From Corncob By-Product to Functional Lignins: Comparative Analysis of Alkaline and Organosolv Extraction Followed by Laccase Treatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Raw Material
2.2. Total Solids Determination
2.3. Alkali Treatment
2.4. Organosolv Process
2.5. Laccase Assay
2.6. Enzymatic Modification of Lignins by Laccase
2.7. Determination of Structural Carbohydrates and Lignin Biomass
2.8. Fourier-Transformed Infrared Spectroscopy (FTIR)
2.9. Differential Scanning Calorimetry (DSC)
3. Results and Discussion
3.1. Alkali Treatment of Corncob
3.2. Organosolv Treatment of Corncob
3.3. Chemical Analysis of Lignins
3.4. Enzymatic Modifications of Lignins
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, L.; Yu, I.K.M.; Liu, Y.; Ruan, X.; Tsang, D.C.W.; Hunt, A.J.; Ok, Y.S.; Song, H.; Zhang, S. Lignin valorization for the production of renewable chemicals: State-of-the-art review and future prospects. Bioresour. Technol. 2018, 269, 465–475. [Google Scholar] [CrossRef]
- Kalami, S.; Arefmanesh, M.; Master, E.; Nejad, M. Replacing 100% of phenol in phenolic adhesive formulations with lignin. J. Appl. Polym. Sci. 2017, 134, 45124. [Google Scholar] [CrossRef]
- Thakur, V.K.; Thakur, M.K. Recent advances in green hydrogels from lignin: A review. Int. J. Biol. Macromol. 2015, 72, 834–847. [Google Scholar] [CrossRef]
- Wang, T.; Jiang, M.; Yu, X.; Niu, N.; Chen, L. Application of lignin adsorbent in wastewater Treatment: A review. Sep. Purif. Technol. 2022, 302, 122116. [Google Scholar] [CrossRef]
- Boarino, A.; Klok, H.A. Opportunities and Challenges for Lignin Valorization in Food Packaging, Antimicrobial, and Agricultural Applications. Biomacromolecules 2023, 24, 1065–1077. [Google Scholar] [CrossRef]
- Agustin, M.B.; De Carvalho, D.M.; Lahtinen, M.H.; Hilden, K.; Lundell, T.; Mikkonen, K.S. Laccase as a Tool in Building Advanced Lignin-Based Materials. ChemSusChem 2021, 14, 4615–4635. [Google Scholar] [CrossRef] [PubMed]
- Kadam, K.L.; McMillan, J.D. Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresour. Technol. 2003, 88, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Nam, J.; Yun, B.Y.; Kim, Y.U.; Kim, S. Utilization of corn cob, an essential agricultural residue difficult to disposal: Composite board manufactured improved thermal performance using microencapsulated PCM. Ind. Crops Prod. 2022, 183, 114931. [Google Scholar] [CrossRef]
- Aghaei, S.; Karimi Alavijeh, M.; Shafiei, M.; Karimi, K. A comprehensive review on bioethanol production from corn stover: Worldwide potential, environmental importance, and perspectives. Biomass Bioenergy 2022, 161, 106447. [Google Scholar] [CrossRef]
- Tsai, W.T.; Chang, C.Y.; Wang, S.Y.; Chang, C.F.; Chien, S.F.; Sun, H.F. Cleaner production of carbon adsorbents by utilizing agricultural waste corn cob. Resour. Conserv. Recycl. 2001, 32, 43–53. [Google Scholar] [CrossRef]
- De Baynast, H.; Tribot, A.; Niez, B.; Audonnet, F.; Badel, E.; Cesar, G.; Servaes, K.; Vanbroekhoven, K.; Elst, K.; Sels, B.F. Effects of Kraft lignin and corn cob agro-residue on the properties of injected-moulded biocomposites. Ind. Crops Prod. 2022, 177, 114421. [Google Scholar] [CrossRef]
- Raikwar, D.; Van Aelst, K.; Vangeel, T.; Corderi, S.; Van Aelst, J.; Van Den Bosch, S.; Servaes, K.; Vanbroekhoven, K.; Elst, K.; Sels, B.F. Elucidating the effect of the physicochemical properties of organosolv lignins on its solubility and reductive catalytic depolymerization. Chem. Eng. J. 2023, 461, 141999. [Google Scholar] [CrossRef]
- Li, C.; Wang, Z.; Hou, M.; Cao, X.; Jia, W.; Huang, L.; Wu, L.; Wang, B.; Sheng, X.; Guo, Y.; et al. Comparative study on the physicochemical characteristics of lignin via sequential solvent fractionation of ethanol and Kraft lignin derived from poplar and their applications. Ind. Crops Prod. 2025, 223, 120071. [Google Scholar] [CrossRef]
