Low Levels of Adropin Predicted New Incidents of Atrial Fibrillation in Patients with Heart Failure with Preserved Ejection Fraction
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Determination of AF and Follow-Up
2.3. Echocardiography Examination
2.4. Blood Sampling
2.5. Biomarkers Assessment
2.6. Glomerular Filtration Rate Estimation
2.7. Determination of Insulin Resistance
2.8. Statistics
3. Results
3.1. Baseline Clinical Characteristics
3.2. Spearman’s Correlations Between Hemodynamic Parameters, Comorbidities and Biomarkers
3.3. Predictive Factors of AF: The Results of the Receiver Operating Characteristic Curve Analysis
3.4. Predictive Factors for New Onset AF: Unadjusted and Adjusted for Multivariate Cox Proportional Hazard Models
3.5. Subgroup Analyses by Sex and BMI
3.6. Comparison of the Predictive Models
3.7. Reproducibility of Adropin Versus NT-proBNP
4. Discussion
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sagris, M.; Vardas, E.P.; Theofilis, P.; Antonopoulos, A.S.; Oikonomou, E.; Tousoulis, D. Atrial Fibrillation: Pathogenesis, Predisposing Factors, and Genetics. Int. J. Mol. Sci. 2021, 23, 6. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Nauta, J.F.; Hung, C.L.; Ouwerkerk, W.; Teng, T.K.; Voors, A.A.; Lam, C.S.; van Melle, J.P. Left atrial structure and function in heart failure with reduced (HFrEF) versus preserved ejection fraction (HFpEF): Systematic review and meta-analysis. Heart Fail. Rev. 2022, 27, 1933–1955. [Google Scholar] [CrossRef] [PubMed]
- Fauchier, L.; Bisson, A.; Bodin, A. Heart failure with preserved ejection fraction and atrial fibrillation: Recent advances and open questions. BMC Med. 2023, 21, 54. [Google Scholar] [CrossRef]
- Emmons-Bell, S.; Johnson, C.; Roth, G. Prevalence, incidence and survival of heart failure: A systematic review. Heart 2022, 108, 1351–1360. [Google Scholar] [CrossRef]
- Peigh, G.; Shah, S.J.; Patel, R.B. Left Atrial Myopathy in Atrial Fibrillation and Heart Failure: Clinical Implications, Mechanisms, and Therapeutic Targets. Curr. Heart Fail. Rep. 2021, 18, 85–98. [Google Scholar] [CrossRef]
- Taniguchi, N.; Miyasaka, Y.; Suwa, Y.; Harada, S.; Nakai, E.; Shiojima, I. Heart Failure in Atrial Fibrillation—An Update on Clinical and Echocardiographic Implications. Circ. J. 2020, 84, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.D.; O’Meara, E.; Böhm, M.; Savarese, G.; Kelly, P.R.; Vardeny, O.; Allen, L.A.; Lancellotti, P.; Gottlieb, S.S.; Samad, Z.; et al. Implications of Atrial Fibrillation for Guideline-Directed Therapy in Patients With Heart Failure: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2024, 83, 932–950. [Google Scholar] [CrossRef]
- Bidaoui, G.; Assaf, A.; Marrouche, N. Atrial Fibrillation in Heart Failure: Novel Insights, Challenges, and Treatment Opportunities. Curr. Heart Fail. Rep. 2024, 22, 3. [Google Scholar] [CrossRef]
- La Fazia, V.M.; Pierucci, N.; Mohanty, S.; Chiricolo, G.; Natale, A. Atrial Fibrillation Ablation in Heart Failure with Preserved Ejection Fraction. Card. Electrophysiol. Clin. 2025, 17, 53–62. [Google Scholar] [CrossRef]
