Symphony of Digestion: Coordinated Host–Microbiome Enzymatic Interplay in Gut Ecosystem
Abstract
1. Introduction
2. The Enzymatic Roles of the Host and the Gut Microbiota
2.1. Host Digestive Enzymes
2.2. Microbial Digestive Enzymes
3. Models of Cooperation: Duet or Orchestra?
4. Disruption of Enzymatic Harmony: Dysbiosis and Disease
5. Therapeutic Perspectives and Future Directions
6. Some Poorly Covered or Overlooked Points
7. Orchestrating Host–Gut Microbiota Cooperation: A System Conducting
8. Conclusions and Perspectives
- Strain-specific responses—elucidating how different microbial strains within the same species respond to oxidative and nutritional stresses will enhance our understanding of gut resilience and adaptability.
- Integration of multi-omics approaches—combining metagenomics, transcriptomics, metabolomics, and proteomics will provide comprehensive insights into the dynamic interplay between microbes, enzymes, and host responses.
- Personalized nutrition and gut microbiota modulation—advancing microbiota-targeted interventions, including prebiotics, probiotics, and postbiotics, tailored to individual microbiome compositions, could significantly improve metabolic and gastrointestinal health. Such an approach may be a cornerstone for precision nutrition, leveraging high-throughput sequencing, metabolomics, and bioinformatics to tailor dietary recommendations based on individual genetic profiles, microbiome composition, lifestyle, and environmental factors, aiming to optimize nutrient intake, promote a healthy microbiome, and reduce disease risk.
- Therapeutic targeting of the gut barrier—strengthening intestinal barrier function through dietary, microbial, or pharmacological means offers a promising avenue to counteract systemic inflammation and chronic diseases linked to gut dysbiosis.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
B12 | vitamin B12 (Cobalamin) |
CAZymes | carbohydrate-active enzymes |
GIT | gastrointestinal tract |
H2O2 | hydrogen peroxide |
ROS | reactive oxygen species |
SCFA | short-chain fatty acid |
TLR | toll-like receptor |
References
- Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut Microbiota Functions: Metabolism of Nutrients and other Food Components. Eur. J. Nutr. 2018, 57, 1–24. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Li, L.; Zhong, C.; Zhang, Y.; Yang, X.; Li, M.; Yang, C. The Role of Gut Microbiota in Intestinal Disease: From an Oxidative Stress Perspective. Front. Microbiol. 2024, 15, 1328324. [Google Scholar] [CrossRef]
- Jiang, Z.; Mei, L.; Li, Y.; Guo, Y.; Yang, B.; Huang, Z.; Li, Y. Enzymatic Regulation of the Gut Microbiota: Mechanisms and Implications for Host Health. Biomolecules 2024, 14, 1638. [Google Scholar] [CrossRef] [PubMed]
- Karasov, W.H.; Diamond, J.M. Interplay between Physiology and Ecology in Digestion: Intestinal Nutrient Transporters Vary within and between Species According to Diet. BioScience 1988, 38, 602–611. [Google Scholar] [CrossRef]
- Clark, J.A.; Coopersmith, C.M. Intestinal Crosstalk: A New Paradigm for Understanding the Gut as the “Motor” of Critical Illness. Shock 2007, 28, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Gregor, R.; Probst, M.; Eyal, S.; Aksenov, A.; Sasson, G.; Horovitz, I.; Dorrestein, P.C.; Meijler, M.M.; Mizrahi, I. Mammalian Gut Metabolomes Mirror Microbiome Composition and Host Phylogeny. ISME J. 2022, 16, 1262–1274. [Google Scholar] [CrossRef]
