Cardiac Glycosides: From Natural Defense Molecules to Emerging Therapeutic Agents
Abstract
1. Introduction
2. Chemical Diversity and Origin of Cardiac Glycosides
2.1. Cardenolides
- Apocynaceae: Asclepias, Nerium, Thevetia, Strophanthus, Cerbera, Calotropis (over 100 cardenolides identified).
- Plantaginaceae: Digitalis.
- Brassicaceae: Erysimum.
- Ranunculaceae: Adonis.
- Hyacinthaceae: Ornithogalum.
- Moraceae: Antiaris.
- Euphorbiaceae: Euphorbia.
- Fabaceae: Corchorus.
2.2. Bufadienolides
2.3. Endogenous CGs
2.4. CG’s Derivatives
2.4.1. Digoxin and Digitoxigenin Derivatives
2.4.2. Bufalin Derivatives
2.4.3. Arenobufagin Derivatives
3. Na+/K+-ATPase, a Pump and a Receptor of CGs
3.1. NKA Molecular Structure and Diversity
3.2. CG’s Influence on NKA Functions
3.2.1. CGs Inhibit NKA as a Pump
3.2.2. NKA’s Role as a Signal-Transducing Receptor Activated by CG’s Binding
Signaling Pathways Activated by CG Binding to NKA
CG-Induced Ca2+ Oscillations
CG-Induced ROS-Mediated Signaling
Gene Regulation by CG-Induced Shifts in [Na+]i/[K+]i Ratios
3.2.3. NKA’s Role in Cell–Cell Adhesion
4. Cardiac Glycosides: Modulators of Diverse Signaling Pathways
4.1. PI3K/Akt Pathway
4.2. TGF-β/Smad Pathway
4.3. HIF-1α Signaling
- Digoxin, ouabain, and proscillaridin A inhibit HIF-1α protein synthesis and target gene expression [108].
- Digoxin suppresses hypoxia-induced VEGF and NDRG1 expression [109].
- Digitoxin inhibits HIF-1α and STAT3 in KRAS-mutant colon cancer [110].
- Cardenolides from Calotropis gigantea inhibit HIF-1 transcriptional activity [112].
4.4. JAK/STAT Pathway
- Periplogenin inhibits JAK2/3-STAT3 signaling to reduce synovial proliferation in arthritis [113].
- Bufalin suppresses JAK/STAT to reduce inflammation in cancer and cardiovascular diseases [38].
- Periplocymarin alleviates cardiac hypertrophy via JAK2/STAT3 inhibition [114].
- Bufothionine induces autophagy in hepatoma-bearing mice through JAK2/STAT3 blockade [115].
- Convallatoxin inhibits colorectal cancer proliferation via JAK2/STAT3 and mTOR/STAT3 pathways [116].
- Peruvoside also targets PI3K/Akt/mTOR in cancer cells [117].
4.5. PERK/elF2α/ATF4/CHOP Pathway
- Oleandrin activates the PERK/eIF2α/ATF4/CHOP pathway, inducing immunogenic death in breast cancer cells [118].
- Neriifolin induces ER stress-mediated apoptosis in prostate cancer by activating PERK and CHOP, impairing DNA repair mechanisms [119].
5. Cardiac Glycosides in Physiological and Pathological Processes
5.1. CGs’ Role in Cardiac Function and Regulation
5.2. CGs as Modulators of Salt (Sodium) and Blood Pressure
5.3. CGs as Modulators of the Epithelial Phenotype
5.4. CGs’ Influence in Cancer Processes
5.4.1. CGs as Inducers of Cancer Cell Death
CGS as Senolytics
CGs as Inducers of Apoptosis
CGs as Inducers of Ferroptosis
CGs as Inducers of Pyroptosis
CGs as Inducers of Parthanatos
CGs as Inducers of Autophagic Cell Death
CGs as Inducers of Immunogenic Cell Death
5.4.2. CGs as Inducers of Cell Cycle (G2/M) Arrest
5.4.3. CGs as Modulators of Angiogenesis
- CG derivatives from Calotropis gigantea exhibit greater inhibitory effects on HIF-1α than digoxin, indicating the potential for enhanced antiangiogenic efficacy [112].
5.4.4. CGs as Inhibitors of EMT and Metastasis
- Arenobufagin suppresses EMT by:
- Bufalin exerts multi-pathway EMT inhibition:
- Bufotalin inhibits EMT through the STAT3/EMT axis in triple-negative breast cancer [217].
- Cinobufagin:
- Cinobufotalin suppresses EMT in hepatocellular carcinoma by downregulating β-catenin [276].
- Telocinobufagin shows promising EMT-inhibitory activity in undifferentiated thyroid carcinoma, although the specific molecular mechanisms remain to be clarified [196].
5.5. Cardiac Glycosides as Immunomodulators: Dual Roles in Inflammation and Adaptive Immunity
5.5.1. Digoxin as an Inhibitor of Th17 Cell Differentiation
- Multiple sclerosis: In EAE models, digoxin attenuated disease severity by inhibiting RORγt and promoting oligodendrocyte differentiation and remyelination. Notably, full remission was achieved when digoxin was combined with tolerance-inducing nanoparticle therapy [282]
- Colitis: Digoxin alleviated colitis symptoms by downregulating IL-17A and IL-17F expression while upregulating the anti-inflammatory cytokine IL-10 in a manner independent of TNF-α signaling [283].