- Borlaug, B.A.; Sharma, K.; Shah, S.J.; Ho, J.E. Heart Failure With Preserved Ejection Fraction: JACC Scientific Statement. J. Am. Coll. Cardiol. 2023, 81, 1810–1834. [Google Scholar] [CrossRef]
- Shehadeh, L.A.; Robleto, E.; Lopaschuk, G.D. Cardiac energy substrate utilization in heart failure with preserved ejection fraction: Reconciling conflicting evidence on fatty acid and glucose metabolism. Am. J. Physiol. Heart Circ. Physiol. 2025, 328, H1267–H1295. [Google Scholar] [CrossRef]
- Berezin, A.E.; Berezin, A.A.; Lichtenauer, M. Myokines and Heart Failure: Challenging Role in Adverse Cardiac Remodeling, Myopathy, and Clinical Outcomes. Dis. Markers 2021, 2021, 6644631. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Qin, D.; Hu, J.; Yang, Y.; Hu, D.; Yu, B. Inflamed adipose tissue: A culprit underlying obesity and heart failure with preserved ejection fraction. Front. Immunol. 2022, 13, 947147. [Google Scholar] [CrossRef] [PubMed]
- Rafaqat, S. Adipokines and Their Role in Heart Failure: A Literature Review. J. Innov. Card. Rhythm Manag. 2023, 14, 5657–5669. [Google Scholar] [CrossRef]
- Hanna, A.; Frangogiannis, N.G. Inflammatory Cytokines and Chemokines as Therapeutic Targets in Heart Failure. Cardiovasc. Drugs Ther. 2020, 34, 849–863. [Google Scholar] [CrossRef]
- Berezin, O.O.; Berezina, T.A.; Hoppe, U.C.; Lichtenauer, M.; Berezin, A.E. Diagnostic and predictive abilities of myokines in patients with heart failure. Adv. Protein Chem. Struct. Biol. 2024, 142, 45–98. [Google Scholar] [CrossRef]
- Schmalstieg-Bahr, K.; Gladstone, D.J.; Hummers, E.; Suerbaum, J.; Healey, J.S.; Zapf, A.; Köster, D.; Werhahn, S.M.; Wachter, R. Biomarkers for predicting atrial fibrillation: An explorative sub-analysis of the randomised SCREEN-AF trial. Eur. J. Gen. Pract. 2024, 30, 2327367. [Google Scholar] [CrossRef]
- Demirel, O.; Berezin, A.E.; Mirna, M.; Boxhammer, E.; Gharibeh, S.X.; Hoppe, U.C.; Lichtenauer, M. Biomarkers of Atrial Fibrillation Recurrence in Patients with Paroxysmal or Persistent Atrial Fibrillation Following External Direct Current Electrical Cardioversion. Biomedicines 2023, 11, 1452. [Google Scholar] [CrossRef]
- Soysal, A.U.; Gulfidan, A.; Raimoglou, D.; Atici, A.; Yalman, H.; Kucur, M.; Onder, S.E.; Durmaz, E.; Ikitimur, B.; Yalin, K. Comprehensive analysis of recurrence factors in cryoballoon AF ablation: Integrating clinical, biomarkers, and echocardiographic parameters. Int. J. Cardiovasc. Imaging 2024, 40, 2271–2281. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ding, J.; Mi, X.; Lin, Y.; Li, X.; Lian, J.; Liu, J.; Qu, L.; Zhao, B.; Li, X. Identification of common mechanisms and biomarkers of atrial fibrillation and heart failure based on machine learning. ESC Heart Fail. 2024, 11, 2323–2333. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.I.; D’Souza, C.; Singh, J.; Adeghate, E. Adropin’s Role in Energy Homeostasis and Metabolic Disorders. Int. J. Mol. Sci. 2022, 23, 8318. [Google Scholar] [CrossRef]
- Skrzypski, M.; Wojciechowicz, T.; Rak, A.; Krążek, M.; Fiedorowicz, J.; Strowski, M.Z.; Nowak, K.W. The levels of adropin and its therapeutic potential in diabetes. J. Endocrinol. 2025, 265, e240117. [Google Scholar] [CrossRef]