- Deehan, E.C.; Duar, R.M.; Armet, A.M.; Perez-Muñoz, M.E.; Jin, M.; Walter, J. Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates to Improve Human Health. Microbiol. Spectr. 2017, 5, 10.1128. [Google Scholar] [CrossRef]
- de Vos, W.M.; Tilg, H.; Van Hul, M.; Cani, P.D. Gut Microbiome and Health: Mechanistic Insights. Gut 2022, 71, 1020–1032. [Google Scholar] [CrossRef]
- Shabani, M.; Ghoshehy, A.; Mottaghi, A.M.; Chegini, Z.; Kerami, A.; Shariati, A.; Taati Moghadam, M. The Relationship between Gut Microbiome and Human Diseases: Mechanisms, Predisposing Factors and Potential Intervention. Front. Cell. Infect. Microbiol. 2025, 15, 1516010. [Google Scholar] [CrossRef]
- Sensoy, I. A Review on the Food Digestion in the Digestive Tract and the Used in vitro Models. Curr. Res. Food Sci. 2021, 4, 308–319. [Google Scholar] [CrossRef]
- Lu, V.B.; Gribble, F.M.; Reimann, F. Nutrient-Induced Cellular Mechanisms of Gut Hormone Secretion. Nutrients 2021, 13, 883. [Google Scholar] [CrossRef]
- Cho, H.; Lim, J. The Emerging Role of Gut Hormones. Mol. Cells 2024, 47, 100126. [Google Scholar] [CrossRef]
- Flint, H.J.; Scott, K.P.; Duncan, S.H.; Louis, P.; Forano, E. Microbial Degradation of Complex Carbohydrates in the Gut. Gut Microbes 2012, 3, 289–306. [Google Scholar] [CrossRef]
- Wardman, J.F.; Bains, R.K.; Rahfeld, P.; Withers, S.G. Carbohydrate-Active Enzymes (CAZymes) in the Gut Microbiome. Nat. Rev. Microbiol. 2022, 20, 542–556. [Google Scholar] [CrossRef] [PubMed]
- Diether, N.E.; Willing, B.P. Microbial Fermentation of Dietary Protein: An Important Factor in Diet–Microbe–Host Interaction. Microorganisms 2019, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Chand, D.; Avinash, V.S.; Yadav, Y.; Pundle, A.V.; Suresh, C.G.; Ramasamy, S. Molecular Features of Bile Salt Hydrolases and Relevance in Human Health. Biochim. Biophys. Acta Gen. Subj. 2017, 1861 Pt A, 2981–2991. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Yang, S.; Tang, C.; Li, D.; Kan, Y.; Yao, L. New Insights into Microbial Bile Salt Hydrolases: From Physiological Roles to Potential Applications. Front. Microbiol. 2025, 16, 1513541. [Google Scholar] [CrossRef]
- den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The Role of Short-Chain Fatty Acids in the Interplay between Diet, Gut Microbiota, and Host Energy Metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef]
- Degnan, P.H.; Barry, N.A.; Mok, K.C.; Taga, M.E.; Goodman, A.L. Human Gut Microbes Use Multiple Transporters to Distinguish Vitamin B12 Analogs and Compete in the Gut. Cell Host Microbe 2014, 15, 47–57. [Google Scholar] [CrossRef]
- Sorboni, S.G.; Moghaddam, H.S.; Jafarzadeh-Esfehani, R.; Soleimanpour, S. A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clin. Microbiol. Rev. 2022, 35, e0033820. [Google Scholar] [CrossRef]
- Liu, J.; Tan, Y.; Cheng, H.; Zhang, D.; Feng, W.; Peng, C. Functions of Gut Microbiota Metabolites, Current Status and Future Perspectives. Aging Dis. 2022, 13, 1106–1126. [Google Scholar] [CrossRef]
- Dmytriv, T.R.; Lushchak, O.; Lushchak, V.I. Glucoraphanin Conversion into Sulforaphane and Related Compounds by Gut Microbiota. Front. Physiol. 2025, 16, 1497566. [Google Scholar] [CrossRef] [PubMed]
- Degnan, P.H.; Taga, M.E.; Goodman, A.L. Vitamin B12 as a Modulator of Gut Microbial Ecology. Cell Metab. 2014, 20, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.F.; Maier, C.S. The Chemistry of Gut Microbial Metabolism of Polyphenols. Phytochem. Rev. 2016, 15, 425–444. [Google Scholar] [CrossRef] [PubMed]
