santoro, A.; Sommella, E.; Merciai, F.; Salviati, E.; De Rosa, A.; Nuzzo, T.; Errico, F.; et al. Prenatal and Early Postnatal Cerebral D-Aspartate Depletion Influences L-Amino Acid Pathways, Bioenergetic Processes, and Developmental Brain Metabolism. J. Proteome Res. 2021, 20, 727–739. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, B.; Pagani, M.; De Rosa, A.; Nunziato, M.; Migliarini, S.; Garofalo, M.; Terrile, M.; D’Argenio, V.; Galbusera, A.; Nuzzo, T.; et al. D-Aspartate Oxidase Gene Duplication Induces Social Recognition Memory Deficit in Mice and Intellectual Disabilities in Humans. Transl. Psychiatry 2022, 12, 305. [Google Scholar] [CrossRef] [PubMed]
- Errico, F.; Napolitano, F.; Squillace, M.; Vitucci, D.; Blasi, G.; de Bartolomeis, A.; Bertolino, A.; D’Aniello, A.; Usiello, A. Decreased Levels of D-Aspartate and NMDA in the Prefrontal Cortex and Striatum of Patients with Schizophrenia. J. Psychiatric Res. 2013, 47, 1432–1437. [Google Scholar] [CrossRef]
- Nuzzo, T.; Sacchi, S.; Errico, F.; Keller, S.; Palumbo, O.; Florio, E.; Punzo, D.; Napolitano, F.; Copetti, M.; Carella, M.; et al. Decreased Free D-Aspartate Levels are Linked to Enhanced D-Aspartate Oxidase Activity in the Dorsolateral Prefrontal Cortex of Schizophrenia Patients. NPJ Schizophr. 2017, 3, 16. [Google Scholar] [CrossRef]
- Snell, L.D.; Morter, R.S.; Johnson, K.M. Structural Requirements for Activation of the Glycine Receptor that Modulates the N-Methyl-D-Aspartate Operated Ion Channel. Eur. J. Pharmacol. 1988, 156, 105–110. [Google Scholar] [CrossRef]
- Yoneda, Y.; Ogita, K.; Suzuki, T. Interaction of Strychnine-Insensitive Glycine Binding with MK-801 Binding in Brain Synaptic Membranes. J. Neurochem. 1990, 55, 237–244. [Google Scholar] [CrossRef]
- Lewin, A.H.; Skolnick, P.; Marvizonn, J.C.; Paul, I.A.; Bowen, J.P. Requirements for High Affinity Binding of Glycine Analogs to the Glycine Site of the NMDA Receptor Complex. Eur. J. Pharmacol. (Mol. Pharmacol. Sect.) 1993, 247, 1–10. [Google Scholar] [CrossRef]
- McDonald, J.W.; Penney, J.B.; Johnson, M.V.; Young, A.B. Characterization and Regional Distribution of Strychnine-Insensitive [3H]-Glycine Binding Sites in Rat Brain by Quantitative Receptor Autoradiography. Neuroscience 1993, 35, 653–668. [Google Scholar] [CrossRef]
- McBain, C.J.; Kleckner, N.W.; Wyrick, S.; Dingeldine, R. Structural Requirements for Activation of the Glycine Co-agonist Site of N-Methyl-D-Aspartate Receptors Expressed in Xenopus Oocytes. Mol. Pharmacol. 1989, 36, 556–565. [Google Scholar] [CrossRef]
- Hoeprich, P.D. Alanine: Cycloserine Antagonism VI. Demonstration of D-Alanine in the Serum of Guinea Pigs and Mice. J. Biol. Chem. 1965, 240, 1654–1660. [Google Scholar]
- Lee, C.J.; Qiu, T.A.; Sweedler, J.V. D-Alanine: Distribution, Origin, Physiological Relevance, and Implications in Disease. BBA Prot. Proteom. 2020, 1868, 140482. [Google Scholar] [CrossRef] [PubMed]
- Patzold, R.; Schieber, A.; Bruckner, H. Gas Chromatographic Quantification of Free D-Amino Acids in Higher Vertebrates. Biomed. Chromatogr. 2005, 19, 466–473. [Google Scholar] [CrossRef]
- Morikawa, A.; Hamase, K.; Zaitzu, K. Determination of D-Alanine in the Rat Central Nervous System and Periphery Using Column-Switching High-Performance Liquid Chromatography. Anal. Biochem. 2003, 312, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Ota, N.; Rubakhin, S.S.; Sweedler, J.V. D-Alanine in the Islets of Langerhans of Rat Pancreas. Biochem. Biophys. Res. Commun. 2014, 447, 328–333. [Google Scholar] [CrossRef]
