A Mechanistic Approach to Replacing Antibiotics with Natural Products in the Treatment of Bacterial Diarrhea
Abstract
1. Introduction
2. Pathogenesis Mechanisms of Bacterial Diarrhea Pathogens and Limitations of the Antibiotic Therapy Mechanism of Action
2.1. Pathogenic Mechanisms of Common Bacterial Diarrhea Pathogens
2.2. Pathogenesis of Bacterial Diarrhea Caused by Intestinal Flora Dysbiosis
2.3. Mechanisms of Action and Limitations of Antibiotics in the Treatment of Bacterial Diarrhea
3. Progress in the Study of Natural Product Extracts for the Treatment of Bacterial Diarrhea
3.1. Main Sources and Types of Natural Products
3.2. Representative Natural Products for the Treatment of Bacterial Diarrhea
3.3. In Vitro and In Vivo Modeling of Natural Products for the Treatment of Bacterial Diarrhea in Animals
4. Mechanisms of Action of Natural Products
4.1. Antimicrobial and Inhibitory Mechanisms of Natural Products in the Treatment of Bacterial Diarrhea
4.2. Anti-Inflammatory Mechanisms of Natural Products in the Treatment of Bacterial Diarrhea
4.3. Mechanism of Action of Natural Products in the Treatment of Bacterial Diarrhea by Maintaining the Protective Barrier of the Intestine
4.4. Mechanism of Action of Natural Products in the Treatment of Bacterial Diarrhea by Regulating the Structure of the Intestinal Flora
4.5. Immunomodulatory Mechanisms of Natural Products in the Treatment of Bacterial Diarrhea
5. Challenges and Future Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kelly, P.; Hodges, P. Infectious diarrhoea. Medicine 2024, 52, 197–203. [Google Scholar] [CrossRef]
- Velásquez Jones, L.; Rodríguez, R.S. Bacterial-induced diarrhoea. Drugs 1988, 36, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Duan, R.; Jing, H.Q.; Wang, X. Etiology of bacterial diarrhea in large cities, mid-sized/small cities and rural areas of China. Zhonghua Liu Xing Bing Xue Za Zhi 2018, 39, 651–655. [Google Scholar] [PubMed]
- Zhang, Z.; Lai, S.; Yu, J.; Geng, Q.; Yang, W.; Chen, Y.; Wu, J.; Jing, H.; Yang, W.; Li, Z. Etiology of acute diarrhea in the elderly in China: A six-year observational study. PLoS ONE 2017, 12, e173881. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Jing, H.; Lai, S.; Xu, W.; Li, M.; Wu, J.; Liu, W.; Yuan, Z.; Chen, Y.; Zhao, S.; et al. Etiology of diarrhea among children under the age five in China: Results from a five-year surveillance. J. Infect. 2015, 71, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Han, H.; Liu, J.; Ke, B.; Zhan, L.; Yang, X.; Tan, D.; Yu, B.; Huo, X.; Ma, X.; et al. Antimicrobial resistance profiles of salmonella isolates from human diarrhea cases in China: An eight-year surveilance study. One Health Adv. 2023, 1, 2. [Google Scholar] [CrossRef]
- Taylor, D.N.; Hamer, D.H.; Shlim, D.R. Medications for the prevention and treatment of travellers’ diarrhea. J. Travel Med. 2017, 24, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Wang, J.; Yang, C.; Liang, B.; Ma, Q.; Yi, S.; Li, H.; Liu, H.; Li, P.; Wu, Z.; et al. Prevalence and antimicrobial resistance of shigella flexneri serotype 2 variant in China. Front. Microbiol. 2015, 6, 435. [Google Scholar] [CrossRef] [PubMed]
- Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr. 2016, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Maris, A.S.; Mody, P.; Brewer, D.J.; Humphries, R.M. The fluoroquinolones: An update for the clinical microbiologist. Clin. Microbiol. Newsl. 2021, 43, 97–107. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, D.; Song, Q. Profiles of gyra mutations and plasmid-mediated quinolone resistance genes in shigella isolates with different levels of fluoroquinolone susceptibility. Infect. Drug Resist. 2020, 13, 2285–2290. [Google Scholar] [CrossRef] [PubMed]
- Zachariah, O.H.; Lizzy, M.A.; Rose, K.; Angela, M.M. Multiple drug resistance of campylobacter jejuni and shigella isolated from diarrhoeic children at kapsabet county referral hospital, kenya. BMC Infect. Dis. 2021, 21, 109. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; He, W.; Sun, W.; Zhang, J.; Chang, Y.; Chen, D.; Murchie, A.I.H. Integron-derived aminoglycoside-sensing riboswitches control aminoglycoside acetyltransferase resistance gene expression. Antimicrob. Agents. Chemother. 2019, 63, 2. [Google Scholar] [CrossRef] [PubMed]
- Koskiniemi, S.; Pränting, M.; Gullberg, E.; Näsvall, J.; Andersson, D.I. Activation of cryptic aminoglycoside resistance in salmonella enterica. Mol. Microbiol. 2011, 80, 1464–1478. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, S.; Bakhshi, B.; Najar-Peerayeh, S. Significant contribution of the cmeabc efflux pump in high-level resistance to ciprofloxacin and tetracycline in campylobacter jejuni and campylobacter coli clinical isolates. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 36. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, S.; Zwama, M.; Yoneda, T.; Hayashi-Nishino, M.; Nishino, K. Drug resistance and physiological roles of rnd multidrug efflux pumps in salmonella enterica, escherichia coli and pseudomonas aeruginosa. Microbiology 2023, 169, 001322. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Wang, Q.; Wang, Y.; Wen, X.; Peng, H.; Peng, R.; Shi, Q.; Xie, X.; Li, L. Outer membrane porins contribute to antimicrobial resistance in gram-negative bacteria. Microorganisms 2023, 11, 1690. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Yoo, J.S.; Yoon, E. Gut microbiota and new microbiome-targeted drugs for clostridioides difficile infections. Antibiotics 2024, 13, 995. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xue, G.; Wang, F.; Zhang, J.; Xu, L.; Yu, C. The impact of antibiotic exposure on antibiotic resistance gene dynamics in the gut microbiota of inflammatory bowel disease patients. Front. Microbiol. 2024, 15, 1382332. [Google Scholar] [CrossRef] [PubMed]
