Hemodynamic and Morpho-Biochemical Parameters of Rabbit Blood After Injection of Enzyme Preparations
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Care
2.2. Tested Substances and Their Preparation
2.3. Blood Pressure and Heart Rate Measurements
2.4. Blood Sampling
2.5. Blood Biochemical Analysis
2.6. Statistical Analysis
3. Research Results
3.1. Blood Pressure and Heart Rate
3.2. Blood Biochemical Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Innerfield, I.; Angrist, A.; Schwarz, A. Parenteral administration of trypsin: Clinical effect in 538 patients. JAMA 1953, 152, 597–605. [Google Scholar] [CrossRef] [PubMed]
- González-Titos, A.; Hernández-Camarero, P.; Barungi, S.; Marchal, J.A.; Kenyon, J.; Perán, M. Trypsinogen and chymotrypsinogen: Potent anti-tumor agents. Expert Opin. Biol. Ther. 2021, 21, 1609–1621. [Google Scholar] [CrossRef] [PubMed]
- Hashem, A.A.R.; Abd El Sattar, A.A.; Abdel Rahman, T.Y. The Effect of Trypsin-Chymotrypsin on Postoperative Pain after Single Visit Endodontic Treatment: A Randomized Controlled Trial. J. Endod. 2023, 49, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, A.; Matsunami, M.; Sekiguchi, F. Gastrointestinal roles for proteinase-activated receptors in health and disease. Rev. Br. J. Pharmacol. 2008, 153, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.N.; Ramachandran, R.; Yau, M.K.; Suen, J.Y.; Fairlie, D.P.; Hollenberg, M.D.; Hooper, J.D. Structure, function and pathophysiology of protease activated receptors. Pharmacol. Ther. 2011, 130, 248–282. [Google Scholar] [CrossRef] [PubMed]
- Rolland-Fourcade, C.; Denadai-Souza, A.; Cirillo, C.; Lopez, C.; Jaramillo, J.O.; Desormeaux, C.; Cenac, N.; Motta, J.P.; Larauche, M.; Taché, Y.; et al. Epithelial expression and function of trypsin-3 in irritable bowel syndrome. Gut 2017, 66, 1767–1778. [Google Scholar] [CrossRef] [PubMed]
- Koshikawa, N.; Hasegawa, S.; Nagashima, Y.; Mitsuhashi, K.; Tsubota, Y.; Miyata, S.; Miyagi, Y.; Yasumitsu, H.; Miyazaki, K. Expression of trypsin by epithelial cells of various tissues, leukocytes, and neurons in human and mouse. Am. J. Pathol. 1998, 153, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, R.; Hollenberg, M.D. Proteinases and signalling: Pathophysiological and therapeutic implications via PARs and more. Br. J. Pharmacol. 2008, 153, 263–282. [Google Scholar] [CrossRef] [PubMed]
- Kuzmina, I.V.; Ovchinnikova, N.V.; Tolpygo, S.M. Activity of the proteolytic enzyme trypsin in blood serum in rats under conditions of water and food deprivation. Bull. Exp. Biol. Med. 2023, 175, 540–548. [Google Scholar] [CrossRef]
- Vertiprakhov, V.G.; Polina, S.I.; Sergeenkova, N.A.; Sedletskaya, E.S. Hemodynamics and biochemistry of rabbit blood during intramuscular application of trypsin preparations. Veter-i Korml. 2024, 5, 15–18. [Google Scholar] [CrossRef]
- Kuzmina, I.V.; Tolpygo, S.M.; Shoibonov, B.B.; Ovchinnikova, N.V. The influence of soy trypsin inhibitor on biochemical indicators of blood in conditions of water and food deprivation in rats. Bull. Exp. Biol. Med. 2024, 178, 306–309. [Google Scholar] [CrossRef]