- Gasaly, N.; Gotteland, M. Interference of Dietary Polyphenols with Potentially Toxic Amino Acid Metabolites Derived from the Colonic Microbiota. Amino Acids 2022, 54, 311–324. [Google Scholar] [CrossRef]
- Larabi, A.B.; Masson, H.L.P.; Bäumler, A.J. Bile Acids as Modulators of Gut Microbiota Composition and Function. Gut Microbes 2023, 15, 2172671. [Google Scholar] [CrossRef]
- Chiang, J.Y.; Pathak, P.; Liu, H.; Donepudi, A.; Ferrell, J.; Boehme, S. Intestinal Farnesoid X Receptor and Takeda G Protein Couple Receptor 5 Signaling in Metabolic Regulation. Dig Dis. 2017, 35, 241–245. [Google Scholar] [CrossRef]
- Brito Rodrigues, P.; de Rezende Rodovalho, V.; Sencio, V.; Benech, N.; Creskey, M.; Silva Angulo, F.; Delval, L.; Robil, C.; Gosset, P.; Machelart, A.; et al. Integrative Metagenomics and Metabolomics Reveal Age-Associated Gut Microbiota and Metabolite Alterations in a Hamster Model of COVID-19. Gut Microbes 2025, 17, 2486511. [Google Scholar] [CrossRef]
- Kundu, P.; Lee, H.U.; Garcia-Perez, I.; Tay, E.X.Y.; Kim, H.; Faylon, L.E.; Martin, K.A.; Purbojati, R.; Drautz-Moses, D.I.; Ghosh, S.; et al. Neurogenesis and Prolongevity Signaling in Young Germ-Free Mice Transplanted with the Gut Microbiota of Old Mice. Sci. Transl. Med. 2019, 11, eaau4760. [Google Scholar] [CrossRef]
- Darnaud, M.; De Vadder, F.; Bogeat, P.; Boucinha, L.; Bulteau, A.L.; Bunescu, A.; Couturier, C.; Delgado, A.; Dugua, H.; Elie, C.; et al. A Standardized Gnotobiotic Mouse Model Harboring a Minimal 15-Member Mouse Gut Microbiota Recapitulates SOPF/SPF Phenotypes. Nat. Commun. 2021, 12, 6686. [Google Scholar] [CrossRef]
- Jans, M.; Vereecke, L. A Guide to Germ-Free and Gnotobiotic Mouse Technology to Study Health and Disease. FEBS J. 2025, 292, 1228–1251. [Google Scholar] [CrossRef]
- Haran, J.P.; McCormick, B.A. Aging, Frailty, and the Microbiome-How Dysbiosis Influences Human Aging and Disease. Gastroenterology 2021, 160, 507–523. [Google Scholar] [CrossRef]
- Dmytriv, T.R.; Lushchak, V.I. Gut Microbiome as a Target for Anti-Ageing Interventions. Subcell. Biochem. 2024, 107, 307–325. [Google Scholar] [CrossRef]
- Di Vincenzo, F.; Del Gaudio, A.; Petito, V.; Lopetuso, L.R.; Scaldaferri, F. Gut Microbiota, Intestinal Permeability, and Systemic Inflammation: A Narrative Review. Intern. Emerg. Med. 2024, 19, 275–293. [Google Scholar] [CrossRef]
- Cusumano, G.; Flores, G.A.; Venanzoni, R.; Angelini, P. The Impact of Antibiotic Therapy on Intestinal Microbiota: Dysbiosis Antibiotic Resistance, and Restoration Strategies. Antibiotics 2025, 14, 371. [Google Scholar] [CrossRef]
- Colquhoun, C.; Duncan, M.; Grant, G. Inflammatory Bowel Diseases: Host-Microbial-Environmental Interactions in Dysbiosis. Diseases 2020, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Cronin, P.; Joyce, S.A.; O’Toole, P.W.; O’Connor, E.M. Dietary Fibre Modulates the Gut Microbiota. Nutrients 2021, 13, 1655. [Google Scholar] [CrossRef] [PubMed]
- Thaiss, C.A.; Zeevi, D.; Levy, M.; Zilberman-Schapira, G.; Suez, J.; Tengeler, A.C.; Abramson, L.; Katz, M.N.; Korem, T.; Zmora, N.; et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 2014, 159, 514–529. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, N.; Kitano, S.; Puah, G.R.Y.; Kittelmann, S.; Hwang, I.Y.; Chang, M.W. Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chem. Rev. 2023, 123, 31–72. [Google Scholar] [CrossRef]
- Abouelela, M.E.; Helmy, Y.A. Next-Generation Probiotics as Novel Therapeutics for Improving Human Health: Current Trends and Future Perspectives. Microorganisms 2024, 12, 430. [Google Scholar] [CrossRef]