- Duman, E.; Müller-Deubert, S.; Pattappa, G.; Stratos, I.; Sieber, S.A.; Clausen-Schaumann, H.; Sarafian, V.; Shukunami, C.; Rudert, M.; Docheva, D. Fluoroquinolone-mediated tendinopathy and tendon rupture. Pharmaceuticals 2025, 18, 184. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zou, D.; Li, Y.; Liu, P.; Guo, C. Drug-induced tooth discoloration: An analysis of the us food and drug administration adverse event reporting system. Front. Pharmacol. 2023, 14, 1161728. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, C.; Pietri, T.; Montero, V.; Soeiro, T.; Rouby, F.; Blin, O.; Guilhaumou, R.; Micallef, J. Antibiotic-induced neurological adverse drug reactions. Therapie 2024, 79, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Yang, Y.; Wang, S.; Yang, X.; Zhou, K.; Xu, C.; Zhang, X.; Fan, J.; Hou, D.; Li, X.; et al. Npass database update 2023: Quantitative natural product activity and species source database for biomedical research. Nucleic. Acids. Res. 2023, 51, D621–D628. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.; Guo, J.; Dai, R.; Zhu, C.; Zhang, Z. Targeting gut microbiota and immune crosstalk: Potential mechanisms of natural products in the treatment of atherosclerosis. Front. Pharmacol. 2023, 14, 1252907. [Google Scholar] [CrossRef] [PubMed]
- Hilal, B.; Khan, M.M.; Fariduddin, Q. Recent advancements in deciphering the therapeutic properties of plant secondary metabolites: Phenolics, terpenes, and alkaloids. Plant Physiol. Biochem. 2024, 211, 108674. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Lan, X.; Qin, Y.; Wei, Y.; Li, X.; Feng, J.; Jiang, J. Polysaccharides of natural products alleviate antibiotic-associated diarrhea by regulating gut microbiota: A review. Arch. Microbiol. 2024, 206, 461. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Dudeja, P.K. Pathophysiology of enteropathogenic escherichia coli-induced diarrhea. Newborn 2023, 2, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tan, P.; Zhao, Y.; Ma, X. Enterotoxigenic escherichia coli: Intestinal pathogenesis mechanisms and colonization resistance by gut microbiota. Gut Microbes 2022, 14, 2055943. [Google Scholar] [CrossRef] [PubMed]
- Croxen, M.A.; Law, R.J.; Scholz, R.; Keeney, K.M.; Wlodarska, M.; Finlay, B.B. Recent advances in understanding enteric pathogenic escherichia coli. Clin. Microbiol. Rev. 2013, 26, 822–880. [Google Scholar] [CrossRef] [PubMed]
- Gelalcha, B.D.; Brown, S.M.; Crocker, H.E.; Agga, G.E.; Kerro Dego, O. Regulation mechanisms of virulence genes in enterohemorrhagic escherichia coli. Foodborne Pathog. Dis. 2022, 19, 598–612. [Google Scholar] [CrossRef] [PubMed]
- Galán, J.E. Salmonella typhimurium and inflammation: A pathogen-centric affair. Nat. Rev. Microbiol. 2021, 19, 716–725. [Google Scholar] [CrossRef] [PubMed]
- Kemper, L.; Hensel, A. Campylobacter jejuni: Targeting host cells, adhesion, invasion, and survival. Appl. Microbiol. Biotechnol. 2023, 107, 2725–2754. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Tesh, V.L. Roles of shiga toxins in immunopathology. Toxins 2019, 11, 212. [Google Scholar] [CrossRef] [PubMed]
- Pourliotopoulou, E.; Karampatakis, T.; Kachrimanidou, M. Exploring the toxin-mediated mechanisms in clostridioides difficile infection. Microorganisms 2024, 12, 1004. [Google Scholar] [CrossRef] [PubMed]
- Rathnayake, S.S.; Erramilli, S.K.; Kossiakoff, A.A.; Vecchio, A.J. Cryo-em structures of clostridium perfringens enterotoxin bound to its human receptor, claudin-4. Structure 2024, 32, 1936–1951. [Google Scholar] [CrossRef] [PubMed]
- Pakbin, B.; Brück, W.M.; Rossen, J.W.A. Virulence factors of enteric pathogenic escherichia coli: A review. Int. J. Mol. Sci. 2021, 22, 9922. [Google Scholar] [CrossRef] [PubMed]
- Mare, A.D.; Ciurea, C.N.; Man, A.; Tudor, B.; Moldovan, V.; Decean, L.; Toma, F. Enteropathogenic escherichia coli—A summary of the literature. Gastroenterol. Insights 2021, 12, 28–40. [Google Scholar] [CrossRef]
- Okoh, A.I.; Osode, A.N. Enterotoxigenic escherichia coli (etec): A recurring decimal in infants’ and travelers’ diarrhea. Rev. Environ. Health 2008, 23, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Pasqua, M.; Michelacci, V.; Di Martino, M.L.; Tozzoli, R.; Grossi, M.; Colonna, B.; Morabito, S.; Prosseda, G. The intriguing evolutionary journey of enteroinvasive e. Coli (eiec) toward pathogenicity. Front. Microbiol. 2017, 8, 2390. [Google Scholar] [CrossRef] [PubMed]