- Batoev, T.Z.; Bashanova, I.A.; Koturai, I.A. Enzymatic activity of bovine pancreatic tissue homogenate and its adaptation. Bull. Buryat State Univ. 2012, 4, 190–192. [Google Scholar]
- Vertiprakhov, V.G.; Grozina, A.A. Assessment of the state of the pancreas by determining trypsin activity in poultry blood. Vet. Sci. 2018, 6, 51–54. [Google Scholar] [CrossRef]
- Korotko, G.F. Recirculation of enzymes of digestive glands. In EDVI; Editorial House: Krasnodar, Russia, 2011; Volume 144. [Google Scholar]
- Gőtze, H.H.; Rothman, S.S. Enteropancreatic circulation of digestive enzyme as a conservation mechanism. Nature 1975, 257, 607–609. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, H.C.; Gabbe, E.E.; Brüggemann, J.; Ičagić, F.; Classen, M. Enteropancreatic circulation of tripsin in man. Klin. Wschr. 1979, 57, 1295–1297. [Google Scholar] [CrossRef] [PubMed]
- Rothman, S.; Liebow, C.; Isenman, L.C. Conservation of digestive enzymes. Physiol. Rev. 2002, 82, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Saidov, S.A. Correlation of body weight gain and blood pressure in modeling metabolic syndrome in rabbits. BISSA 2006, 2, 53. Available online: https://cyberleninka.ru/article/n/korrelyatsiya-prirosta-massy-tela-i-arterialnogo-rosta-massy-tela-i-arterialnogo-davleniya-pri-modeliro-vanii-metabolicheskogo-sindroma-u-krolikov (accessed on 27 August 2023).
- Evlakhov, V.I.; Poyasov, I.Z. Changes in pulmonary hemodynamics in experimental myocardial ischemia in rabbits after an increase in arterial pressure. Russ. Physiol. J. Named After I.M. Sechenov. 2012, 3, 342–351. [Google Scholar]
- Vertiprakhov, V.G.; Polina, S.I.; Sedletskaya, E.S.; Sergeenkova, N.A. Hematological and hemodynamic parameters in rabbits (Oryctolagus cuniculus subsp. domesticus) under the influence of intramuscular injection of trypsin. Agric. Biol. 2024, 59, 366–374. [Google Scholar] [CrossRef]
- Lavanga, M.; Baselli, G.; Fumagalli, F.; Ristagno, G.; Ferrario, M. The possible role of the vagal nervous system in the recovery of the blood pressure control after cardiac arrest: A porcine model study. Physiol. Meas. 2017, 38, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Zhilyaev, S.Y.; Plato-nova, T.F.; Alekseeva, O.S.; Nikitina, E.R.; Demchenko, I.T. Adaptive mechanisms of baroreflex regulation of the cardiovascular system in extreme hyperoxia. J. Evol. Biochem. Physiol. 2019, 55, 316–323. [Google Scholar] [CrossRef]
- Castania, J.A.; Katayama, P.L.; Brognara, F.; Moraes, D.J.A.; Sabino, J.P.J.; Salgado, H.C. Selective denervation of the aortic and carotid baroreceptors in rats. Exp. Physiol. 2019, 104, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Dergacheva, O. Chronic intermittent hypoxia alters neurotransmission from lateral paragigantocellular nucleus to parasympathetic cardiac neurons in the brain stem. J. Neurophysiol. 2015, 113, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Sheverdin, Y.P. Inhibition of endogenous insulin and trypsin secretion by exogenous insulin and trypsin in the complex treatment of acute pancreatitis. Vest. Surg. 1989, 1, 54–55. [Google Scholar]