- Lalowski, P.; Zielińska, D. The Most Promising Next-Generation Probiotic Candidates—Impact on Human Health and Potential Application in Food Technology. Fermentation 2024, 10, 444. [Google Scholar] [CrossRef]
- Kumar, A.; Green, K.M.; Rawat, M. A Comprehensive Overview of Postbiotics with a Special Focus on Discovery Techniques and Clinical Applications. Foods 2024, 13, 2937. [Google Scholar] [CrossRef] [PubMed]
- Hijová, E. Postbiotics as Metabolites and Their Biotherapeutic Potential. Int. J. Mol. Sci. 2024, 25, 5441. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, K.; Kerby, R.L.; Zhang, Q.; Pradhan, M.; Mehrabian, M.; Lusis, A.J.; Bergström, G.; Bäckhed, F.; Rey, F.E. Gut Bacterial Metabolism Contributes to Host Global Purine Homeostasis. Cell Host Microbe 2023, 31, 1038–1053.e10. [Google Scholar] [CrossRef] [PubMed]
- Grove, A. The Delicate Balance of Bacterial Purine Homeostasis. Discov. Bact. 2025, 2, 14. [Google Scholar] [CrossRef]
- Morrison, D.J.; Preston, T. Formation of Short Chain Fatty Acids by the Gut Microbiota and Their Impact on Human Metabolism. Gut Microbes 2016, 7, 189–200. [Google Scholar] [CrossRef]
- Pandey, S.; Kawai, T.; Akira, S. Microbial Sensing by Toll-like Receptors and Intracellular Nucleic Acid Sensors. Cold Spring Harb. Perspect. Biol. 2014, 7, a016246. [Google Scholar] [CrossRef]
- Gil, A. Modulation of the Immune Response Mediated by Dietary Nucleotides. Eur. J. Clin. Nutr. 2002, 56 (Suppl. S3), S1–S4. [Google Scholar] [CrossRef]
- Swidsinski, A.; Ladhoff, A.; Pernthaler, A.; Swidsinski, S.; Loening-Baucke, V.; Ortner, M.; Weber, J.; Hoffmann, U.; Schreiber, S.; Dietel, M.; et al. Mucosal Flora in Inflammatory Bowel Disease. Gastroenterology 2002, 122, 44–54. [Google Scholar] [CrossRef]
- Wall, R.; Ross, R.P.; Ryan, C.A.; Hussey, S.; Murphy, B.; Fitzgerald, G.F.; Stanton, C. Role of Gut Microbiota in Early Infant Development. Clin. Med. Pediatr. 2009, 3, 45–54. [Google Scholar] [CrossRef]
- Asano, K.; Yoshimura, S.; Nakane, A. Alteration of Intestinal Microbiota in Mice Orally Administered with Salmon Cartilage Proteoglycan, a Prophylactic Agent. PLoS ONE 2013, 8, e75008. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Guo, X.; Shi, C.; Liu, G.; Qin, X.; Chen, S.; Gan, L.; Liang, D.; Shao, K.; Xu, R.; et al. Alterations in Purine and Pyrimidine Metabolism Associated with Latent Tuberculosis Infection: Insights from Gut Microbiome and Metabolomics Analyses. mSystems 2024, 9, e0081224. [Google Scholar] [CrossRef] [PubMed]
- Semchyshyn, H.; Lushchak, V.; Storey, K. Possible Reasons for Difference in Sensitivity to Oxygen of Two Escherichia coli Strains. Biochemistry 2005, 70, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Vasylkovska, R.; Petriv, N.; Semchyshyn, H. Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype. Int. J. Microbiol. 2015, 2015, 697813. [Google Scholar] [CrossRef]
- Bayliak, M.; Semchyshyn, H.; Lushchak, V. Possible Accumulation of Non-Active Molecules of Catalase and Superoxide Dismutase in S. cerevisiae Cells under Hydrogen Peroxide Induced Stress. Cent. Eur. J. Biol. 2007, 2, 326–336. [Google Scholar] [CrossRef]
- Mayer, E.A. Gut Feelings: The Emerging Biology of Gut-Brain Communication. Nat. Rev. Neurosci. 2011, 12, 453–466. [Google Scholar] [CrossRef]
- Furness, J.B. The Enteric Nervous System and Neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 286–294. [Google Scholar] [CrossRef]
