Construction of Yeast One-Hybrid Library of Dendrobium huoshanense and Screening of Potential Transcription Factors Regulating DhPMM Gene Expression
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Cloning of the Promoter of Gene DhPMM and Cis-Element Analysis
2.3. Construction of a Recombinant pAbAi-DhPMM Bait Plasmid
2.4. Generation of the Yeast Bait Strain
2.5. Construction of the Prey cDNA Library
2.6. Screening of a Y1H Library
2.7. Identification and Sequencing of Positive Clones
2.8. Pairwise Validation of the Promoter of DhPMM and Candidate TFs
2.9. Dual-Luciferase (Dual-LUC) Assay
3. Results
3.1. Cloning of DhPMM Gene Promoter
3.2. Identification of Bait Yeast Strain and Determination of AbA Basal Expression
3.3. cDNA Library Construction and Validation
3.4. Screening of the Yeast One-Hybrid Library and Plasmids Extraction
3.5. Validation of the Interaction of the Promoter of DhPMM and Candidate TFs
3.6. NAC, DOF, ERF, and BES1 Interact with the Promoter of the DhPMM and Activate Its Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AbA | Aureobasidin |
ABRE | ABA-responsive element |
AMP | Ampicillin |
AP2/ERF | APETALA2/Ethylene Response Factor |
BES1 | Bri1-ems-suppressor 1 |
BRRE | Brassinosteroid-responsive element |
CFU | Colony-forming units |
cDNA | Complementary DNA |
DRE | Dehydration-responsive element, |
DOF | DNA binding with one zinc finger |
ERF | Ethylene response factor |
GDP-Man | Guanosine diphosphate mannose |
GTs | Glycosyltransferases |
HK | Hexokinase |
INV | Invertase |
LB | Luria–Bertani medium |
M1P | Mannose-1-phosphate |
M6P | Mannose-6-phosphate |
MPI | Mannose-6-phosphate isomerase |
MYC | Myc transcription factor family |
NAC | Nam, ataf, and cuc |
PCR | Polymerase chain reaction |
PEG | Polyethylene glycol |
PGM | Phosphoglucomutase |
PMM | Phosphomannomutase |
SD | Synthetic-defined medium |
SMART | Switching mechanism at 5′ end of RNA template |
SPS | Sucrose phosphate synthase |
SUS | Sucrose synthase |
TF | Transcription factor |
UDP-Glc | Uridine diphosphate glucose |
Y1H | Yeast one-hybrid |
YPDA | Yeast extract peptone dextrose adenine medium |
References
- Wu, P. Shen Nong Ben Cao Jing; Scientific and Technological Literature Publishing House: Beijing, China, 1996. [Google Scholar]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2020; pp. 70–71. Available online: https://ydz.chp.org.cn/#/main (accessed on 27 August 2025).
- Shang, Z.Z.; Qin, D.Y.; Li, Q.M.; Zha, X.Q.; Pan, L.H.; Peng, D.Y.; Luo, J.P. Dendrobium huoshanense stem polysaccharide ameliorates rheumatoid arthritis in mice via inhibition of inflammatory signaling pathways. Carbohydr. Polym. 2021, 258, 117657. [Google Scholar] [CrossRef] [PubMed]
- Zha, X.Q.; Zhao, H.W.; Bansal, V.; Pan, L.H.; Wang, Z.M.; Luo, J.P. Immunoregulatory activities of Dendrobium huoshanense polysaccharides in mouse intestine, spleen and liver. Int. J. Biol. Macromol. 2014, 64, 377–382. [Google Scholar] [CrossRef]
- Ng, T.B.; Liu, J.; Wong, J.H.; Ye, X.; Wing Sze, S.C.; Tong, Y.; Zhang, K.Y. Review of research on Dendrobium, a prized folk medicine. Appl. Microbiol. Biotechnol. 2012, 93, 1795–1803. [Google Scholar] [CrossRef]
- Yi, S.; Kang, C.; Wang, W.; Song, X.; Xu, T.; Lu, H.; Luo, S.; Liu, D.; Guo, L.; Han, B. Comparison of planting modes of Dendrobium huoshanense and analysis of advantages of simulated cultivation. Chin. J. Chin. Mater. Medica 2021, 46, 1864–1868. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.H.; Wang, L.S.; Ding, J.; Zhao, M.W.; Liu, R. GlPP2C1 silencing increases the content of Ganodermalingzhi polysaccharide (GL-PS) and enhances Slt2 phosphorylation. J. Fungi 2022, 8, 949. [Google Scholar] [CrossRef]