- Detzner, J.; Pohlentz, G.; Müthing, J. Enterohemorrhagic escherichia coli and a fresh view on shiga toxin-binding glycosphingolipids of primary human kidney and colon epithelial cells and their toxin susceptibility. Int. J. Mol. Sci. 2022, 23, 6884. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Yang, S.; Deng, Q.; Dong, K.; Li, Y.; Wu, S.; Huang, R. Salmonella effector spvb disrupts intestinal epithelial barrier integrity for bacterial translocation. Front. Cell. Infect. Microbiol. 2020, 10, 606541. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, I.A.; O’Brien, S.J.; Frost, J.A.; Tam, C.; Tompkins, D.; Neal, K.R.; Syed, Q.; Farthing, M.J.G.; The Campylobacter Sentinel Surveillance Scheme Collaborators. Investigating vomiting and/or bloody diarrhoea in campylobacter jejuni infection. J. Med. Microbiol. 2006, 55, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Nasser, A.; Mosadegh, M.; Azimi, T.; Shariati, A. Molecular mechanisms of shigella effector proteins: A common pathogen among diarrheic pediatric population. Mol. Cell. Pediatr. 2022, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, M.J.; Goudarzi, M.; Hajikhani, B.; Ghazi, M.; Goudarzi, H.; Pouriran, R. Clostridioides (clostridium) difficile infection in hospitalized patients with antibiotic-associated diarrhea: A systematic review and meta-analysis. Anaerobe 2018, 50, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, S.; Li, H.; Ren, Y.; Wang, Y.; Huang, J.; Wang, Z.; Yue, T.; Gao, Z. Non-thermal treatments for the control of endogenous formaldehyde from auricularia auricula and their effects on its nutritional characteristics. Food Control. 2022, 142, 109235. [Google Scholar] [CrossRef]
- Hrncir, T. Gut microbiota dysbiosis: Triggers, consequences, diagnostic and therapeutic options. Microorganisms 2022, 10, 578. [Google Scholar] [CrossRef] [PubMed]
- Tesfaw, G.; Siraj, D.S.; Abdissa, A.; Jakobsen, R.R.; Johansen, Ø.H.; Zangenberg, M.; Hanevik, K.; Mekonnen, Z.; Langeland, N.; Bjørang, O.; et al. Gut microbiota patterns associated with duration of diarrhea in children under five years of age in ethiopia. Nat. Commun. 2024, 15, 7532. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Liu, H.; Wang, Y.; Sun, M.; Shang, P. Mechanisms of male reproductive sterility triggered by dysbiosis of intestinal microorganisms. Life 2024, 14, 694. [Google Scholar] [CrossRef] [PubMed]
- Lange, K.; Buerger, M.; Stallmach, A.; Bruns, T. Effects of antibiotics on gut microbiota. Dig. Dis. 2016, 34, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; Chiu, C.; Kong, M.; Chang, C.; Chen, C. Probiotic lactobacillus casei: Effective for managing childhood diarrhea by altering gut microbiota and attenuating fecal inflammatory markers. Nutrients 2019, 11, 1150. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xia, S.; Jiang, X.; Feng, C.; Gong, S.; Ma, J.; Fang, Z.; Yin, J.; Yin, Y. Gut microbiota and diarrhea: An updated review. Front. Cell. Infect. Microbiol. 2021, 11, 625210. [Google Scholar] [CrossRef] [PubMed]
- Goodman, C.; Keating, G.; Georgousopoulou, E.; Hespe, C.; Levett, K. Probiotics for the prevention of antibiotic-associated diarrhoea: A systematic review and meta-analysis. BMJ Open 2021, 11, e43054. [Google Scholar] [CrossRef] [PubMed]
- Lübbert, C. Antimicrobial therapy of acute diarrhoea: A clinical review. Expert Rev. Anti-Infect. Ther. 2016, 14, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Mora-Ochomogo, M.; Lohans, C.T. Β-lactam antibiotic targets and resistance mechanisms: From covalent inhibitors to substrates. RSC Med. Chem. 2021, 12, 1623–1639. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, G.; Martinetto, P. The mechanism of action of aminoglycosides. G. Batter. Virol. Immunol. 1981, 74, 335–346. [Google Scholar]
- Yang, C.; Xiang, Y.; Qiu, S. Resistance in enteric shigella and nontyphoidal salmonella: Emerging concepts. Curr. Opin. Infect. Dis. 2023, 36, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Tarr, P.I.; Freedman, S.B. Why antibiotics should not be used to treat shiga toxin-producing escherichia coli infections. Curr. Opin. Gastroenterol. 2022, 38, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Campbell, R.E.; Chen, C.H.; Edelstein, C.L. Overview of antibiotic-induced nephrotoxicity. Kidney Int. Rep. 2023, 8, 2211–2225. [Google Scholar] [CrossRef] [PubMed]
- Nemzer, B.V.; Al-Taher, F.; Kalita, D.; Yashin, A.Y.; Yashin, Y.I. Health-improving effects of polyphenols on the human intestinal microbiota: A review. Int. J. Mol. Sci. 2025, 26, 1335. [Google Scholar] [CrossRef] [PubMed]
- Li, E.; Li, C.; Horn, N.; Ajuwon, K.M. Quercetin attenuates deoxynivalenol-induced intestinal barrier dysfunction by activation of nrf2 signaling pathway in ipec-j2 cells and weaned piglets. Curr. Res. Toxicol. 2023, 5, 100122. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, T.; Wu, S.; Zhao, C.; Huang, H. The efficacy and underlying mechanisms of berberine in the treatment of recurrent clostridioides difficile infection. Int. J. Antimicrob. Agents 2025, 65, 107468. [Google Scholar] [CrossRef] [PubMed]