- Kumar, K.G.; Trevaskis, J.L.; Lam, D.D.; Sutton, G.M.; Koza, R.A.; Chouljenko, V.N.; Kousoulas, K.G.; Rogers, P.M.; Kesterson, R.A.; Thearle, M.; et al. Identification of adropin as a secreted factor linking dietary macronutrient intake with energy homeostasis and lipid metabolism. Cell Metab. 2008, 8, 468–481. [Google Scholar] [CrossRef]
- Gao, S.; Ghoshal, S.; Zhang, L.; Stevens, J.R.; McCommis, K.S.; Finck, B.N.; Lopaschuk, G.D.; Butler, A.A. The peptide hormone adropin regulates signal transduction pathways controlling hepatic glucose metabolism in a mouse model of diet-induced obesity. J. Biol. Chem. 2019, 294, 13366–13377. [Google Scholar] [CrossRef]
- Jasaszwili, M.; Wojciechowicz, T.; Billert, M.; Strowski, M.Z.; Nowak, K.W.; Skrzypski, M. Effects of adropin on proliferation and differentiation of 3T3-L1 cells and rat primary preadipocytes. Mol. Cell. Endocrinol. 2019, 496, 110532. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Dickel, N.; Györfi, A.H.; SafakTümerdem, B.; Li, Y.N.; Rigau, A.R.; Liang, C.; Hong, X.; Shen, L.; Matei, A.E.; et al. Attenuation of fibroblast activation and fibrosis by adropin in systemic sclerosis. Sci. Transl. Med. 2024, 16, eadd6570. [Google Scholar] [CrossRef]
- Butler, A.A.; Havel, P.J. Adropin: A cardio-metabolic hormone in the periphery, a neurohormone in the brain? Peptides 2025, 187, 171391. [Google Scholar] [CrossRef]
- Jurrissen, T.J.; Ramirez-Perez, F.I.; Cabral-Amador, F.J.; Soares, R.N.; Pettit-Mee, R.J.; Betancourt-Cortes, E.E.; McMillan, N.J.; Sharma, N.; Rocha, H.N.M.; Fujie, S.; et al. Role of adropin in arterial stiffening associated with obesity and type 2 diabetes. Am. J. Physiol. Heart Circ. Physiol. 2022, 323, H879–H891. [Google Scholar] [CrossRef] [PubMed]
- Vural, A.; Kurt, D.; Karagöz, A.; Emecen, Ö.; Aydin, E. The Relationship Between Coronary Collateral Circulation and Serum Adropin Levels. Cureus 2023, 15, e35166. [Google Scholar] [CrossRef] [PubMed]
- Berezin, A.A.; Obradovic, Z.; Berezina, T.A.; Boxhammer, E.; Lichtenauer, M.; Berezin, A.E. Cardiac Hepatopathy: New Perspectives on Old Problems through a Prism of Endogenous Metabolic Regulations by Hepatokines. Antioxidants 2023, 12, 516. [Google Scholar] [CrossRef]
- Ganesh Kumar, K.; Zhang, J.; Gao, S.; Rossi, J.; McGuinness, O.P.; Halem, H.H.; Culler, M.D.; Mynatt, R.L.; Butler, A.A. Adropin deficiency is associated with increased adiposity and insulin resistance. Obesity 2012, 20, 1394–1402. [Google Scholar] [CrossRef]
- Berezina, T.A.; Berezin, O.O.; Hoppe, U.C.; Lichtenauer, M.; Berezin, A.E. Low Levels of Adropin Predict Adverse Clinical Outcomes in Outpatients with Newly Diagnosed Prediabetes after Acute Myocardial Infarction. Biomedicines 2024, 12, 1857. [Google Scholar] [CrossRef]
- Kalkan, A.K.; Cakmak, H.A.; Erturk, M.; Kalkan, K.E.; Uzun, F.; Tasbulak, O.; Diker, V.O.; Aydin, S.; Celik, A. Adropin and Irisin in Patients with Cardiac Cachexia. Arq. Bras. Cardiol. 2018, 111, 39–47. [Google Scholar] [CrossRef]