- Qian, W.; Yu, C.; Qin, H.; Liu, X.; Zhang, A.; Johansen, I.E.; Wang, D. Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana. Plant J. 2007, 49, 399–413. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Zeng, S.; Teixeira da Silva, J.A.; Yu, Z.; Tan, J.; Duan, J. Molecular cloning and functional analysis of the phosphomannomutase (PMM) gene from Dendrobium officinale and evidence for the involvement of an abiotic stress response during germination. Protoplasma 2017, 254, 1693–1704. [Google Scholar] [CrossRef]
- Cao, S.; Wang, X.; Ji, J.; Wang, Y.; Gao, J. Cloning and expression analysis of CpPMM gene in Codonopsis pilosula. Chin. J. Chin. Mater. Medica 2020, 45, 4382–4391. [Google Scholar] [CrossRef]
- Lin, R.; Zhong, H.; Ye, X.; Huang, M. Cloning and quantitative expression analysis of PMM gene from Dendrobium huoshanense. Chin. J. Trop. Crops 2017, 38, 2326–2333. Available online: https://kns.cnki.net/kcms2/article/abstract?v=Y2E-z2Sa5COTnQe2NmizorGkz2DIPEmVtmY1MPPd9PUPctdvDouYHeBAHf0tk3zwVEmtRlwzRw7WZDOjqLz7AxbYpi1g-PFQzp4FC0gnp6fIWQBUFKUnLg4J9Ev3ely3Eu-JIK7D-J4HYZ84ELYFI1_8mGbm8mQUuy9u86yqnci4FaXduoxC7djskNK3OCUa&uniplatform=NZKPT&language=CHS (accessed on 27 August 2025).
- Kang, J.Y.; Choi, H.I.; Im, M.Y.; Kim, S.Y. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 2002, 14, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Shu, G.; Tang, Y.; Yuan, M.; Wei, N.; Zhang, F.; Yang, C.; Lan, X.; Chen, M.; Tang, K.; Xiang, L.; et al. Molecular insights into AabZIP1-mediated regulation on artemisinin biosynthesis and drought tolerance in Artemisia annua. Acta Pharm. Sin. B 2022, 12, 1500–1513. [Google Scholar] [CrossRef]
- Dong, Q.; Xu, Q.; Kong, J.; Peng, X.; Zhou, W.; Chen, L.; Wu, J.; Xiang, Y.; Jiang, H.; Cheng, B. Overexpression of ZmbZIP22 gene alters endosperm starch content and composition in maize and rice. Plant Sci. 2019, 283, 407–415. [Google Scholar] [CrossRef]
- Sagor, G.H.; Berberich, T.; Tanaka, S.; Nishiyama, M.; Kanayama, Y.; Kojima, S.; Muramoto, K.; Kusano, T. A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene. Plant Biotechnol. J. 2016, 14, 1116–1126. [Google Scholar] [CrossRef]
- Bush, S.M.; Folta, S.; Lannigan, D.A. Use of the yeast one-hybrid system to screen for mutations in the ligand-binding domain of the estrogen receptor. Steroids 1996, 61, 102–109. [Google Scholar] [CrossRef]
- Chebbi, M.; Ginis, O.; Courdavault, V.; Glevarec, G.; Lanoue, A.; Clastre, M.; Papon, N.; Gaillard, C.; Atanassova, R.; St-Pierre, B.; et al. ZCT1 and ZCT2 transcription factors repress the activity of a gene promoter from the methyl erythritol phosphate pathway in Madagascar periwinkle cells. J. Plant Physiol. 2014, 171, 1510–1513. [Google Scholar] [CrossRef]
- Li, S.; Zhang, P.; Zhang, M.; Fu, C.; Yu, L. Functional analysis of a WRKY transcription factor involved in transcriptional activation of the DBAT gene in Taxus chinensis. Plant Biol. 2013, 15, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhu, F.; Lai, R.; Shi, L.; Chen, S. Construction of yeast one-hybrid library and screening of transcription factors regulating LS expression in Ganoderma lucidum. Chin. J. Chin. Mater. Medica 2019, 44, 3967–3973. [Google Scholar] [CrossRef]
- Lu, X.; Jiang, W.; Zhang, L.; Zhang, F.; Zhang, F.; Shen, Q.; Wang, G.; Tang, K. AaERF1 positively regulates the resistance to Botrytis cinerea in Artemisia annua. PLoS ONE 2013, 8, e57657. [Google Scholar] [CrossRef]
- Tang, Z.; Cheng, S. A study on the raw plants for the Chinese traditional medicine “Huoshan Shi-Hu”. Bull. Bot. Res. 1984, 4, 141–146. Available online: https://kns.cnki.net/kcms2/article/abstract?v=Y2E-z2Sa5CNKbj19Dg7s8pGHnoto_OqpkOJ1l2uyk2066hx5HDcZee326toYHkZId2ITYMNdaYiN9_sNIaDBzzxEq6jppel6vXviFJv4ao8i_CYOQWO1YS8sThU5ml-TMpZwDsMkwuJwMzsEBERO_GoLQwXPoeTTN5PzYhmCLiWhVx1cwq_pKw==&uniplatform=NZKPT&language=CHS (accessed on 27 August 2025).