- Kim, T.H. Pretreatment of Lignocellulosic Biomass. In Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers, 1st ed.; Yang, S., El-Enshasy, H.A., Thongchul, N., Eds.; Wiley: Hoboken, NJ, USA, 2013; pp. 91–110. [Google Scholar]
- Muurinen, E. Organosolv Pulping: A Review and Distillation Study Related to Peroxyacid Pulping; Oulun Yliopisto: Oulu, Finland, 2000. [Google Scholar]
- Sluiter, A.; Hames, B.; Hyman, D.; Payne, C.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Wolfe, J. Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples; Report No.: NREL/TP-510-42621; National Renewable Energy Laboratory: Golden, CO, USA, 2008. [Google Scholar]
- Herpoël, I.; Moukha, S.; Lesage-Meessen, L.; Sigoillot, J.C.; Asther, M. Selection of Pycnoporus cinnabarinus strains for laccase production. FEMS Microbiol. Lett. 2000, 183, 301–306. [Google Scholar] [CrossRef]
- Record, E.; Punt, P.J.; Chamkha, M.; Labat, M.; Van Den Hondel, C.A.M.J.J.; Asther, M. Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme. Eur. J. Biochem. 2002, 269, 602–609. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; Report No.: NREL/TP-510-42618; National Renewable Energy Laboratory: Golden, CO, USA, 2005. [Google Scholar]
- Malric-Garajova, S.; Fortuna, F.; Pion, F.; Martin, E.; Thottathil, A.; Guillemain, A.; Doan, A.; Lomascolo, A.; Faulds, C.B.; Baumbergerm, S.; et al. Modification of a Marine Pine Kraft Lignin Sample by Enzymatic Treatment with a Pycnoporus cinnabarinus Laccase. Molecules 2023, 28, 4873. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Chakraborty, S.; Kundu, S.P.; Basak, R.K.; Basu Majumder, S.; Adhikari, B. Improvement in mechanical properties of jute fibres through mild alkali treatment as demonstrated by utilisation of the Weibull distribution model. Bioresour. Technol. 2012, 107, 222–228. [Google Scholar] [CrossRef]
- Wang, Y.S.; Koo, W.M.; Kim, H.D. Preparation and Properties of New Regenerated Cellulose Fibers. Text. Res. J. 2003, 73, 998–1004. [Google Scholar] [CrossRef]
- Sahare, P.; Singh, R.; Laxman, R.S.; Rao, M. Effect of Alkali Pretreatment on the Structural Properties and Enzymatic Hydrolysis of Corn Cob. Appl. Biochem. Biotechnol. 2012, 168, 1806–1819. [Google Scholar] [CrossRef]
- Parchami, M.; Agnihotri, S.; Taherzadeh, M.J. Aqueous ethanol organosolv process for the valorization of Brewer’s spent grain (BSG). Bioresour. Technol. 2022, 362, 127764. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, H.; Hui, L. Pulping and Papermaking of Non-Wood Fibers. In Pulp and Paper Processing; Kazi, S.N., Ed.; InTech: London, UK, 2018. [Google Scholar] [CrossRef]
- Agnihotri, S.; Johnsen, I.A.; Bøe, M.S.; Øyaas, K.; Moe, S. Ethanol organosolv pretreatment of softwood (Picea abies) and sugarcane bagasse for biofuel and biorefinery applications. Wood Sci. Technol. 2015, 49, 881–896. [Google Scholar] [CrossRef]
- Bogdanovskaya, V.A.; Kuznetsova, L.N.; Tarasevich, M.R. Bioelectrocatalytic and Enzymic Activity of Laccase in Water–Ethanol Solution. Russ. J. Electrochem. 2002, 38, 1074–1081. [Google Scholar] [CrossRef]
- Rodakiewicz-Nowak, J.; Haber, J.; Pozdnyakova, N.; Leontievsky, A.; Golovleva, L.A. Effect of Ethanol on Enzymatic Activity of Fungal Laccases. Biosci. Rep. 1999, 19, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Buyukoztekin, G.K.; Buyukkileci, A.O. Enzymatic hydrolysis of organosolv-pretreated corncob and succinic acid production by Actinobacillus succinogenes. Ind. Crops Prod. 2024, 208, 117922. [Google Scholar] [CrossRef]
- Lv, X.; Li, Q.; Jiang, Z.; Wang, Y.; Li, J.; Hu, C. Structure characterization and pyrolysis behavior of organosolv lignin isolated from corncob residue. J. Anal. Appl. Pyrolysis 2018, 136, 115–124. [Google Scholar] [CrossRef]