- Zulhendri, F.; Chandrasekaran, K.; Kowacz, M.; Ravalia, M.; Kripal, K.; Fearnley, J.; Perera, C.O. Antiviral, antibacterial, antifungal, and antiparasitic properties of propolis: A review. Foods 2021, 10, 1360. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lu, Y.; Shaaban, K.A.; Wang, G.; Xia, X.; Zhu, Y. Editorial: Bioactive natural products from microbes: Isolation, characterization, biosynthesis and structure modification. Front. Chem. 2022, 10, 883652. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, B.; Ganapathy, D. Exploration of sargassum wightii: Extraction, phytochemical analysis, and antioxidant potential of polyphenol. Cureus 2024, 16, e63706. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; Marquez, L.; Crandall, W.J.; Risener, C.J.; Quave, C.L. Recent advances in the discovery of plant-derived antimicrobial natural products to combat antimicrobial resistant pathogens: Insights from 2018–2022. Nat. Prod. Rep. 2023, 40, 1271–1290. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Lu, F.; Guan, X.; Jiang, X.; Wen, C.; Wang, L. Baicalein ameliorates experimental ulcerative colitis recurrency by downregulating neonatal fc receptor via the nf-κb signaling pathway. ACS Omega 2025, 10, 10701–10712. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Yan, M.; Qin, Y.; Liu, Z.; Duan, Y.; Wang, Y.; Zhang, R.; Lin, W.; Li, Y.; Xie, T.; et al. Quercetin alleviates ulcerative colitis through inhibiting cxcl8-cxcr1/2 axis: A network and transcriptome analysis. Front. Pharmacol. 2024, 15, 1485255. [Google Scholar] [CrossRef] [PubMed]
- Miklasińska-Majdanik, M.; Kępa, M.; Wąsik, T.J.; Zapletal-Pudełko, K.; Klim, M.; Wojtyczka, R.D. The direction of the antibacterial effect of rutin hydrate and amikacin. Antibiotics 2023, 12, 1469. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Ding, Y.; Zhang, S.; Li, M.; Wang, Y.; Wu, Q.; Ding, H.; Song, C.; Shi, C.; Xue, M. Chlorogenic acid alleviates the intestinal barrier dysfunction and intestinal microbiota disorder induced by cisplatin. Front. Microbiol. 2025, 16, 1508891. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Burillo, S.; Navajas-Porras, B.; López-Maldonado, A.; Hinojosa-Nogueira, D.; Pastoriza, S.; Rufián-Henares, J.Á. Green tea and its relation to human gut microbiome. Molecules 2021, 26, 3907. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Ma, R.; Sun, W.; Ji, Z. Antibacterial activity of epigallocatechin gallate (egcg) against shigella flexneri. Int. J. Environ. Res. Public Health 2023, 20, 4676. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Liu, X.; Ji, X.; Wang, Y.; Liu, X.; Zhao, C.; Jin, E.; Gu, Y.; Wang, H.; Zhang, F. Berberine alleviates enterotoxigenic escherichia coli-induced intestinal mucosal barrier function damage in a piglet model by modulation of the intestinal microbiome. Front. Nutr. 2025, 11, 1494348. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.; Xue, C.; Zhang, L.; Zhang, T.; Wang, C.; Bi, C.; Shan, A. Oleanolic acid enhances tight junctions and ameliorates inflammation in salmonella typhimurium-induced diarrhea in mice via the tlr4/nf-κb and mapk pathway. Food Funct. 2019, 11, 1122–1132. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Zhang, H.; He, X.; Song, Z. Effects of ursolic acid on intestinal health and gut bacteria antibiotic resistance in mice. Front. Physiol. 2021, 12, 650190. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ghosh, S.S.; Ghosh, S. Curcumin improves intestinal barrier function: Modulation of intracellular signaling, and organization of tight junctions. Am. J. Physiol. Cell Physiol. 2017, 312, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Ventura, I.; Chomon-García, M.; Tomás-Aguirre, F.; Palau-Ferré, A.; Legidos-García, M.E.; Murillo-Llorente, M.T.; Pérez-Bermejo, M. Therapeutic and immunologic effects of short-chain fatty acids in inflammatory bowel disease: A systematic review. Int. J. Mol. Sci. 2024, 25, 10879. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xue, J.; Qi, Y.; Muhammad, I.; Wang, H.; Li, X.; Luo, Y.; Zhu, D.; Gao, Y.; Kong, L.; et al. Citric acid confers broad antibiotic tolerance through alteration of bacterial metabolism and oxidative stress. Int. J. Mol. Sci. 2023, 24, 9089. [Google Scholar] [CrossRef] [PubMed]
- Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J. Clin. Med. 2019, 9, 109. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Xu, B.; Huang, S.; Luo, X.; Deng, X.; Luo, S.; Liu, C.; Wang, Q.; Chen, J.; Zhou, L. Baicalin prevents lps-induced activation of tlr4/nf-κb p65 pathway and inflammation in mice via inhibiting the expression of cd14. Acta Pharmacol. Sin. 2021, 42, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Hara, H. Quercetin enhances intestinal barrier function through the assembly of zonula [corrected] occludens-2, occludin, and claudin-1 and the expression of claudin-4 in caco-2 cells. J. Nutr. 2009, 139, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Aswathanarayan, J.B.; Vittal, R.R. Inhibition of biofilm formation and quorum sensing mediated phenotypes by berberine in pseudomonas aeruginosa and salmonella typhimurium. RSC Adv. 2018, 8, 36133–36141. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Chen, M.; Xu, R.; Guo, M. Therapeutic mechanisms of berberine to improve the intestinal barrier function via modulating gut microbiota, tlr4/nf-κ b/mtorc pathway and autophagy in cats. Front. Microbiol. 2022, 13, 961885. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, G.; Olawale, F.; Liu, J.; Lee, D.; Lee, S.; Chaffin, N.; Alake, S.; Lucas, E.A.; Zhang, G.; Egan, J.M.; et al. Curcumin mitigates gut dysbiosis and enhances gut barrier function to alleviate metabolic dysfunction in obese, aged mice. Biology 2024, 13, 955. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sung, P.; Zhang, D.; Yan, L. Curcumin In Vitro neuroprotective effects are mediated by p62/keap-1/nrf2 and pi3k/akt signaling pathway and autophagy inhibition. Physiol. Res. 2023, 72, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Gao, Y.; Wang, Z.; Yang, X.; Wang, J.; Zheng, N. Anti-inflammatory actions of acetate, propionate, and butyrate in fetal mouse jejunum cultures ex vivo and immature small intestinal cells In Vitro. Food Sci. Nutr. 2022, 10, 564–576. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Wang, L.; Zhang, W.; Lin, Y.; Wang, B.; Zhang, Y.; Zheng, B.; Pan, L. Elucidation of the pathway for dictyophora indusiata polysaccharide-regulated differential acetic acid production by bifidobacterium longum f2. J. Sci. Food. Agric. 2025. online ahead of print. [Google Scholar]
- Zhao, Y.; Chen, F.; Wu, W.; Sun, M.; Bilotta, A.J.; Yao, S.; Xiao, Y.; Huang, X.; Eaves-Pyles, T.D.; Golovko, G.; et al. Gpr43 mediates microbiota metabolite scfa regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mtor and stat3. Mucosal Immunol. 2018, 11, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.F.; Shao, J.H.; Liao, Y.T.; Wang, L.N.; Jia, Y.; Dong, P.J.; Liu, Z.Z.; He, D.D.; Li, C.; Zhang, X. Regulation of short-chain fatty acids in the immune system. Front. Immunol. 2023, 14, 1186892. [Google Scholar] [CrossRef] [PubMed]
- Portincasa, P.; Bonfrate, L.; Vacca, M.; De Angelis, M.; Farella, I.; Lanza, E.; Khalil, M.; Wang, D.Q.; Sperandio, M.; Di Ciaula, A. Gut microbiota and short chain fatty acids: Implications in glucose homeostasis. Int. J. Mol. Sci. 2022, 23, 1105. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; He, C.; An, Y.; Huang, Y.; Zhang, H.; Fu, W.; Wang, M.; Shan, Z.; Xie, J.; Yang, Y.; et al. The role of short chain fatty acids in inflammation and body health. Int. J. Mol. Sci. 2024, 25, 7379. [Google Scholar] [CrossRef] [PubMed]
- Gasaly, N.; Hermoso, M.A.; Gotteland, M. Butyrate and the fine-tuning of colonic homeostasis: Implication for inflammatory bowel diseases. Int. J. Mol. Sci. 2021, 22, 3061. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Li, C.; Zhong, J.; Liu, Y.; Xiao, P.; Liu, C.; Zhao, M.; Yang, W. Gut microbiota—bidirectional modulator: Role in inflammatory bowel disease and colorectal cancer. Front. Immunol. 2025, 16, 1523584. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Kang, S.G.; Park, J.H.; Yanagisawa, M.; Kim, C.H. Short-chain fatty acids activate gpr41 and gpr43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 2013, 145, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Molinari, R.; Merendino, N.; Costantini, L. Polyphenols as modulators of pre-established gut microbiota dysbiosis: State-of-the-art. BioFactors 2022, 48, 255–273. [Google Scholar] [CrossRef] [PubMed]
- Caigoy, J.C.; Xedzro, C.; Kusalaruk, W.; Nakano, H. Antibacterial, antibiofilm, and antimotility signatures of some natural antimicrobials against vibrio cholerae. FEMS Microbiol. Lett. 2022, 369, fnac076. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Ren, M.; Yang, J.; Pan, H.; Yu, M.; Ji, F. Curcumin improves epithelial barrier integrity of caco-2 monolayers by inhibiting endoplasmic reticulum stress and subsequent apoptosis. Gastroenterol. Res. Pract. 2021, 2021, 5570796. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Haj, F.G.; Lee, M.; Kang, I.; Zhang, G.; Lee, Y. Laminaria japonica extract enhances intestinal barrier function by altering inflammatory response and tight junction-related protein in lipopolysaccharide-stimulated caco-2 cells. Nutrients 2019, 11, 1001. [Google Scholar] [CrossRef] [PubMed]
- Yan, E.; Zhang, J.; Han, H.; Wu, J.; Gan, Z.; Wei, C.; Zhang, L.; Wang, C.; Wang, T. Curcumin alleviates iugr jejunum damage by increasing antioxidant capacity through nrf2/keap1 pathway in growing pigs. Animals 2019, 10, 41. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhou, M.; Xu, Q.; Lv, Q.; Guo, J.; Qin, X.; Xu, X.; Chen, S.; Zhao, J.; Xiao, K.; et al. Quercetin ameliorates deoxynivalenol-induced intestinal injury and barrier dysfunction associated with inhibiting necroptosis signaling pathway in weaned pigs. Int. J. Mol. Sci. 2023, 24, 15172. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Li, X.; Lei, W.; Tan, P.; Han, M.; Li, H.; Yue, T.; Wang, Z.; Gao, Z. Serum metabolomics combined with 16s rrna sequencing to reveal the effects of lycium barbarum polysaccharide on host metabolism and gut microbiota. Food Res. Int. 2023, 165, 112563. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Jiang, S.; Jia, W.; Guo, T.; Wang, F.; Li, J.; Yao, Z. Natural antimicrobials from plants: Recent advances and future prospects. Food Chem. 2024, 432, 137231. [Google Scholar] [CrossRef] [PubMed]
- Hossain, S.I.; Saha, S.C.; Deplazes, E. Phenolic compounds alter the ion permeability of phospholipid bilayers via specific lipid interactions. Phys. Chem. Chem. Phys. 2021, 23, 22352–22366. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhu, J.; Liu, Z.; Zhi, Y.; Mei, C.; Wang, H. Flavonoids as promising natural compounds for combating bacterial infections. Int. J. Mol. Sci. 2025, 26, 2455. [Google Scholar] [CrossRef] [PubMed]