- Karakawa, S.; Miyoshi, Y.; Kono, R.; Koyangi, S.; Mita, M.; Ohdo, S.; Hamase, K. Two-Dimensional High-Performance Liquid Chromatographic Determination of Day-Night Variation of D-Alanine in Mammals and Factors Controlling the Circadian Changes. Anal. Bioanal. Chem. 2013, 405, 8083–8091. [Google Scholar] [CrossRef]
- Morikawa, A.; Hamase, K.; Myoshi, Y.; Koyanagi, S.; Ohdo, S.; Zaitsu, K. Circadian Changes of D-Alanine and Related Compounds in Rats and the Effect of Restricted Feeding on Their Amounts. J. Chromatogr. B 2008, 875, 168–173. [Google Scholar] [CrossRef]
- Morikawa, A.; Fukuoka, H.; Uezono, K.; Mita, M.; Koyanagi, S.; Ohdo, S.; Zaitsu, K.; Hamase, K. Sleep-Awake Profile Related Circadian D-Alanine Rhythm in Human Serum and Urine. Chromatography 2017, 38, 53–58. [Google Scholar] [CrossRef]
- Kimura-Ohba, S.; Asaka, M.N.; Utsumi, D.; Takabatake, Y.; Takahashi, A.; Yasutomi, Y.; Isaka, Y.; Kimura, T. D-Alanine as a Biomarker and a Therapeutic Option for Severe Influenza Virus Infection and COVID-19. Biochim. Biophys. Acta Mol. Basis Dis. 2022, 1869, 166584. [Google Scholar] [CrossRef]
- Hesaka, A.; Sakai, S.; Hamase, K.; Ikeda, T.; Matsui, R.; Mita, M.; Horio, M.; Isaka, Y.; Kimura, T. D-Serine Reflects Kidney Function and Diseases. Sci. Rep. 2019, 9, 5104. [Google Scholar] [CrossRef] [PubMed]
- Umeda, S.; Sujino, T.; Miyamoto, K.; Yoshimatsu, Y.; Harada, Y.; Nishiyama, K.; Aoto, Y.; Adachi, K.; Hayashi, N.; Amafuji, K.; et al. D-Amino Acids Ameliorate Experimental Colitis and Cholangitis by Inhibiting Growth of Proteobacteria: Potential Therapeutic Role in Inflammatory Bowel Disease. Cell. Mol. Gastroenterol. Hepatol. 2023, 16, 1011–1031. [Google Scholar] [CrossRef]
- Iwata, Y.; Nakade, Y.; Kitajima, S.; Yoneda-Nakagawa, S.; Oshima, M.; Sakai, N.; Ogura, H.; Sato, K.; Toyama, T.; Yamamura, Y.; et al. Protective Effect of D-Alanine Against Acute Kidney Injury. Am. J. Physiol. Renal Physiol. 2022, 322, F667–F669. [Google Scholar] [CrossRef]
- Sakai, S.; Tanaka, Y.; Tsukamoto, Y.; Kimura-Ohba, S.; Hesaka, A.; Hamase, K.; Hsieh, C.L.; Kawakami, E.; Ono, H.; Yokote, K.; et al. D-Alanine Affects the Circadian Clock to Regulate Glucose Metabolism in the Kidney. Kidney360 2024, 5, 237–251. [Google Scholar] [CrossRef]
- Nagata, Y.; Konno, R.; Niwa, A. Amino Acid Levels in D-Alanine-Administered Mutant Mice Lacking D-Amino Acid Oxidase. Metabolism 1994, 43, 1153–1157. [Google Scholar] [CrossRef]
- Miyoshi, Y.; Hamase, K.; Tojo, Y.; Mita, M.; Konno, R.; Zaitsu, K. Determination of D-Serine and D-Alanine in the Tisssues and Physiological Fluids of Mice with Various D-Amino-Acid Oxidase Activities Using Two-Dimensional High-Performance Liquid Chromatography with Fluorescence Detection. J. Chromatogr. B 2009, 877, 2506–2512. [Google Scholar] [CrossRef]
- Rojas, C.; Alt, J.; Ator, N.A.; Wilmoth, H.; Rais, R.; Hin, N.; DeVivo, M.; Popiolek, M.; Tsukamoto, T.; Slusher, B.S. Oral Administration of D-Alanine in Monkeys Robustly Increases Plasma and Cerebrospinal Fluid Levels but Experimental D-Amino Acid Oxidase Inhibitors had Minimal Effect. J. Psychopharmacol. 2016, 30, 887–895. [Google Scholar] [CrossRef] [PubMed]