- Liu, F.; Cui, B.; Zhao, X.; Wu, Y.; Qin, H.; Guo, Y.; Wang, H.; Lu, M.; Zhang, S.; Shen, J.; et al. Correlation of Serum Adropin Levels with Risk Factors of Cardiovascular Disease in Hemodialysis Patients. Metab. Syndr. Relat. Disord. 2021, 19, 401–408. [Google Scholar] [CrossRef]
- Adıyaman, M.Ş.; Canpolat Erkan, R.E.; Kaya, İ.; Aba Adıyaman, Ö. Serum Adropin Level in the Early Period of ST-Elevation Myocardial Infarction and Its Relationship With Cobalamin and Folic Acid. Cureus 2022, 14, e32748. [Google Scholar] [CrossRef] [PubMed]
- Bays, J.A.; Bartlett, A.M.; Boone, A.M.; Kim, Y.; Yu, Z.; Palle, S.K.; Short, K.R. Serum adropin is unaltered in adolescents with histology-confirmed steatotic liver disease. J. Pediatr. Gastroenterol. Nutr. 2025, 80, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Berezina, T.A.; Berezin, O.O.; Hoppe, U.C.; Lichtenauer, M.; Berezin, A.E. Adropin Predicts Asymptomatic Heart Failure in Patients with Type 2 Diabetes Mellitus Independent of the Levels of Natriuretic Peptides. Diagnostics 2024, 14, 1728. [Google Scholar] [CrossRef] [PubMed]
- El Moneem Elfedawy, M.A.; El Sadek Elsebai, S.A.; Tawfik, H.M.; Youness, E.R.; Zaki, M. Adropin a candidate diagnostic biomarker for cardiovascular disease in patients with chronic kidney disease. J. Genet. Eng. Biotechnol. 2024, 22, 100438. [Google Scholar] [CrossRef]
- Kaur, R.; Krishan, P.; Kumari, P.; Singh, T.; Singh, V.; Singh, R.; Ahmad, S.F. Clinical Significance of Adropin and Afamin in Evaluating Renal Function and Cardiovascular Health in the Presence of CKD-MBD Biomarkers in Chronic Kidney Disease. Diagnostics 2023, 13, 3158. [Google Scholar] [CrossRef]
- Berezina, T.A.; Berezin, O.O.; Lichtenauer, M.; Berezin, A.E. Predictors for Irreversibility of Contrast-Induced Acute Kidney Injury in Patients with Obesity After Contrast-Enhanced Computed Tomography Coronary Angiography. Adv. Ther. 2025, 42, 293–309. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2022, 24, 4–131. [Google Scholar] [CrossRef] [PubMed]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498, Erratum in Eur. Heart J. 2021, 42, 507; Erratum in Eur. Heart J. 2021, 42, 546–547; Erratum in Eur. Heart J. 2021, 42, 4194. [Google Scholar] [CrossRef]
- January, C.T.; Wann, L.S.; Calkins, H.; Chen, L.Y.; Cigarroa, J.E.; Cleveland, J.C., Jr.; Ellinor, P.T.; Ezekowitz, M.D.; Field, M.E.; Furie, K.; et al. 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in Collaboration With the Society of Thoracic Surgeons. Circulation 2019, 140, e125–e151, Erratum in Circulation 2019, 140, e285. [Google Scholar] [CrossRef]
- Mitchell, C.; Rahko, P.S.; Blauwet, L.A.; Canaday, B.; Finstuen, J.A.; Foster, M.C.; Horton, K.; Ogunyankin, K.O.; Palma, R.A.; Velazquez, E.J. Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2018, 32, 1–64. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Karantoumanis, I.; Doundoulakis, I.; Zafeiropoulos, S.; Oikonomou, K.; Makridis, P.; Pliakos, C.; Karvounis, H.; Giannakoulas, G. Atrial conduction time associated predictors of recurrent atrial fibrillation. Int. J. Cardiovasc. Imaging 2021, 37, 1267–1277. [Google Scholar] [CrossRef]