- De Vadder, F.; Kovatcheva-Datchary, P.; Goncalves, D.; Vinera, J.; Zitoun, C.; Duchampt, A.; Bäckhed, F.; Mithieux, G. Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell 2014, 156, 84–96. [Google Scholar] [CrossRef]
- Nwako, J.G.; Patel, S.D.; Roach, T.J.; Gupte, S.R.; Williams, S.G.; Riedman, A.M.; McCauley, H.A. Enteroendocrine Cells Regulate Intestinal Barrier Permeability. Am. J. Physiol. Cell Physiol. 2025, 328, C1501–C1508. [Google Scholar] [CrossRef]
- Jyoti; Dey, P. Mechanisms and Implications of the Gut Microbial Modulation of Intestinal Metabolic Processes. NPJ Metab. Health Dis. 2025, 3, 24. [Google Scholar] [CrossRef]
- Ramadan, Y.N.; Alqifari, S.F.; Alshehri, K.; Alhowiti, A.; Mirghani, H.; Alrasheed, T.; Aljohani, F.; Alghamdi, A.; Hetta, H.F. Microbiome Gut-Brain-Axis: Impact on Brain Development and Mental Health. Mol. Neurobiol. 2025, 62, 10813–10833. [Google Scholar] [CrossRef]
- Kolodziejczyk, A.A.; Zheng, D.; Elinav, E. Diet–Microbiota Interactions and Personalized Nutrition. Nat. Rev. Microbiol. 2019, 17, 742–753. [Google Scholar] [CrossRef]
- Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M.; et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015, 163, 1079–1094. [Google Scholar] [CrossRef]
Substrate | Host-Derived Enzymes | Microbial Enzymes | Primary Function |
---|---|---|---|
Starches and simple carbohydrates | Salivary amylase, pancreatic α-amylase | Amylases, pullulanases, maltases, isomaltases (CAZymes) | Hydrolysis of starch and oligosaccharides into monosaccharides |
Non-digestible polysaccharides | None | Cellulases, hemicellulases, xylanases, pectinases | Fermentation of dietary fibers; SCFA production |
Disaccharides | Sucrase, maltase, lactase (brush-border enzymes) | β-Galactosidase, β-fructofuranosidase | Breakdown of sucrose, maltose, and lactose into monosaccharides |
Proteins and peptides | Pepsin, trypsin, chymotrypsin, peptidases | Microbial proteases, peptidases | Peptide hydrolysis; bioactive amine generation |
Fats and lipids | Gastric and pancreatic lipases, phospholipases | Lipases, esterases | Hydrolysis of triglycerides and other lipids; production of microbial lipid metabolites |
Bile acids | Liver secretion and reabsorption control | Bile salt hydrolases, hydroxysteroid dehydrogenases | Deconjugation and transformation of bile acids; host–microbiome signaling |
Polyphenols and phytochemicals | Limited phase I/II metabolism (e.g., glucuronidation) | Glycosidases, esterases, decarboxylases | Microbial conversion into bioavailable phenolic compounds |
Xenobiotics and drugs | Cytochrome P450s, conjugating enzymes (UGT, SULT, etc.) | Reductases, azoreductases, β-glucuronidases | Biotransformation, reactivation, or detoxification of xenobiotics |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lushchak, V.I. Symphony of Digestion: Coordinated Host–Microbiome Enzymatic Interplay in Gut Ecosystem. Biomolecules 2025, 15, 1151. https://doi.org/10.3390/biom15081151
Lushchak VI. Symphony of Digestion: Coordinated Host–Microbiome Enzymatic Interplay in Gut Ecosystem. Biomolecules. 2025; 15(8):1151. https://doi.org/10.3390/biom15081151
Chicago/Turabian StyleLushchak, Volodymyr I. 2025. "Symphony of Digestion: Coordinated Host–Microbiome Enzymatic Interplay in Gut Ecosystem" Biomolecules 15, no. 8: 1151. https://doi.org/10.3390/biom15081151
APA StyleLushchak, V. I. (2025). Symphony of Digestion: Coordinated Host–Microbiome Enzymatic Interplay in Gut Ecosystem. Biomolecules, 15(8), 1151. https://doi.org/10.3390/biom15081151