- Adeghate, E.; Ember, Z.; Donath, T.; Pallot, D.J.; Singh, J. Immunohistochemical identification and effects of atrial natriuretic peptide, pancreastatin, leucine-enkephalin, and galanin in the porcine pancreas. Peptides 1996, 17, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Adler, G. Effect of glucagon on the secretory process in the rat exocrine pancreas. Cell Tissue Res. 1977, 182, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Green, G.M.; Lyman, R.L. Feedback regulation of pancreatic enzyme secretion as a mechanism for trypsin inhibitor-induced hypersecretion in rats. Proc. Soc. Exp. Biol. Med. 1972, 140, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Lokshina, L.A. Regulatory role of proteolytic enzymes. Molecules. Biol. 1979, 13, 1205–1229. [Google Scholar]
- Leibow, C.; Rothman, S.S. Enteropancreatic circulation of digestive enzymes. Science 1975, 189, 472–474. [Google Scholar] [CrossRef] [PubMed]
- Levitt, M.D.; Ellis, C.J.; Murphy, S.M.; Schwartz, M.L. Study of the possible enteropancreatic circulation of pancreatic amylase in the dog. Am. J. Physiol. 1981, 241, G54–G58. [Google Scholar] [CrossRef] [PubMed]
- Nasyrov, K.H.M.; Kondratenko, R.M. On the prooxidant action of inflammatory mediators. Stalemate. Physiol. Exp. Ter. 1992, 3, 12–14. [Google Scholar]
- Kalagina, L.S. Clinical value of determination of trypsin indices in blood serum (review). Med. Almanac. 2010, 4, 281–283. [Google Scholar]
- Degtyareva, I.I.; Gaisenko, A.V.; Putseva, N.M. Laboratory diagnosis of pancreatitis and pancreatic cancer. Dr. Bus. 1989, 7, 42–43. [Google Scholar]
- Fushiki, T.; Iwai, K. Two hypotheses on the feedback regulation of pancreatic enzyme secretion. FASEB J. 1989, 3, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Scanes, C.G. Biology of stress in poultry with emphasis on glucocorticoids and the heterophil to lymphocyte ratio. Poult. Sci. 2016, 95, 2208–2215. [Google Scholar] [CrossRef] [PubMed]
- Gladwin, A.M.; Martin, J.F. The control of megakaryocyte ploidy and platelet production: Biology and pathology. Int. J. Cell Cloning 1990, 8, 291–298. [Google Scholar] [CrossRef] [PubMed]
Groups | |||
---|---|---|---|
Group 1 control, n = 5 Injection of intramuscular saline 0.5 mL/head | Group 2, n = 5 Intramuscular injection of trypsin crystalline solution in 0.9% NaCl 0.25 mg/kg body weight | Group 3, n = 5 Intramuscular injection of trypsin crystalline solution in 0.9% NaCl, 0.5 mg/kg body weight | Group 4, n = 5 Intramuscular injection of pig pancreatic lyophilizate 1.0 mg/kg body weight |
Period | 1 Indicators of hemodynamics and heart rate before injection of the solution | ||
2 Hemodynamic and heart rate parameters 60 min after injection of the drug |
Parameter | Group | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||||
Period | Baseline | Post-injection | Baseline | Post-injection | Baseline | Post-injection | Baseline | Post-injection |
Systolic pressure, mmHg | 161 ± 3.9 | 1 62 ± 4.3 | 167 ± 27.7 | 148 ± 23.8 *ab | 162 ± 32.3 | 159 ± 31.6 b | 166 ± 32.5 | 152 ± 30.5 *a |