- Blum, S.; Meyre, P.; Aeschbacher, S.; Berger, S.; Auberson, C.; Briel, M.; Osswald, S.; Conen, D. Incidence and predictors of atrial fibrillation progression: A systematic review and meta-analysis. Heart Rhythm 2019, 16, 502–510. [Google Scholar] [CrossRef]
- Turkkolu, S.T.; Selçuk, E.; Köksal, C. Biochemical predictors of postoperative atrial fibrillation following cardiac surgery. BMC Cardiovasc. Disord. 2021, 21, 167. [Google Scholar] [CrossRef]
- Stojanovic, M.; Kalezic, N.; Milicic, B.; Zivkovic, M.; Ivosevic, T.; Lakicevic, M.; Zivaljevic, V. Risk Factors for New Onset Atrial Fibrillation during Thyroid Gland Surgery. Med. Princ. Pract. 2022, 31, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.H.; Liao, C.F.; Chen, Z.Y.; Chao, T.F.; Chen, S.A.; Tsao, H.M. Distinct atrial remodeling in patients with subclinical atrial fibrillation: Lessons from computed tomographic images. Pharmacol. Res. Perspect. 2022, 10, e00927. [Google Scholar] [CrossRef]
- Werhahn, S.M.; Becker, C.; Mende, M.; Haarmann, H.; Nolte, K.; Laufs, U.; Zeynalova, S.; Löffler, M.; Dagres, N.; Husser, D.; et al. NT-proBNP as a marker for atrial fibrillation and heart failure in four observational outpatient trials. ESC Heart Fail. 2022, 9, 100–109. [Google Scholar] [CrossRef]
- Staszewsky, L.; Meessen, J.M.T.A.; Novelli, D.; Wienhues-Thelen, U.H.; Disertori, M.; Maggioni, A.P.; Masson, S.; Tognoni, G.; Franzosi, M.G.; Lucci, D.; et al. Total NT-proBNP, a novel biomarker related to recurrent atrial fibrillation. BMC Cardiovasc. Disord. 2021, 21, 553. [Google Scholar] [CrossRef]
- Budolfsen, C.; Schmidt, A.S.; Lauridsen, K.G.; Hoeks, C.B.; Waziri, F.; Poulsen, C.B.; Riis, D.N.; Rickers, H.; Løfgren, B. NT-proBNP cut-off value for ruling out heart failure in atrial fibrillation patients—A prospective clinical study. Am. J. Emerg. Med. 2023, 71, 18–24. [Google Scholar] [CrossRef]
- Shu, H.; Cheng, J.; Li, N.; Zhang, Z.; Nie, J.; Peng, Y.; Wang, Y.; Wang, D.W.; Zhou, N. Obesity and atrial fibrillation: A narrative review from arrhythmogenic mechanisms to clinical significance. Cardiovasc. Diabetol. 2023, 22, 192. [Google Scholar] [CrossRef] [PubMed]
- Svennberg, E.; Lindahl, B.; Berglund, L.; Eggers, K.M.; Venge, P.; Zethelius, B.; Rosenqvist, M.; Lind, L.; Hijazi, Z. NT-proBNP is a powerful predictor for incident atrial fibrillation—Validation of a multimarker approach. Int. J. Cardiol. 2016, 223, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Wangm, W.; Zhou, T.; Li, J.; Yuan, C.; Li, C.; Chen, S.; Shen, C.; Gu, D.; Lu, X.; Liu, F. Association between NT-proBNP levels and risk of atrial fibrillation: A systematic review and meta-analysis of cohort studies. Heart 2025, 111, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Xue, Y.; Shang, F.; Ni, S.; Liu, X.; Fan, B.; Wang, H. Association of serum adropin with the presence of atrial fibrillation and atrial remodeling. J. Clin. Lab. Anal. 2019, 33, e22672. [Google Scholar] [CrossRef]
- Berezin, A.A.; Obradovic, Z.; Fushtey, I.M.; Berezina, T.A.; Novikov, E.V.; Schmidbauer, L.; Lichtenauer, M.; Berezin, A.E. The Impact of SGLT2 Inhibitor Dapagliflozin on Adropin Serum Levels in Men and Women with Type 2 Diabetes Mellitus and Chronic Heart Failure. Biomedicines 2023, 11, 457. [Google Scholar] [CrossRef]