- Sayers, E.W.; Beck, J.; Bolton, E.E.; Brister, J.R.; Chan, J.; Connor, R.; Feldgarden, M.; Fine, A.M.; Funk, K.; Hoffman, J.; et al. Database resources of the National Center for Biotechnology Information in 2025. Nucleic Acids Res. 2025, 53, D20–D29. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Jing, Y.; Dai, J.; Zheng, T.; Gu, F.; Zhao, Q.; Zhu, F.; Song, X.; Deng, H.; Wei, P.; et al. A chromosome-level genome assembly of Dendrobium huoshanense using long reads and Hi-C data. Genome Biol. Evol. 2020, 12, 2486–2490. [Google Scholar] [CrossRef]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, J.; Khan, M.; Wang, Y.; Xiao, W.; Fang, T.; Qu, J.; Xiao, P.; Li, C.; Liu, J.H. Transcription factors ABF4 and ABR1 synergistically regulate amylase-mediated starch catabolism in drought tolerance. Plant Physiol. 2023, 191, 591–609. [Google Scholar] [CrossRef] [PubMed]
- Gietz, R.D. Yeast transformation by the LiAc/SS carrier DNA/PEG method. Methods Mol. Biol. 2014, 1205, 1–12. [Google Scholar] [CrossRef]
- Degnin, M.; Tognon, C.E.; Eide, C.A.; Wilmot, B.; McWeeney, S.K.; Bottomly, D.; Smith, R.; Druker, B.J. High-throughput validation of mutations identified in primary leukemia cells. Blood 2016, 128, 4725. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, D.; Cho, J.E.; Parvizi, N.; Khan, A.Z.; Parvizi, J.; Namdari, S. Next-generation sequencing results require higher inoculum for detection than conventional anaerobic culture. Clin. Orthop. Relat. Res. 2023, 481, 2484–2491. [Google Scholar] [CrossRef]
- Pu, X.L.; Zhang, L.Y.; Zhang, J.Y.; Ye, X.; Lin, L.; Wu, D.R.; Kang, J.J.; Hu, H.; Chen, J.; Guo, K.; et al. Identification of a bZIP transcription factor PpTGA3 regulating polyphyllin biosynthesis in Paris polyphylla. Ind. Crops Prod. 2025, 225, 120492. [Google Scholar] [CrossRef]
- Armstrong, R.A. When to use the Bonferroni correction. Ophthalic Physl. Opt. 2014, 34, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Li, Y.A.; Zhang, Y. Yeast two-hybrid screening for proteins that interact with the extracellular domain of amyloid precursor protein. Neurosci. Bull. 2016, 32, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Zhang, H.; Zhao, Q.; Cui, S.; Yu, K.; Sun, R.; Yu, Y. Construction of yeast one-hybrid library of Alternaria oxytropis and screening of transcription factors regulating swnK gene expression. J. Fungi 2023, 9, 822. [Google Scholar] [CrossRef]
- Wu, J.; Meng, X.; Jiang, W.; Wang, Z.; Zhang, J.; Meng, F.; Yao, X.; Ye, M.; Yao, L.; Wang, L.; et al. Qualitative proteome-wide analysis reveals the diverse functions of lysine crotonylation in Dendrobium huoshanense. Front. Plant Sci. 2022, 13, 822374. [Google Scholar] [CrossRef]
- Pablo, O.; Miguel, R.; Sandra, D.; Francisco, J. Stress response requires an efficient connection between glycogen and central carbon metabolism by phosphoglucomutases in cyanobacteria. J. Exp. Bot. 2023, 74, 1532–1550. [Google Scholar] [CrossRef]
- Koyama, T. Regulatory mechanisms of transcription factors in plant morphology and function. Int. J. Mol. Sci. 2023, 24, 7039. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, W.; Xu, Z.; Chen, M.; Yu, D. Functions of WRKYs in plant growth and development. Trends Plant Sci. 2023, 28, 630–645. [Google Scholar] [CrossRef]