- Da Silva, A.R.G.; Errico, M.; Rong, B.G. Evaluation of organosolv pretreatment for bioethanol production from lignocellulosic biomass: Solvent recycle and process integration. Biomass Convers. Biorefinery 2018, 8, 397–411. [Google Scholar] [CrossRef]
- Da Silva, A.R.G.; Errico, M.; Rong, B.G. Solvent Recycle and Impurity Purge Evaluation for Organosolv Pretreatment Method for Bioethanol Production from Lignocellulosic Biomass. Comput. Aided Chem. Eng. 2017, 40, 1141–1146. [Google Scholar] [CrossRef]
- Vuillemin, M.E.; Quesada-Salas, M.C.; Hadad, C.; Jasniewski, J.; Husson, E.; Sarazin, C. Revisiting organosolv strategies for sustainable extraction of valuable lignin: The CoffeeCat process. RSC Sustain. 2023, 1, 853–865. [Google Scholar] [CrossRef]
- Alam, M.M.; Greco, A.; Rajabimashhadi, Z.; Esposito Corcione, C. Efficient and environmentally friendly techniques for extracting lignin from lignocellulose biomass and subsequent uses: A review. Clean. Mater. 2024, 13, 100253. [Google Scholar] [CrossRef]
- Faruq, Y.A.; Nusirat, S. Precipitation of Lignins from Organosolv and Kraft Black Liquor of Bamboo: Influence of Functionality Using Fourier Transform Infrared Spectroscopy (FTIR); XV World Forestry Congress: Seoul, Republic of Korea, 2022. [Google Scholar]
- Jasiukaitytė-Grojzdek, E.; Ročnik Kozmelj, T.; Tofani, G.; Segers, B.; Nimmegeers, P.; Billen, P.; Pogorevc, R.; Likozar, B.; Grilc, M. Design of Organosolv Lignin Fractionation: Influence of Temperature, Antisolvent, and Source on Molecular Weight, Structure, and Functionality of Lignin Fragments. ACS Sustain. Chem. Eng. 2025, 13, 3452–3466. [Google Scholar] [CrossRef]
- Lam, H.Q.; Bigot, Y.L.; Delmas, M.; Avignon, E.G. Formic acid pulping of rice straw. Ind. Crops Prod. 2001, 14, 65–71. [Google Scholar] [CrossRef]
- Wildschut, J.; Smit, A.T.; Reith, J.H.; Huijgen, W.J.J. Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose. Bioresour. Technol. 2013, 135, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zhao, C.; Li, H.; Xiong, L.; Chen, X.; Luo, M. Comparison of different pretreatments on the synergistic effect of cellulase and xylanase during the enzymatic hydrolysis of sugarcane bagasse. RSC Adv. 2018, 8, 30725–30731. [Google Scholar] [CrossRef] [PubMed]
- Fink, F.; Emmerling, F.; Falkenhagen, J. Identification and Classification of Technical Lignins by means of Principle Component Analysis and k-Nearest Neighbor Algorithm. Chem. Methods 2021, 1, 354–361. [Google Scholar] [CrossRef]
- Faix, O.; Beinhoff, O. Ftir Spectra of Milled Wood Lignins and Lignin Polymer Models (DHP’s) with Enhanced Resolution Obtained by Deconvolution. J. Wood Chem. Technol. 1988, 8, 505–522. [Google Scholar] [CrossRef]
- Derkacheva, O.; Sukhov, D. Investigation of Lignins by FTIR Spectroscopy. Macromol. Symp. 2008, 265, 61–68. [Google Scholar] [CrossRef]
- Reyes-Rivera, J.; Terrazas, T. Lignin Analysis by HPLC and FTIR. In Xylem; De Lucas, M., Etchhells, J.P., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2017; Volume 1544, pp. 193–211. [Google Scholar] [CrossRef]
- Milstein, O.; Hüttermann, A.; Majcherczyk, A.; Schulze, K.; Fründ, R.; Lüdemann, H.D. Transformation of lignin-related compounds with laccase in organic solvents. J. Biotechnol. 1993, 30, 37–48. [Google Scholar] [CrossRef]
- Sun, X.; Bai, R.; Zhang, Y.; Wang, Q.; Fan, X.; Yuan, J.; Cui, L.; Wang, P. Laccase-Catalyzed Oxidative Polymerization of Phenolic Compounds. Appl. Biochem. Biotechnol. 2013, 171, 1673–1680. [Google Scholar] [CrossRef]
- Zhang, S.; Dong, Z.; Shi, J.; Yang, C.; Fang, Y.; Chen, G.; Chen, H.; Tian, C. Enzymatic hydrolysis of corn stover lignin by laccase, lignin peroxidase, and manganese peroxidase. Bioresour. Technol. 2022, 361, 127699. [Google Scholar] [CrossRef] [PubMed]