- Wang, J.; Ding, N.; Chen, C.; Gu, S.; Liu, J.; Wang, Y.; Lin, L.; Zheng, Y.; Li, Y. Adropin: A key player in immune cell homeostasis and regulation of inflammation in several diseases. Front. Immunol. 2025, 16, 1482308. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; McMillan, R.P.; Jacas, J.; Zhu, Q.; Li, X.; Kumar, G.K.; Casals, N.; Hegardt, F.G.; Robbins, P.D.; Lopaschuk, G.D.; et al. Regulation of substrate oxidation preferences in muscle by the peptide hormone adropin. Diabetes 2014, 63, 3242–3252. [Google Scholar] [CrossRef] [PubMed]
- Ying, T.; Wu, L.; Lan, T.; Wei, Z.; Hu, D.; Ke, Y.; Jiang, Q.; Fang, J. Adropin inhibits the progression of atherosclerosis in ApoE-/-/Enho-/- mice by regulating endothelial-to-mesenchymal transition. Cell Death Discov. 2023, 9, 402. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Wang, D.; Zhong, D.; Xie, W.; Luo, J. Adropin Carried by Reactive Oxygen Species-Responsive Nanocapsules Ameliorates Renal Lipid Toxicity in Diabetic Mice. ACS Appl. Mater. Interfaces 2022, 14, 37330–37344. [Google Scholar] [CrossRef] [PubMed]
Variables | Entire Group Patients with HFpEF (n = 953) | Patients with HFpEF and AF (n = 172) | Patients with HFpEF and Sinus Rhythm (n = 781) | p Value |
---|---|---|---|---|
Demographics and anthropomorphic parameters | ||||
Age (years) | 69 (54–85) | 75 (61–87) | 66 (52–81) | 0.042 |
Male (n (%)) | 497 (52.2) | 92 (53.5) | 405 (51.9) | 0.818 |
BMI (kg/m2) | 26.9 ± 7.20 | 27.6 ± 6.10 | 25.8 ± 5.80 | 0.680 |
Waist circumference (cm) | 99 ± 8 | 101 ± 5 | 98 ± 9 | 0.730 |
WHR (units) | 0.90 ± 0.13 | 0.91 ± 0.10 | 0.90 ± 0.14 | 0.850 |
Medical history | ||||
Dyslipidemia (n (%)) | 588 (62.0) | 108 (62.8) | 480 (61.5) | 0.846 |
Hypertension (n (%)) | 838 (87.9) | 153 (88.9) | 685 (87.7) | 0.890 |
Stable CAD (n (%)) | 343 (36.0) | 64 (37.2) | 279 (35.7) | 0.388 |
Dilated CMP, (n (%)) | 58 (6.1) | 12 (7.0) | 46 (5.9) | 0.482 |
Smoking (n (%)) | 335 (35.2) | 65 (37.7) | 270 (34.5) | 0.358 |
Abdominal obesity (n (%)) | 278 (29.2) | 48 (27.9) | 230 (29.4) | 0.642 |
Type 2 diabetes mellitus, (n (%)) | 356 (37.4) | 72 (41.9) | 284 (36.4) | 0.042 |
LVH (n (%)) | 676 (70.9) | 128 (74.4) | 548 (70.2) | 0.056 |
CKD stages 1–3 (n (%)) | 251 (26.3) | 69 (40.1) | 182 (23.3) | 0.043 |
New York Heart Association class II/III | 385 (40.4)/568 (59.6) | 65 (37.8)/107 (62.2) | 320 (41.0)/461 (59.0) | 0.710 |
Hemodynamics | ||||
Systolic BP (mm Hg) | 143 ± 11 | 147± 8 | 140 ± 13 | 0.840 |
Diastolic BP (mm Hg) | 87 ± 9 | 86 ± 9 | 87 ± 10 | 0.780 |
LVEDV (mL) | 158 (144–173) | 160 (142–181) | 157 (140–178) | 0.650 |
LVESV (mL) | 73 (63–82) | 73 (62–86) | 71 (60–83) | 0.612 |
LVEF (%) | 54 (51–57) | 53 (51–56) | 55 (52–59) | 0.545 |
LVMMI (g/m2) | 144 ± 16 | 148 ± 19 | 142 ± 18 | 0.477 |
LAVI (mL/m2) | 38 (33–44) | 40 (35–48) | 37 (32–43) | 0.046 |
E/e` (units) | 19 ± 6 | 20 ± 4 | 19 ± 5 | 0.811 |
GLS (%) | −17.9 (−16.4; −19.2) | −18.2 (−16.7; −19.8) | −17.1 (−16.3; −19.5) | 0.266 |