- Popiolek, M.; Tierney, B.; Steyn, S.J.; De Vivo, M. Lack of Effect of Sodium Benzoate at Reported Clinical Therapeutic Concentration on D-Alanine Metabolism in Dogs. ACS Chem. Neurosci. 2018, 9, 2832–2837. [Google Scholar] [CrossRef] [PubMed]
- Tanii, Y.; Nishikawa, T.; Hashimoto, A.; Takahashi, A. Stereoselective Antagonism by Enantiomers of Alanine and Serine of Phencyclidine-Induced Hyperactivity, Stereotypy and Ataxia. J. Pharmacol. Exp. Ther. 1994, 269, 1040–1048. [Google Scholar] [CrossRef] [PubMed]
- Umino, A.; Takahashi, K.; Nishikawa, T. Characterization of the Phencyclidine-Induced Increase in Prefrontal Cortical Dopamine Metabolism in the Rat. Br. J. Pharmacol. 1998, 124, 377–385. [Google Scholar] [CrossRef]
- Hashimoto, A.; Nishikawa, T.; Oka, T.; Takahashi, K. D-Alanine Inhibits Methamphetamine-Induced Hyperactivity in Rats. Eur. J. Pharmacol. 1991, 202, 105–107. [Google Scholar]
- Horio, M.; Fujita, Y.; Ishima, T.; Iyo, M.; Ferraris, D.; Tsukamoto, T.; Hashimoto, K. Effects of D-Amino Acid Oxidase Inhibitor on the Extracellular D-Alanine Levels and the Efficacy of D-Alanine on Dizocilpine-Induced Prepulse Inhibition Deficits in Mice. Open Clin. Chem. J. 2009, 2, 16–21. [Google Scholar] [CrossRef]
- Tsai, G.E.; Yang, P.; Chang, Y.-C.; Chong, M.-Y. D-Alanine Added to Antipsychotics for the Treatment of Schizophrenia. Biol. Psychiatry 2006, 59, 230–234. [Google Scholar] [CrossRef]
- Roychaudhuri, R.; Gadalla, M.M.; West, T.; Snyder, S.H. A Novel Stereospecific Bioluminescent Assay for Detection of Endogenous D-Cysteine. ACS Chem. Neurosci. 2022, 13, 3257–3262. [Google Scholar] [CrossRef]
- Roychaudhuri, R. Mammalian D-Cysteine: A New Addition to the Growing Family of Biologicallty Relevant D-Amino Acids. Chirality 2022, 35, 535–539. [Google Scholar] [CrossRef]
- Shibuya, N.; Koike, S.; Tanaka, M.; Ishigami-Yuasa, M.; Kimura, Y.; Ogasawara, Y.; Fukui, K.; Nagahara, N.; Kimura, H. A Novel Pathway for the Production of Hydrogen Sulfide from D-Cysteine in Mammalian Cells. Nat. Commun. 2013, 4, 1366. [Google Scholar] [CrossRef]
- Seki, T.; Sato, M.; Konno, A.; Hirai, H.; Kurauchi, Y.; Hisatsune, A.; Katsuki, H. D-Cysteine Promotes Dendritic Development in Primary Cultured Cerebellar Purkinje Cells Via Hydrogen Sulfide Production. Mol. Cell. Neurosci. 2018, 93, 36–47. [Google Scholar] [CrossRef]
- Ueda, E.; Ohta, T.; Konno, A.; Hirai, H.; Kurauchi, Y.; Katsuki, H.; Seki, T. D-Cysteine Activates Chaperone-Mediated Autophagy in Cerebellar Purkinje Cells via the Generation of Hydrogen Sulfide and Nrf2 Activation. Cells 2022, 11, 1230. [Google Scholar] [CrossRef] [PubMed]
- Pinner, A.; Haroutunian, V.; Meador-Woodruff, J.H. Alterations of the Myristoylated, Alanine-Rich C Kinase Substrate (MARCKS) in Prefrontal Cortex in Schizophrenia. Schizophr. Res. 2014, 154, 36–41. [Google Scholar] [CrossRef]
- Konopaske, G.T.; Subburaju, S.; Coyle, J.T.; Benes, F.M. Altered Prefrontal Cortical MARCKS and PPP1R9A mRNA Expression in Schizophrenia and Bipolar Disorder. Schizophr. Res. 2015, 164, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Emamian, E.S.; Hall, D.; Birnbaum, M.J.; Karayiorgou, M.; Gogos, J.A. Convergent Evidence for Impaired AKT1-GSK3beta Signaling in Schizophrenia. Nat. Genet. 2004, 36, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Arguello, P.A.; Gogos, J.A. A Signaling Pathway AKTing up iin Schizophrenia. J. Clin. Investig. 2008, 118, 2018–2021. [Google Scholar]