- Aljuwayd, M.; Olson, E.G.; Abbasi, A.Z.; Rothrock, M.J.J.; Ricke, S.C.; Kwon, Y.M. Potential involvement of reactive oxygen species in the bactericidal activity of eugenol against salmonella typhimurium. Pathogens 2024, 13, 899. [Google Scholar] [CrossRef] [PubMed]
- Sekiya, M.; Chiba, E.; Satoh, M.; Yamakoshi, H.; Iwabuchi, Y.; Futai, M.; Nakanishi-Matsui, M. Strong inhibitory effects of curcumin and its demethoxy analog on escherichia coli atp synthase f1 sector. Int. J. Biol. Macromol. 2014, 70, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Pokhrel, R.; Bhattarai, N.; Baral, P.; Gerstman, B.S.; Park, J.H.; Handfield, M.; Chapagain, P.P. Molecular mechanisms of pore formation and membrane disruption by the antimicrobial lantibiotic peptide mutacin 1140. Phys. Chem. Chem. Phys. 2019, 21, 12530–12539. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yang, H.; Hao, W.; Li, Y.; Li, Q.; Sun, T. Fabrication, characterization and antibacterial mechanism of in-situ modification nano-caco3/tio2/cs coatings. Int. J. Food Sci. Technol. 2021, 56, 2675–2686. [Google Scholar] [CrossRef]
- Bae, J.; Seo, Y.; Oh, S. Antibacterial activities of polyphenols against foodborne pathogens and their application as antibacterial agents. Food Sci. Biotechnol. 2022, 31, 985–997. [Google Scholar] [CrossRef] [PubMed]
- Inoue, N.; Terabayashi, T.; Takiguchi-Kawashima, Y.; Fujinami, D.; Matsuoka, S.; Kawano, M.; Tanaka, K.; Tsumura, H.; Ishizaki, T.; Narahara, H.; et al. The benzylisoquinoline alkaloids, berberine and coptisine, act against camptothecin-resistant topoisomerase i mutants. Sci. Rep. 2021, 11, 7718. [Google Scholar] [CrossRef] [PubMed]
- Mangano, K.; Florin, T.; Shao, X.; Klepacki, D.; Chelysheva, I.; Ignatova, Z.; Gao, Y.; Mankin, A.S.; Vázquez-Laslop, N. Genome-wide effects of the antimicrobial peptide apidaecin on translation termination in bacteria. Elife 2020, 9, e62655. [Google Scholar] [CrossRef] [PubMed]
- Qassadi, F.I.; Zhu, Z.; Monaghan, T.M. Plant-derived products with therapeutic potential against gastrointestinal bacteria. Pathogens 2023, 12, 333. [Google Scholar] [CrossRef] [PubMed]
- Muthuramalingam, M.; Whittier, S.K.; Picking, W.L.; Picking, W.D. The shigella type iii secretion system: An overview from top to bottom. Microorganisms 2021, 9, 451. [Google Scholar] [CrossRef] [PubMed]
- Tsou, L.K.; Lara-Tejero, M.; Rosefigura, J.; Zhang, Z.J.; Wang, Y.; Yount, J.S.; Lefebre, M.; Dossa, P.D.; Kato, J.; Guan, F.; et al. Antibacterial flavonoids from medicinal plants covalently inactivate type iii protein secretion substrates. J. Am. Chem. Soc. 2016, 138, 2209–2218. [Google Scholar] [CrossRef] [PubMed]
- Dubreuil, J.D. Antibacterial and antidiarrheal activities of plant products against enterotoxinogenic escherichia coli. Toxins 2013, 5, 2009–2041. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Peng, W.; Liu, Z.; Gao, T.; Liu, W.; Zhou, D.; Yang, K.; Guo, R.; Duan, Z.; Liang, W.; et al. Tea polyphenols inhibit the growth and virulence of etec k88. Microb. Pathog. 2021, 152, 104640. [Google Scholar] [CrossRef] [PubMed]
- Kaminsky, L.W.; Al-Sadi, R.; Ma, T.Y. Il-1β and the intestinal epithelial tight junction barrier. Front. Immunol. 2021, 12, 767456. [Google Scholar] [CrossRef] [PubMed]
- Huang, F. The interleukins orchestrate mucosal immune responses to salmonella infection in the intestine. Cells 2021, 10, 3492. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xie, M.; He, L.; Song, X.; Cao, T. Chlorogenic acid: A review on its mechanisms of anti-inflammation, disease treatment, and related delivery systems. Front. Pharmacol. 2023, 14, 1218015. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Lee, K.; Kim, C. Curcumin attenuates the expression of il-1beta, il-6, and tnf-alpha as well as cyclin e in tnf-alpha-treated hacat cells; Nf-kappab and mapks as potential upstream targets. Int. J. Mol. Med. 2007, 19, 469–474. [Google Scholar] [PubMed]
- Zhu, Z.; Xueying, L.; Chunlin, L.; Wen, X.; Rongrong, Z.; Jing, H.; Meilan, J.; Yuwei, X.; Zili, W. Effect of berberine on lps-induced expression of nf-κb/mapk signalling pathway and related inflammatory cytokines in porcine intestinal epithelial cells. Innate Immun. 2020, 26, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, Y.; Liu, Z.; Wang, J. Quercetin effectively improves lps-induced intestinal inflammation, pyroptosis, and disruption of the barrier function through the tlr4/nf-κb/nlrp3 signaling pathway In Vivo and In Vitro. Food Nutr. Res. 2022, 66, 8948. [Google Scholar] [CrossRef] [PubMed]
- Shu, L.; Fu, H.; Pi, A.; Feng, Y.; Dong, H.; Si, C.; Li, S.; Zhu, F.; Zheng, P.; Zhu, Q. Protective effect of andrographolide against ulcerative colitis by activating nrf2/ho-1 mediated antioxidant response. Front. Pharmacol. 2024, 15, 1424219. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Cheng, S.; Li, L.; Liu, Y.; Wang, D.; Liu, G. Natural anti-inflammatory compounds as drug candidates for inflammatory bowel disease. Front. Pharmacol. 2021, 12, 684486. [Google Scholar] [CrossRef] [PubMed]