Biomarkers | ||||
Hemoglobin, g/L | 146 (132–158) | 144 (131–155) | 147 (130–162) | 0.673 |
eGFR (mL/min/1.73 m2) | 81 ± 17 | 77 ± 19 | 83 ± 15 | 0.533 |
Fasting glucose (mmol/L) | 4.95 ± 0.9 | 5.07 ± 1.1 | 4.91 ± 1.2 | 0.810 |
HOMA-IR (units) | 7.43 ± 2.5 | 7.47± 2.3 | 7.38 ± 2.8 | 0.650 |
HbA1c (%) | 6.42 ± 0.16 | 6.45 ± 0.15 | 6.38 ± 0.20 | 0.711 |
Creatinine (µmol/L) | 109.8 ± 21.6 | 115.6± 20.1 | 102.2 ± 23.2 | 0.520 |
SUA (µmol/L) | 347 ± 120 | 359 ± 118 | 346 ± 135 | 0.351 |
Total cholesterol (mmol/L) | 5.72 ± 1.30 | 5.80 ± 1.25 | 5.70 ± 1.28 | 0.433 |
HDL-C (mmol/L) | 0.99 ± 0.15 | 1.01 ± 0.14 | 0.99 ± 0.16 | 0.355 |
LDL-C (mmol/L) | 3.84± 0.22 | 3.90 ± 0.20 | 3.81± 0.22 | 0.590 |
Triglycerides (mmol/L) | 2.21 ± 0.16 | 2.23 ± 0.15 | 2.20 ± 0.17 | 0.620 |
hs-CRP (mg/L) | 6.05 (2.98–9.17) | 6.38 (3.18–9.75) | 5.87 (2.24–9.56) | 0.048 |
TNF-alpha (pg/mL) | 3.46 (2.15–4.86) | 3.52 (2.09–4.93) | 3.29 (1.98–4.80) | 0.580 |
NT-proBNP (pmol/mL) | 1068 (375–1606) | 1360 (532–1850) | 986 (343–1657) | 0.042 |
Adropin (ng/mL) | 3.48 (1.58–5.45) | 2.93 (1.25–4.58) | 3.72 (1.69–5.80) | 0.044 |
Galectin-3 (ng/mL) | 4.24 (1.15–7.46) | 4.31 (1.08–7.55) | 4.15 (1.01–7.31) | 0.312 |
IL-6 (pg/mL) | 1.98 (0.80–3.15) | 2.14 (0.93–3.21) | 1.92 (0.77–3.09) | 0.060 |
sST2 (ng/mL) | 11.2 (3.46–18.9) | 14.3 (3.54–20.2) | 10.9 (2.87–19.1) | 0.044 |
hs-TnT, ng/mL | 0.06 (0.011–0.117) | 0.07 (0.013–0.122) | 0.05 (0.005–0.116) | 0.548 |
Concomitant medications | ||||
ACEIs (n (%)) | 715 (75.0) | 123 (71.5) | 592 (75.8) | 0.174 |
ARBs (n (%)) | 152 (15.9) | 24 (14.0) | 128 (16.4) | 0.046 |
ARNI, (n (%)) | 36 (3.8) | 5 (2.9) | 31 (4.0) | 0.050 |
Beta-blockers (n (%)) | 851 (89.3) | 137 (79.7) | 714 (91.4) | 0.048 |
Ivabradine (n (%)) | 137 (14.4) | 18 (10.5) | 119 (15.2) | 0.046 |
CCBs (n (%)) | 181 (19.0) | 33 (19.2) | 148 (19.0) | 0.880 |
Loop and thiazide-like diuretics (n (%)) | 891 (93.5) | 163 (94.8) | 728 (93.2) | 0.835 |
Antiplatelet agents (n (%)) | 793 (83.2) | 144 (83.7) | 649 (83.1) | 0.882 |
Anticoagulants (n (%)) | 91 (9.5) | 15 (8.7) | 76 (9.7) | 0.828 |
Metformin (n (%)) | 325 (34.1) | 57 (33.1) | 268 (34.3) | 0.850 |
DPP-4 inhibitors (n (%)) | 31 (3.2) | 5 (2.9) | 26 (3.3) | 0.162 |
GLP-1 RAs (n (%)) | 48 (5.0) | 8 (4.7) | 40 (5.1) | 0.116 |
SGLT2 inhibitors (n (%)) | 811 (85.0) | 127 (73.8) | 684 (87.6) | 0.042 |
Statins (n (%)) | 856 (89.8) | 152 (88.4) | 704 (90.1) | 0.820 |
Variables | AUC | 95% CI | p Value | Cutoff | Se, % | Sp, % |
---|---|---|---|---|---|---|
Age | 0.697 | 0.605–0.789 | 0.0002 | 75 years | 70.3 | 61.6 |
LAVI | 0.841 | 0.735–0.932 | 0.0001 | 40 mL/m2 | 72.1 | 79.3 |
NT-proBNP | 0.843 | 0.751–0.932 | 0.0001 | 1440 pmol/mL | 84.2 | 77.8 |
hs-CRP | 0.753 | 0.646–0.860 | 0.0002 | 5.40 mg/L | 61.9 | 67.7 |
Adropin | 0.893 | 0.827–0.959 | 0.0001 | 2.95 ng/mL | 89.4 | 73.0 |
sST2 | 0.839 | 0.766–0.912 | 0.0001 | 15.5 ng/mL | 77.9 | 71.1 |
Predictive Factors | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | HR (95% CI) | p Value | |
Age ≥ 75 years | 1.215 (1.046–1.448) | 0.046 | - | - | ||
LVH (presence vs. absent) | 1.036 (0.988–1.122) | 0.466 | - | - | ||