- Jia, H.; Xu, Y.; Deng, Y.; Xie, Y.; Gao, Z.; Lang, Z.; Niu, Q. Key transcription factors regulate fruit ripening and metabolite accumulation in tomato. Plant Physiol. 2024, 195, 2256–2273. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, Z.; Wang, P.; Qin, C.; He, L.; Kong, L.; Ren, W.; Liu, X.; Ma, W. Genome-wide identification of the NAC transcription factors family and regulation of metabolites under salt stress in Isatis indigotica. Int. J. Biol. Macromol. 2023, 240, 124436. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Vijaychander, S.; Stile, J.; Zhu, L. Cloning and analysis of DNA-binding proteins by yeast one-hybrid and one-two-hybrid systems. Biotechniques 1996, 20, 564–568. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, J.; Liu, Q.; Li, K.; Zhou, Y. Construction and characterization of a high-quality cDNA library of Cymbidium faberi suitable for yeast one- and two-hybrid assays. BMC Biotechnol. 2020, 20, 4. [Google Scholar] [CrossRef]
- Serra, T.S.; Figueiredo, D.D.; Cordeiro, A.M.; Almeida, D.M.; Lourenço, T.; Abreu, I.A.; Sebastián, A.; Fernandes, L.; Contreras-Moreira, B.; Oliveira, M.M.; et al. OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. Plant Mol. Biol. 2013, 82, 439–455. [Google Scholar] [CrossRef]
- Jingwen, W.; Jingxin, W.; Ye, Z.; Yan, Z.; Caozhi, L.; Yanyu, C.; Fanli, Z.; Su, C.; Yucheng, W. Building an improved transcription factor-centered yeast one hybrid system to identify DNA motifs bound by protein comprehensively. BMC Plant Biol. 2023, 23, 236. [Google Scholar] [CrossRef]
- Fan, S.; Li, X.; Lin, S.; Li, Y.; Ma, H.; Zhang, Z.; Qin, Z. Screening and identification of transcription factors potentially regulating Foxl2 expression in Chlamys farreri Ovary. Biology 2022, 11, 113. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Bi, M.; Yang, P.; Song, M.; He, G.; Wang, J.; Yang, Y.; Xu, L.; Ming, J. Construction of yeast one-hybrid library and screening of transcription factors regulating LhMYBSPLATTER expression in Asiatic hybrid lilies (Lilium spp.). BMC Plant Biol. 2021, 21, 563. [Google Scholar] [CrossRef]
- Li, M.; Li, P.; Ma, F.; Dandekar, A.M.; Cheng, L. Sugar metabolism and accumulation in the fruit of transgenic apple trees with decreased sorbitol synthesis. Hortic. Res. 2018, 5, 60. [Google Scholar] [CrossRef] [PubMed]
- Sturm, A.; Tang, G. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci. 1999, 4, 401–407. [Google Scholar] [CrossRef]
- Zanor, M.; Osorio, S.; Nunes, N.; Carrari, F.; Lohse, M.; Usadel, B.; Kühn, C.; Bleiss, W.; Giavalisco, P.; Willmitzer, L.; et al. RNA interference of LIN5 in tomato confirms its role in controlling brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiol. 2009, 150, 1204–1218. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, H.J.; Li, Y.N.; Zhu, Z.Z.; Zhao, Z.Y.; Yang, Y.Z. MdNAC5: A key regulator of fructose accumulation in apple fruit. New Phytol. 2024, 244, 2458–2473. [Google Scholar] [CrossRef]
- Martin-Pizarro, C.; Vallarino, J.G.; Osorio, S.; Meco, V.; Urrutia, M.; Pillet, J.; Casanal, A.; Merchante, C.; Amaya, I.; Willmitzer, L.; et al. The NAC transcription factor FaRIF controls fruit ripening in strawberry. Plant Cell 2021, 33, 1574–1593. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Zhang, J.; Ren, Y.; Li, M.; Tian, S.; Yu, Y.; Zuo, Y.; Gong, G.; Zhang, H.; et al. Correction: The NAC transcription factor ClNAC68 positively regulates sugar content and seed development in watermelon by repressing ClINV and ClGH3.6. Hortic. Res. 2021, 8, 265. [Google Scholar] [CrossRef]