- Balu, D.T.; Carlson, G.C.; Talbot, K.; Kazi, H.; Hill-Smith, T.E.; Easton, R.M.; Birnbaum, M.J.; Lucki, I. Akt1 Deficiency in Schizophrenia and Impairment of Hippocampal Plasticity and Function. Hippocampus 2010, 22, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-C.; Gao, W.-J. GSK-3β Activity and Hyperdopamine-Dependent Behaviors. Neurosci. Biobehav. Rev. 2011, 35, 645–654. [Google Scholar] [CrossRef]
- Emamian, E.S. AKT/GSK3 Signaling pathway and Schizophrenia. Front. Mol. Neurosci. 2012, 5, 33. [Google Scholar] [CrossRef]
- Luo, D.-Z.; Chang, C.-Y.; Huang, T.-R.; Studer, V.; Wang, T.-W.; Lai, W.-S. Lithium for Schizophrenia: Supporting Evidence from a 12-Year, Nationwide Health Insurance Database and from Akt-Deficient Mouse and Cellular Models. Sci. Rep. 2020, 10, 647. [Google Scholar] [CrossRef]
- Kunii, Y.; Matsumoto, J.; Izumi, R.; Nagaoka, A.; Hino, M.; Shishido, R.; Sainouchi, M.; Akatsu, H.; Hashizume, Y.; Kakita, A.; et al. Evidence for Phosphoinositide Signaling-Associated Molecules in the Postmortem Prefrontal Cortex of Patients with Schizophrenia. Int. J. Mol. Sci. 2021, 22, 8280. [Google Scholar] [CrossRef]
- Devine, E.A.; Imami, A.S.; Eby, H.; Sahay, S.; Hamoud, A.; Golchin, H.; Ryan, W.; Shedroff, E.A.; Arvay, T.; Joyce, A.W.; et al. Neuronal Alterations in AKT Isotope Expression in Schizophrenia. Mol. Psychiatry 2025, 30, 1573–1584. [Google Scholar] [CrossRef]
- Fuchs, S.A.; Berger, R.; Klomp, L.W.; de Koning, D.J. D-Amino Acids in the Central Nervous System in Health and Disease. Mol. Genet. Metab. 2005, 85, 168–180. [Google Scholar] [CrossRef]
- Roskjaer, A.B.; Roager, H.M.; Dragsted, L.O. D-Amino Acids from Foods and Gut Microbiota and Their Effects in Health and Disease. Food Rev. Int. 2024, 40, 3196–3253. [Google Scholar] [CrossRef]
- Pollegioni, L.; Kustrimovic, N.; Piubelli, L.; Rosini, E.; Rabattoni, V.; Sacchi, S. D-Amino Acids; New Functional Insights. FEBS J. 2025. [Google Scholar] [CrossRef] [PubMed]
- Abou El-Magd, R.M.; Park, H.K.; Kawazoe, T.; Iwana, S.; Ono, K.; Chung, S.P.; Miyano, M.; Yorita, K.; Sakai, T.; Fukui, K. The Effect of Risperidone on D-Amino Acid Oxidase as a Hypothesis for a Novel Mechanism of Action in the Treatment of Schizophrenia. J. Psychopharmacol. 2010, 24, 1055–1067. [Google Scholar] [CrossRef] [PubMed]
- Tanahashi, S.; Yamamura, S.; Nakagawa, M.; Motomura, E.; Okada, M. Clozapine, but not Haloperidol, Enhances Glial D-Serine and L-Glutamate Release in Frontal Cortex and Primary Cultured Astrocytes. J. Cereb. Bood Flow Metab. 2011, 165, 1543–1555. [Google Scholar]
- Shishikura, M.; Hakariya, H.; Iwasa, S.; Yoshio, T.; Ichiba, H.; Yorita, K.; Fukui, K.; Fukushima, T. Evaluation of Human D-Amino Acid Oxidase Inhibition by Anti-Psychotic Drugs in vitro. Biosci. Trends 2014, 8, 149–154.2024. [Google Scholar] [CrossRef]
- Lin, C.-H.; Lane, H.-Y. Sodium Benzoate: A Novel Multi-Target Pharmaceutical Approach to Rescue Clozapine-Resistant Schizophrenia. Schizophr. Res. 2024, 268, 261–264. [Google Scholar] [CrossRef]
- Hashimoto, H.; Takagi, T.; Asaeda, K.; Yasuda, T.; Kajiwara, M.; Sugaya, T.; Mizushima, K.; Inoue, K.; Uchiyama, K.; Kamada, K.; et al. D-Alanine Inhibits Murine Intestinal Inflammation by Suppressing IL-12 and IL-23 Production in Macrophages. J. Chrons Colitis 2024, 18, 908–919. [Google Scholar] [CrossRef]