- Agapov, A.L.; Sokolov, A.P. Does the Molecular Weight Dependence of Tg Correlate to Me? Macromolecules 2009, 42, 2877–2878. [Google Scholar] [CrossRef]
- Hrůzová, K.; Kolman, K.; Matsakas, L.; Nordberg, H.; Christakopoulos, P.; Rova, U. Characterization of Organosolv Lignin Particles and Their Affinity to Sulfide Mineral Surfaces. ACS Appl. Nano Mater. 2023, 6, 17387–17396. [Google Scholar] [CrossRef]
- Hatakeyama, H.; Hatakeyama, T. Lignin Structure, Properties, and Applications. In Biopolymers; Abe, A., Dusek, K., Kobayashi, S., Eds.; Advances in Polymer Science; Springer: Berlin/Heidelberg, Germany, 2009; Volume 232, pp. 1–63. [Google Scholar]
- Sievers, D.A.; Kuhn, E.M.; Thompson, V.S.; Yancey, N.A.; Hoover, A.N.; Resch, M.G.; Wolfrun, E.J. Throughput, Reliability, and Yields of a Pilot-Scale Conversion Process for Production of Fermentable Sugars from Lignocellulosic Biomass: A Study on Feedstock Ash and Moisture. ACS Sustain. Chem. Eng. 2020, 8, 2008–2015. [Google Scholar] [CrossRef]
Samples | Conditions | |||
---|---|---|---|---|
NaOH (%) | Temperature (°C) | Time (h) | Solid–Liquid Ratio | |
EM7 | 1 | 50 | 1 | 1:20 |
EM8 | 1 | 80 | 1 | 1:20 |
EM9 | 1 | 22 | 24 | 1:20 |
EM1 | 1.5 | 22 | 1 | 1:20 |
EM2 | 1.5 | 22 | 24 | 1:20 |
EM3 | 1.5 | 80 | 1 | 1:20 |
EM4 | 1.5 | 50 | 1 | 1:20 |
EM5 | 3 | 50 | 1 | 1:20 |
EM6 | 3 | 22 | 1 | 1:20 |
Samples | Conditions | |||
---|---|---|---|---|
Solvent | Temperature (°C) | Time (h) | Solid-Liquid Ratio | |
EMOS1 | 50% aq.EtOH, pH 3.5 | 200 | 0.5 | 1:20 |
EMOS2 | 50% aq.EtOH, pH 3.5 | 160 | 0.5 | 1:20 |
EMOS3 | 50% aq.EtOH, pH 3.5 | 180 | 0.5 | 1:20 |
Band Wavelength (cm−1) | Vibration Band Assignment |
---|---|
3600–3200 | OH groups and hydrogen bonds |
2930 | Methyl groups, methoxyl C-H stretching |
1700 | Unconjugated C=O stretching, conjugated aldehydes and carboxylic acid |
1600 | Conjugated C=O streching |
1511 | C=C aromatic skeletal stretching |
1452 | C−H deformation asymmetric in CH2 and CH3, with C−H in-plane deformation |
1420 | Aromatic skeletal with C-H in-plane deformation |
1321 | S-ring ring breathing with C=O stretching, or G-ring substituted in C5 |
1239 | C-C, C-O and C=O stretching of G unit |
1157 | C=O stretching in conjugated ester |
1121 | Aromatic C-H deformation, C=O stretching |
1105 | Aromatic C–H in plane deformation in S-unit |
1030 | Aromatic C-H in plane deformation, C-O deformation in primary alcohols, C=O stretching (unconjugated) |
831 | C-H of G units |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, E.; Agnihotri, S.; Audonnet, F.; Record, E.; Dubessay, P.; Taherzadeh, M.J.; Michaud, P. From Corncob By-Product to Functional Lignins: Comparative Analysis of Alkaline and Organosolv Extraction Followed by Laccase Treatment. Biomolecules 2025, 15, 1226. https://doi.org/10.3390/biom15091226
Martin E, Agnihotri S, Audonnet F, Record E, Dubessay P, Taherzadeh MJ, Michaud P. From Corncob By-Product to Functional Lignins: Comparative Analysis of Alkaline and Organosolv Extraction Followed by Laccase Treatment. Biomolecules. 2025; 15(9):1226. https://doi.org/10.3390/biom15091226
Chicago/Turabian StyleMartin, Elise, Swarnima Agnihotri, Fabrice Audonnet, Eric Record, Pascal Dubessay, Mohammad J. Taherzadeh, and Philippe Michaud. 2025. "From Corncob By-Product to Functional Lignins: Comparative Analysis of Alkaline and Organosolv Extraction Followed by Laccase Treatment" Biomolecules 15, no. 9: 1226. https://doi.org/10.3390/biom15091226
APA StyleMartin, E., Agnihotri, S., Audonnet, F., Record, E., Dubessay, P., Taherzadeh, M. J., & Michaud, P. (2025). From Corncob By-Product to Functional Lignins: Comparative Analysis of Alkaline and Organosolv Extraction Followed by Laccase Treatment. Biomolecules, 15(9), 1226. https://doi.org/10.3390/biom15091226