T2DM (presence vs. absent) | 1.366 (1.124–1.578) | 0.044 | 1.325 (1.118–1.543) | 0.048 | - | |
CKD stages 1–3 (presence vs. absent) | 1.292 (1.164–1.459) | 0.012 | 1.203 (1.018–1.422) | 0.050 | - | |
New York Heart Association HF class (III vs. II) | 1.216 (1.002–1.452) | 0.064 | - | - | ||
LAVI ≥ 40 mL/m2 | 1.533 (1.117–1.956) | 0.001 | 1.411 (1.104–1.847) | 0.026 | - | |
NT-proBNP ≥ 1440 pmol/mL | 1.497 (1.125–2.833) | 0.001 | 1.541 (1.116–2.253) | 0.001 | 1.536 (1.120–2.247) | 0.001 |
hs-CRP ≥ 5.40 mg/L | 1.126 (1.014–1.843) | 0.048 | 1.088 (1.035–1.106) | 0.052 | 1.049 (1.013–1.098) | 0.144 |
Adropin ≤ 2.95 ng/mL | 1.783 (1.255–2.815) | 0.001 | 1.696 (1.247–2.990) | 0.001 | 1.690 (1.240–2.864) | 0.001 |
sST2 ≥ 15.5 ng/mL | 1.246 (1.112–1.878) | 0.012 | 1.215 (1.088–1.830) | 0.051 | 1.176 (1.043–1.820) | 0.062 |
Subgroup | Event Rates (Number of Patients with AF/Entire Patients, %) | OR (95% CI) per 0.25 ng/mL Decrease of Adropin | p for Interaction |
---|---|---|---|
Entire group | 172/953, 18.0 | 1.140 (1.045–1.279) | <0.001 |
Sex | |||
Male | 92/497, 18.5 | 1.215 (1.012–1.293) | 0.166 |
Female | 80/456, 17.5 | 1.061 (0.961–1.116) | |
BMI | |||
<29 kg/m2 | 124/675, 18.4 | 1.126 (0.998–1.255) | 0.122 |
≥30 kg/m2 | 48/278, 17.3 | 1.167 (1.041–1.198) | |
T2DM | |||
no | 100/597, 16.8 | 1.049 (1.026–1.087) | <0.001 |
yes | 72/356, 20.2 | 1.227 (1.132–1.327) | |
CKD stages 1–3 | |||
no | 103/702, 14.7 | 1.082 (1.034–1.129) | <0.001 |
yes | 69/251, 27.5 | 1.230 (1.121–1.355) |
Models | AUC | NRI | IDI | |||
---|---|---|---|---|---|---|
M (95% CI) | p Value | M (95% CI) | p Value | M (95% CI) | p Value | |
NT-proBNP ≥ 1440 pmol/mL | 0.843 (0.751–0.932) | - | Reference | Reference | ||
Adropin ≤ 2.95 ng/mL | 0.893 (0.827–0.959) | 0.040 | 0.25 (0.21–0.30) | 0.046 | 0.41 (0.32–0.52) | 0.044 |
NT-proBNP ≥ 1440 pmol/mL + Adropin ≤ 2.95 ng/mL | 0.929 (0.837–0.974) | 0.048 | 0.29 (0.24–0.35) | 0.040 | 0.48 (0.40–0.56) | 0.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berezina, T.A.; Berezin, O.O.; Novikov, E.V.; Berezin, A.E. Low Levels of Adropin Predicted New Incidents of Atrial Fibrillation in Patients with Heart Failure with Preserved Ejection Fraction. Biomolecules 2025, 15, 1171. https://doi.org/10.3390/biom15081171
Berezina TA, Berezin OO, Novikov EV, Berezin AE. Low Levels of Adropin Predicted New Incidents of Atrial Fibrillation in Patients with Heart Failure with Preserved Ejection Fraction. Biomolecules. 2025; 15(8):1171. https://doi.org/10.3390/biom15081171
Chicago/Turabian StyleBerezina, Tetiana A., Oleksandr O. Berezin, Evgen V. Novikov, and Alexander E. Berezin. 2025. "Low Levels of Adropin Predicted New Incidents of Atrial Fibrillation in Patients with Heart Failure with Preserved Ejection Fraction" Biomolecules 15, no. 8: 1171. https://doi.org/10.3390/biom15081171
APA StyleBerezina, T. A., Berezin, O. O., Novikov, E. V., & Berezin, A. E. (2025). Low Levels of Adropin Predicted New Incidents of Atrial Fibrillation in Patients with Heart Failure with Preserved Ejection Fraction. Biomolecules, 15(8), 1171. https://doi.org/10.3390/biom15081171