- Neurath, M.F.; Artis, D.; Becker, C. The intestinal barrier: A pivotal role in health, inflammation, and cancer. Lancet Gastroenterol. Hepatol. 2025, 10, 573–592. [Google Scholar] [CrossRef] [PubMed]
- Paradis, T.; Bègue, H.; Basmaciyan, L.; Dalle, F.; Bon, F. Tight junctions as a key for pathogens invasion in intestinal epithelial cells. Int. J. Mol. Sci. 2021, 22, 2506. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Zhang, Q.; Shen, L.; Sharma, G.; Jiang, H.; Wang, Z.; Shen, J. Quercetin attenuates quinocetone-induced cell apoptosis In Vitro by activating the p38/nrf2/ho-1 pathway and inhibiting the ros/mitochondrial apoptotic pathway. Antioxidants 2022, 11, 1498. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Jiang, Z.; Li, S.; Yang, X.; Liu, E. Evolving interplay between natural products and gut microbiota. Eur. J. Pharmacol. 2023, 949, 175557. [Google Scholar] [CrossRef] [PubMed]
- Tang, E.; Hu, T.; Jiang, Z.; Shen, X.; Lin, H.; Xian, H.; Wu, X. Isoquercitrin alleviates lipopolysaccharide-induced intestinal mucosal barrier damage in mice by regulating tlr4/myd88/nf-κb signaling pathway and intestinal flora. Food Funct. 2024, 15, 295–309. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Wang, H.; Ma, X.; Li, Y.; Yang, H.; Li, H.; Su, J.; Zhang, C.; Huang, L. Modulation of gut microbiota and intestinal barrier function during alleviation of antibiotic-associated diarrhea with rhizoma zingiber officinale (ginger) extract. Food Funct. 2020, 11, 10839–10851. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Mesnage, R.; Tuohy, K.; Heiss, C.; Rodriguez-Mateos, A. (Poly)phenol-related gut metabotypes and human health: An update. Food Funct. 2024, 15, 2814–2835. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Zhou, Q.; Zhang, Y.; Jia, M.; Li, R.; Qu, Q.; Li, Z.; Feng, M.; Tian, Y.; Ren, W.; et al. Exploring the prebiotic potential of fermented astragalus polysaccharides on gut microbiota regulation In Vitro. Curr. Microbiol. 2024, 82, 52. [Google Scholar] [CrossRef] [PubMed]
- Mithul, A.S.; Wichienchot, S.; Tsao, R.; Ramakrishnan, S.; Chakkaravarthi, S. Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Food Res. Int. 2021, 142, 110189. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Ma, J.; Kang, M.; Tang, W.; Xia, S.; Yin, J.; Yin, Y. Flavonoids, gut microbiota, and host lipid metabolism. Eng. Life Sci. 2024, 24, 2300065. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, Y.; Xu, J.; Xue, Z.; Zhang, M.; Pang, X.; Zhang, X.; Zhao, L. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Sci. Rep. 2015, 5, 14405. [Google Scholar] [CrossRef] [PubMed]
- Zouine, N.; Ghachtouli, N.E.; Abed, S.E.; Koraichi, S.I. A comprehensive review on medicinal plant extracts as antibacterial agents: Factors, mechanism insights and future prospects. Sci. Afr. 2024, 26, e2395. [Google Scholar] [CrossRef]
- Yang, F.; Gao, R.; Luo, X.; Liu, R.; Xiong, D. Berberine influences multiple diseases by modifying gut microbiota. Front. Nutr. 2023, 10, 1187718. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Guo, L.; Xu, G.; Li, Z.; Appiah, M.O.; Yang, L.; Lu, W. Quercetin reduces inflammation and protects gut microbiota in broilers. Molecules 2022, 27, 3269. [Google Scholar] [CrossRef] [PubMed]
- Long, C.; Shao, H.; Luo, C.; Yu, R.; Tan, Z. Bacterial diversity in the intestinal mucosa of dysbiosis diarrhea mice treated with qiweibaizhu powder. Gastroenterol. Res. Pract. 2020, 2020, 9420129. [Google Scholar] [CrossRef] [PubMed]
- Celebioglu, H.U.; Delsoglio, M.; Brix, S.; Pessione, E.; Svensson, B. Plant polyphenols stimulate adhesion to intestinal mucosa and induce proteome changes in the probiotic lactobacillus acidophilus ncfm. Mol. Nutr. Food Res. 2018, 62, 1870041. [Google Scholar] [CrossRef]
- Wang, C.; Li, Q.; Ren, J. Microbiota-immune interaction in the pathogenesis of gut-derived infection. Front. Immunol. 2019, 10, 1873. [Google Scholar] [CrossRef] [PubMed]
- Shamsnia, H.S.; Roustaei, M.; Ahmadvand, D.; Butler, A.E.; Amirlou, D.; Soltani, S.; Momtaz, S.; Jamialahmadi, T.; Abdolghaffari, A.H.; Sahebkar, A. Impact of curcumin on p38 mapk: Therapeutic implications. Inflammopharmacology 2023, 31, 2201–2212. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Mao, T.; Lu, X.; Wang, M.; Yun, Y.; Jia, Z.; Shi, L.; Jiang, H.; Li, J.; Shi, R. A potential therapeutic approach for ulcerative colitis: Targeted regulation of macrophage polarization through phytochemicals. Front. Immunol. 2023, 14, 1155077. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, J.; Chaudhary, N.; Seo, H.; Kim, M.; Shin, T.; Kim, J. Immunomodulatory effect of tea saponin in immune t-cells and t-lymphoma cells via regulation of th1, th2 immune response and mapk/erk2 signaling pathway. Immunopharmacol. Immunotoxicol. 2014, 36, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Qi, G.; Mi, Y.; Wang, Y.; Li, R.; Huang, S.; Li, X.; Liu, X. Neuroprotective action of tea polyphenols on oxidative stress-induced apoptosis through the activation of the trkb/creb/bdnf pathway and keap1/nrf2 signaling pathway in sh-sy5y cells and mice brain. Food Funct. 2017, 8, 4421–4432. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Liu, Q.; Fan, S.; Wang, Z.; Lu, S.; Liu, J.; Piao, H.; Ji, W.; Dong, W. Effect of ginsenoside fermented by pediococcus acidilactici xm-06 on preventing diarrhea in mice via regulating intestinal barrier function and gut microbiota. J. Funct. Foods 2024, 123, 106594. [Google Scholar] [CrossRef]