- Yao, Y.; Pan, X.; Dai, Y.; Chen, Y.; Chang, Z.; Pei, Z.; Zhao, J. D-Serine Alleviates Colitis by Regulating Intestinal α-1,2-Fucosylation. Food Biosci. 2024, 62, 105057. [Google Scholar] [CrossRef]
- Rojas, C.; Alt, J.; Ator, N.A.; Thomas, A.G.; Wu, Y.; Hin, N.; Wozniak, K.; Ferraris, D.; Rais, R.; Tsukamoto, T.; et al. D-Amino- Acid Oxidase Inhibition Increases D-Serine Plasma Levels in Mouse But not in Monkey or Dog. Neuropsychopharmacology 2016, 41, 1610–1619. [Google Scholar] [CrossRef]
- Lane, H.-Y.; Wang, S.-H.; Lin, C.-H. Sex- and Dose-Dependent Catalase Increase and its Clinical Impact in a Benzoate Dose-Finding, Randomized, Double-Blind, Placebo-Controlled Trial for Alzheimer’s Disease. Pharmacol. Biochem. Behav. 2024, 245, 173885. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Chen, P.-K.; Wang, S.-H.; Lane, H.-Y. Effect of Sodium Benzoate on Cognitive Function Among Patients with Behavioral and Psychological Symptoms of Dementia. Secondary Analysis of a Randomized Clinical Trial. JAMA Netw. Open 2021, 4, e216156. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Lane, H.-Y. Sodiuim Benzoate Treatment Decreased Amyloid Beta Peptides and Improved Cognitive Function Among Patients with Alzheimer’s Disease: Secondary Analysis of a Randomized Clinical Trial. Transl. Psychiatry 2025, 15, 264. [Google Scholar] [CrossRef]
- Suzuki, M.; Imanishhi, N.; Mita, M.; Hamase, K.; Aiso, S.; Sasabe, J. Heterogeneity of D-Serine Distribution in the Human Central Nervous System. ASN Neuro. 2017, 9, 1759091417713905. [Google Scholar] [CrossRef]
- Du, S.; Wey, M.; Armstrong, D.W. D-Amino Acids in Biological Systems. Chirality 2023, 35, 508–534. [Google Scholar] [CrossRef]
- Kimura, T.; Sakai, S.; Isaka, Y. D-Serine as a Sensor and Effector of the Kidney. Clin. Exp. Nephrol. 2023, 27, 891–900. [Google Scholar] [CrossRef]
- Katane, M.; Homma, H. Biosynthesis and Degradation of Free D-Amino Acids and Their Physiological Roles in the Periphery and Endocrine Glands. Biol. Pharm. Bull. 2024, 47, 562–579. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.; Schnieders, J.H.; Rubakhin, S.S.; Patel, A.V.; Liu, C.; Naji, A.; Sweedler, J.V. D-Amino Acids and Classical Neurotransmitters in Healthy and Type 2 Diabetes-Affected Human Pancreatic Islets of Langerhans. Metabolites 2022, 12, 799. [Google Scholar] [CrossRef] [PubMed]
- Bastings, J.J.A.J.; van Eijk, H.M.; Olde Damink, S.W.; Rensen, S.S. D-Amino Acids in Health and Disease: Focus on Cancer. Nutrients 2019, 11, 2205. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dursun, S.M.; Dursun, L.H.; Baker, G.B. Impact of D-Amino Acids in Schizophrenia. Biomolecules 2025, 15, 1270. https://doi.org/10.3390/biom15091270
Dursun SM, Dursun LH, Baker GB. Impact of D-Amino Acids in Schizophrenia. Biomolecules. 2025; 15(9):1270. https://doi.org/10.3390/biom15091270
Chicago/Turabian StyleDursun, Serdar M., Leman H. Dursun, and Glen B. Baker. 2025. "Impact of D-Amino Acids in Schizophrenia" Biomolecules 15, no. 9: 1270. https://doi.org/10.3390/biom15091270
APA StyleDursun, S. M., Dursun, L. H., & Baker, G. B. (2025). Impact of D-Amino Acids in Schizophrenia. Biomolecules, 15(9), 1270. https://doi.org/10.3390/biom15091270