- Xiao, K.; Fan, J.M.; Bi, X.Y.; Tu, X.Y.; Li, X.Y.; Cao, M.H.; Liu, Z.; Lin, A.Q.; Wang, C.; Xu, P.B.; et al. A NAC transcription factor and a MADS-box protein antagonistically regulate sucrose accumulation in strawberry receptacles. Plant Physiol. 2025, 197, kiaf043. [Google Scholar] [CrossRef]
- Yanagisawa, S. The Dof family of plant transcription factors. Trends Plant Sci. 2002, 7, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, S.; Sheen, J. Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell 1998, 10, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Ni, Z.; Yao, Y.; Nie, X.; Sun, Q. Wheat Dof transcription factor WPBF interacts with TaQM and activates transcription of an alpha-gliadin gene during wheat seed development. Plant Mol. Biol. 2007, 63, 73–84. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, H.; Fang, M.; Lin, S.; Zhu, M.; Li, Y.; Jiang, L.; Cui, T.; Cui, Y.; Kui, H.; et al. The Dof transcription factor COG1 acts as a key regulator of plant biomass by promoting photosynthesis and starch accumulation. Mol Plant 2023, 16, 1759–1772. [Google Scholar] [CrossRef]
- Du, C.; Sun, W.; Song, Q.; Zuo, K. GhDOFD45 promotes sucrose accumulation in cotton seeds by transcriptionally activating GhSWEET10 expression. Plant J. 2024, 120, 2468–2484. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, L.; Ansah, E.O.; Peng, W.; Zhang, W.; Li, P.; An, G.; Xiong, F. The sucrose transport regulator OsDOF11 mediates cytokinin degradation during rice development. Plant Physiol. 2022, 189, 1083–1094. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Li, S.; Zhu, Y.; Zhao, Q.; Zhu, D.; Yu, J. ZmDof3, a maize endosperm-specific Dof protein gene, regulates starch accumulation and aleurone development in maize endosperm. Plant Mol. Biol. 2017, 93, 7–20. [Google Scholar] [CrossRef]
- Cai, X. Genome-Wide Analysis of DOF Family and Functional Characterization of SlDof22, SlDHAR1 and FAGALUR in Tomato Ascorbate Accumulation. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2014. [Google Scholar]
- Phukan, U.J.; Jeena, G.S.; Tripathi, V.; Shukla, R.K. MaRAP2-4, a waterlogging-responsive ERF from Mentha, regulates bidirectional sugar transporter AtSWEET10 to modulate stress response in Arabidopsis. Plant Biotechnol. J. 2018, 16, 221–233. [Google Scholar] [CrossRef]
- Khan, M.; Dahro, B.; Wang, Y.; Wang, M.; Xiao, W.; Qu, J.; Zeng, Y.; Fang, T.; Xiao, P.; Xu, X.; et al. The transcription factor ERF110 promotes cold tolerance by directly regulating sugar and sterol biosynthesis in citrus. Plant J. 2024, 119, 2385–2401. [Google Scholar] [CrossRef]
- Shi, H.; Li, X.; Lv, M.; Li, J. BES1/BZR1 family transcription factors regulate plant development via brassinosteroid-dependent and independent pathways. Int. J. Mol. Sci. 2022, 23, 10149. [Google Scholar] [CrossRef] [PubMed]
- Nolan, T.M.; Vukašinović, N.; Liu, D.; Russinova, E.; Yin, Y. Brassinosteroids: Multidimensional regulators of plant growth, development, and stress responses. Plant Cell 2020, 32, 295–318. [Google Scholar] [CrossRef]
Cis-Element | Number | Sequence | Function |