Name of Bacteria | Main Routes of Transmission | Pathogenesis |
---|---|---|
Pathogenic Escherichia coli | fecal-oral transmission | Adhesion to intestinal epithelium, destruction of microvilli, formation of adherent adhesion lesions [27]. |
Enterotoxigenic Escherichia coli | fecal-oral transmission | Produces heat-stable toxin (ST) and heat-unstable toxin (LT), which stimulate intestinal secretion and cause watery diarrhea [28]. |
Entero-Invasive Escherichia coli | fecal-oral transmission | Invades intestinal epithelial cells, lyses the cells, and triggers inflammation, leading to mucopurulent bloody stools [29]. |
Enterohemorrhagic Escherichia coli | fecal-oral transmission | Produces Shiga-like toxin, destroying vascular endothelium, causing hemorrhagic colitis, and in severe cases, hemolytic uremic syndrome [30]. |
Salmonella | foodborne transmission | Invades intestinal epithelial cells and induces an inflammatory response, causing diarrhea and systemic symptoms [31]. |
Campylobacter | foodborne transmission | Attacks the intestinal mucosa, produces toxins, destroys the epithelium and causes inflammatory diarrhea [32]. |
Shigella | fecal-oral transmission | Invades colon epithelium, produces Shiga toxin, destroys cells, causes mucopurulent bloody stools [33]. |
Clostridium difficile | fecal-oral transmission | Produces toxins that damage the intestinal epithelium and trigger inflammation, leading to watery diarrhea and pseudomembranous colitis [34]. |
Clostridium perfringens | foodborne transmission | Produces enterotoxins (CPE) that damage the intestinal epithelium, causing diarrhea and enteritis [35]. |
Name of Natural Product | Molecular Formula | Common Source Plants | Main Mechanism of Action | Mainly Inhibits Bacteria |
---|---|---|---|---|
Baicalein | C15H10O5 | Scutellaria baicalensis. | Anti-inflammatory, antimicrobial, suppressor T3SS, NF-κB passage [66]. | Salmonella, E. coli, Shigella |
Quercetin | C15H10O7 | Onion, horehound, ginkgo, etc. | Inhibition of toxin expression, antioxidant, immunomodulation [67]. | ETEC, EHEC, Shigella |
Rutin | C27H30O16 | Sophora and mistletoe. | Antioxidant, intestinal barrier protection, anti-inflammatory [68]. | E. coli, Salmonella |
Chlorogenic acid | C16H18O19 | Honeysuckle, coffee, blueberries, etc. | Anti-inflammatory, intestinal barrier repair, immunomodulation [69]. | Salmonella, E. coli, Campylobacter |
Catechin | C15H14O6 | Tea, grapeseed. | Antimicrobial, antioxidant, membrane interference [70]. | E. coli, Shigella, V. cholerae |
EGCG | C22H18O11 | Green tea. | Inhibition of colonization, biofilm formation, anti-inflammation [71]. | E. coli, Salmonella, Shigella |
Berberine | C20H18NO4+ | Huanglian, Phellodendron Bark, Tree Needles. | Antibacterial, anti-inflammatory, regulates intestinal flora, stabilizes barrier [72]. | E. coli, Salmonella, C. difficile |
Oleanolic acid | C30H48O3 | Chasteberry, Hawthorn Leaf. | Anti-inflammatory, antibacterial, enhances mucosal immunity [73]. | E. coli, V. cholerae |
Ursolic acid | C30H48O3 | Apple Peel, Rosemary, Shiso. | Antibacterial, anti-inflammatory, inhibits toxin expression [74]. | Shigella, Salmonella, E. coli |
Curcumin | C21H20O6 | Turmeric. | Anti-inflammatory, antioxidant, modulation of TLR/NF-κB pathway [75]. | Salmonella, Shigella, Campylobacter |
SCFAs | C2H4O2 C3H6O2 C4H8O2 | Gut microbial metabolites. | Regulates intestinal pH, inhibits colonization of pathogenic bacteria, and promotes intestinal barrier repair [76]. | Clostridium difficile, E. coli |
Citric acid | C6H8O7 | Citrus, fruits, and vegetables. | Lowering intestinal pH, chelating metal ions, indirect bacterial inhibition [77]. | broad-spectrum antibacterial |
Malic acid | C4H6O5 | Apples, hawthorns, etc. | pH lowering, inhibition of bacterial metabolism, synergistic antimicrobial activity [78]. | E. coli, Vibrio |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, M.; Liu, H.; Hu, Z.; Wen, P.; Ye, Y.; Chamba, Y.; Zhang, H.; Shang, P. A Mechanistic Approach to Replacing Antibiotics with Natural Products in the Treatment of Bacterial Diarrhea. Biomolecules 2025, 15, 1045. https://doi.org/10.3390/biom15071045
Wei M, Liu H, Hu Z, Wen P, Ye Y, Chamba Y, Zhang H, Shang P. A Mechanistic Approach to Replacing Antibiotics with Natural Products in the Treatment of Bacterial Diarrhea. Biomolecules. 2025; 15(7):1045. https://doi.org/10.3390/biom15071045
Chicago/Turabian StyleWei, Mingbang, Huaizhi Liu, Zhefan Hu, Peixiao Wen, Yourong Ye, Yangzom Chamba, Hongliang Zhang, and Peng Shang. 2025. "A Mechanistic Approach to Replacing Antibiotics with Natural Products in the Treatment of Bacterial Diarrhea" Biomolecules 15, no. 7: 1045. https://doi.org/10.3390/biom15071045
APA StyleWei, M., Liu, H., Hu, Z., Wen, P., Ye, Y., Chamba, Y., Zhang, H., & Shang, P. (2025). A Mechanistic Approach to Replacing Antibiotics with Natural Products in the Treatment of Bacterial Diarrhea. Biomolecules, 15(7), 1045. https://doi.org/10.3390/biom15071045