Diastolic pressure, mmHg | 100 ± 3. 0 | 99 ± 3.7 | 104 ± 16.2 | 92 ± 15.4 *ab | 101 ± 20.5 | 99 ± 20.5 b | 104 ± 22.4 | 96 ± 20.6 * |
Mean pressure, mmHg | 12 0 ± 2.6 | 12 0 ± 3.1 | 125 ± 19.6 | 111 ± 17.7 *ab | 121 ± 24.6 | 119 ± 23.9 b | 125 ± 25.5 | 114 ± 23.4 * |
Heart rate, bpm | 215 ± 20.1 | 212 ± 20.1 | 226 ± 31.5 | 210 ± 37.5 * | 215 ± 43.2 | 212 ± 40.4 | 202 ± 39.4 | 212 ± 39.9 * |
Indicator | Group | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Trypsin activity, U/L | 79 ± 34.3 | 68 ± 2.3 | 38 ± 12.7 a | 47 ± 9.0 |
Amylase activity, U/L | 154 ± 2.5 | 156 ± 8.6 b | 180 ± 7.6 abd | 157 ± 7.3 d |
Alkaline phosphatase activity, U/L | 69 ± 3.7 | 37 ± 3.7 ac | 39 ± 10.8 ad | 153 ± 4.3 acd |
Total protein, g/L | 66 ± 1.7 | 65 ± 1.8 b | 71 ± 2.8 abd | 65 ± 1.6 bd |
Uric acid, mmol/L | 44 ± 2.6 | 44 ± 2.0 b | 22 ± 3.0 abd | 39 ± 7.2 d |
Glucose, mmol/L | 6.3 ± 0.56 | 6.0 ± 0.54 c | 6.2 ± 0.74 d | 7.9 ± 1.23 acd |
Triglycerides, mmol/L | 0.6 ± 0.06 | 0.6 ± 0.11 | 0.6 ± 0.06 | 0.6 ± 0.04 |
Cholesterol, mmol/L | 2.7 ± 0.59 | 1.0 ± 0.04 a | 1.0 ± 0.00 a | 1.0 ± 0.00 a |
Calcium, mmol/L | 3.3 ± 0.16 | 3.3 ± 0.04 | 3.6 ± 0.21 | 3.4 ± 0.16 |
Phosphorus, mmol/L | 2.9 ± 0.29 | 1.5 ± 0.05 abc | 0.9 ± 0.16 abd | 3.1 ± 0.33 cd |
Parameter | Group | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
WBC, ×109/L | 6.8 ± 0.46 | 7.3 ± 0.58 b | 4.8 ± 0.96 abd | 7.6 ± 1.40 d |
LYM, % | 28.8 ± 2.17 | 29.0 ± 2.24 c | 29.5 ± 19.92 d | 47.4 ± 6.31 cd |
GRA, % | 65.9 ± 3.37 | 69.1 ± 2.10 c | 64.6 ± 18.22 | 48.0 ± 2.92 ac |
Ratio of granulocytes to lymphocytes | 2.30 ± 0.26 | 2.40 ± 0.26 c | 3.2 ± 1.97 | 1.03 ± 0.19 ac |
RBC, ×1012/L | 5.9 ± 0.13 | 5.9 ± 0.12 | 6.7 ± 1.47 | 5.7 ± 0.37 |
HGB, g/L | 135 ± 4.0 | 137 ± 5.2 | 133 ± 13.6 | 142 ± 8.6 |
MCHC, g/L | 350 ± 17.7 | 343 ± 5.4 bc | 359 ± 7.4 b | 376 ± 12.9 ac |
HCT, % | 35.9 ± 3.54 | 35.9 ± 3.54 | 41.7 ± 9.88 | 36.6 ± 0.68 |
PLT, ×109/L | 491 ± 65.9 | 558 ± 19.2 b | 430 ± 12.0 bd | 501 ± 30.0 d |
P-LCR,% | 8.4 ± 0.69 | 8.1 ± 0.58 bc | 12.0 ± 2.08 ab | 13.5 ± 2.83 ac |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vertiprakhov, V.G.; Sergeenkova, N.A.; Karamushkina, S.V.; Dashieva, B.S. Hemodynamic and Morpho-Biochemical Parameters of Rabbit Blood After Injection of Enzyme Preparations. Biomolecules 2025, 15, 1049. https://doi.org/10.3390/biom15071049
Vertiprakhov VG, Sergeenkova NA, Karamushkina SV, Dashieva BS. Hemodynamic and Morpho-Biochemical Parameters of Rabbit Blood After Injection of Enzyme Preparations. Biomolecules. 2025; 15(7):1049. https://doi.org/10.3390/biom15071049
Chicago/Turabian StyleVertiprakhov, V. G., N. A. Sergeenkova, S. V. Karamushkina, and B. Sh. Dashieva. 2025. "Hemodynamic and Morpho-Biochemical Parameters of Rabbit Blood After Injection of Enzyme Preparations" Biomolecules 15, no. 7: 1049. https://doi.org/10.3390/biom15071049
APA StyleVertiprakhov, V. G., Sergeenkova, N. A., Karamushkina, S. V., & Dashieva, B. S. (2025). Hemodynamic and Morpho-Biochemical Parameters of Rabbit Blood After Injection of Enzyme Preparations. Biomolecules, 15(7), 1049. https://doi.org/10.3390/biom15071049