---|---|---|---|
AAAG-box | 11 | AAAG | common cis-acting element in promoter and enhancer regions |
ABRE | 3 | ACGTG | ABA-responsive element |
as-1 | 1 | TGACG | cis-acting element involved in environment responsiveness |
AuxRE | 1 | TGTCTCAATAAG | part of an auxin-responsive element |
BRRE | 3 | CGTGT/CG | cis-acting element involved in abiotic stress |
CAAT-box | 38 | CA/CAAT | common cis-acting element in promoter and enhancer regions |
DRE | 1 | ACCGAGA | cis-acting element involved in abiotic stresses responsiveness |
ERE | 2 | ATTTCATA | ethylene response element |
F-box | 1 | CTATTCTCATT | involved in regulation of gene transcription |
G-box | 4 | CACGTC/G/T | cis-acting regulatory element involved in light responsiveness |
GT1 | 2 | GGTTAA | light responsive element |
I-box | 1 | GATAAGGTG | part of a light responsive element |
MYB | 1 | TAACTG | MYB element |
MYC | 5 | CAAT/TGTG | MYC element |
TATA-box | 20 | TATA | core promoter element around −30 of transcription start site |
TATC-box | 2 | TATCCCA | cis-acting element involved in gibberellin-responsiveness |
TCA-element | 2 | CCATCTTTTT | cis-acting element involved in salicylic acid responsiveness |
W box | 1 | TTGACC | WRKY motif |
Number | Gene Bank | Annotation Information | Species | TF Family |
---|---|---|---|---|
D1 | XP_020700119.1 | 30S ribosomal protein S20, chloroplastic isoform X1 | Dendrobium catenatum | NAC |
D2 | XP_020682760.1 | dof zinc finger protein 3-like isoform X1 | Dendrobium catenatum | DOF |
D3 | XP_020701931.1 | reticulon-like protein B12 | Dendrobium catenatum | |
D4 | XP_020674477.1 | UPF0565 protein C2orf69 homolog isoform X1 | Dendrobium catenatum | ERF |
D5 | XP_020699932.1 | protein BRICK 1 | Dendrobium catenatum | |
D6 | XP_020701822.1 | macrophage migration inhibitory factor homolog isoform X2 | Dendrobium catenatum | BES1 |
D7 | QGJ03755.1 | transport inhibitor response 1-like protein | Vanilla planifolia | |
D8 | XP_020671916.1 | peroxiredoxin-2C | Dendrobium catenatum | |
D9 | PKU62163.1 | ATP synthase subunit delta, mitochondrial | Dendrobium catenatum | |
D10 | XP_020690022.2 | uncharacterized protein LOC110105016 isoform X1 | Dendrobium catenatum | |
D11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Wang, S.; Xing, S.; Peng, D. Construction of Yeast One-Hybrid Library of Dendrobium huoshanense and Screening of Potential Transcription Factors Regulating DhPMM Gene Expression. Biomolecules 2025, 15, 1251. https://doi.org/10.3390/biom15091251
Wu J, Wang S, Xing S, Peng D. Construction of Yeast One-Hybrid Library of Dendrobium huoshanense and Screening of Potential Transcription Factors Regulating DhPMM Gene Expression. Biomolecules. 2025; 15(9):1251. https://doi.org/10.3390/biom15091251
Chicago/Turabian StyleWu, Jing, Shuting Wang, Shihai Xing, and Daiyin Peng. 2025. "Construction of Yeast One-Hybrid Library of Dendrobium huoshanense and Screening of Potential Transcription Factors Regulating DhPMM Gene Expression" Biomolecules 15, no. 9: 1251. https://doi.org/10.3390/biom15091251
APA StyleWu, J., Wang, S., Xing, S., & Peng, D. (2025). Construction of Yeast One-Hybrid Library of Dendrobium huoshanense and Screening of Potential Transcription Factors Regulating DhPMM Gene Expression. Biomolecules, 15(9), 1251. https://doi.org/10.3390/biom15091251