- Rheumatoid arthritis (RA): Digoxin suppressed Th17 differentiation and reduced the production of key inflammatory cytokines (IL-1β, IL-6, IL-17, IL-23) without significantly altering Th1-related markers [284].
5.5.2. Contradictory Findings: CGs as RORγ Agonists
5.5.3. RORγ-Independent Immunomodulation
- Periplogenin inhibited the JAK2/3–STAT3 axis, reduced pro-inflammatory cytokine production, and suppressed synoviocyte proliferation and migration in models of rheumatoid arthritis [113].
- Cinobufagin (CBG) enhanced the release of IL-1β and TNF-α, partially through the activation of the PI3K/Akt/mTOR pathway [288].
- Bufalin, identified through systems biology approaches, modulated the expression of immune-related genes including S100B, BIRC5, MMP9, and EGFR, suggesting immunoregulatory roles in breast cancer progression [289].
- Gamabufotalin selectively reduced regulatory T cell (Treg) populations while sparing peripheral blood mononuclear cells, indicating a potential role in enhancing antitumor immune responses [290].
- Convallatoxin (CNT) attenuated vascular inflammation in atherosclerosis by promoting anti-inflammatory M2 macrophage polarization via the PPARγ–Integrin αvβ5 pathway; this effect was reversed by the pharmacological inhibition of PPARγ [291].
5.6. Cardiac Glycosides as Antiviral Agents
5.6.1. Mechanisms of Antiviral Action
5.6.2. Experimental Evidence Supporting Antiviral Activity
- Coronaviruses: Digitoxin and ouabain strongly inhibited human coronaviruses HCoV-229E, HCoV-OC43, and SARS-CoV-2 in primary human nasal epithelial cells and lung organoids. The observed antiviral effects were associated with the activation of the MEK and JNK signaling pathways [297].
- Bunyamwera virus: Digoxin inhibited viral replication in Vero cells by reducing viral protein synthesis and altering cell cycle progression. These effects were abolished in cells expressing a digoxin-resistant NKA, confirming the role of NKA inhibition in mediating antiviral activity [298].
- IHNV: Bufalin suppressed both viral attachment and RNA replication in vitro and significantly improved survival and reduced viral burden in infected rainbow trout in vivo. The mechanism was linked to NKA modulation [39].
- HSV-1: Lanatoside C inhibited HSV-1 replication by activating the NRF2 pathway. NRF2 nuclear translocation reduced viral gene expression and preserved nerve fiber integrity in vivo, highlighting NRF2 as a potential therapeutic target [299].
- SARS-CoV-2 (in silico studies): Computational docking studies by Qayed et al. demonstrated that ouabain, digitoxin, digoxin, and proscillaridin bind strongly to key viral targets, including PLpro, Mpro, RNA-dependent RNA polymerase (RdRp), and AAK1. Ouabain was identified as a dual inhibitor of PLpro and Mpro, while digitoxin specifically targeted RdRp [300].
- Zika virus: Ouabain inhibited ZIKV replication in human neural stem and progenitor cells. In a murine model of congenital Zika syndrome, it significantly reduced viral loads in fetal tissues, enhanced neurogenesis, mitigated fetal growth restriction, and decreased levels of pro-inflammatory cytokines [301].
5.7. Cardiac Glycosides as Neuromodulators: Emerging Roles in the Nervous System
5.7.1. Alzheimer’s Disease (AD)
- Digoxin enhanced memory and neuronal survival in a rat model of sporadic AD by suppressing TNF-α and restoring choline acetyltransferase (ChAT) activity [304].
- CGs have also been shown to upregulate miR-132, a neuroprotective microRNA typically downregulated in AD. This upregulation was associated with reduced tau expression and the preservation of neuronal integrity [305].
5.7.2. Bipolar Disorder (BD)
5.7.3. Epilepsy and Multiple Sclerosis
- In a chronic epilepsy (kindling) model, digoxin enhanced the efficacy of sodium valproate, improved seizure control, and reduced markers of neuroinflammation, supporting its use as a potential adjuvant therapy [309].
- In models of demyelination, digoxin promoted oligodendrocyte differentiation and myelin repair, particularly when combined with antigen-specific immune tolerance, showing promise for the treatment of multiple sclerosis (MS) [282].
5.7.4. Synaptic Function and Excitotoxicity
- Ouabain prevented NMDA-induced excitotoxicity by stabilizing the interaction of Na+/K+-ATPase (NKA) with NCX and NMDARs within lipid rafts, thereby regulating calcium influx and maintaining synaptic integrity [310].
- Digoxin facilitated dendritic spine formation and improved motor learning, particularly in mice with deficits in the neurotrypsin–agrin signaling pathway [311].
5.7.5. Cognitive Effects in Vascular and Cardiac Contexts
6. Cardiac Glycosides Target Molecules Beyond Na+/K+-ATPase
6.1. Kinases and Signaling Proteins
- CAMKK2 is inhibited by bufalin, leading to the suppression of intrahepatic cholangiocarcinoma via the inhibition of the Wnt/β-catenin pathway [171].
- JAK1, a key mediator of cytokine signaling, is also directly targeted by bufalin, which disrupts the JAK1–ACAP4 interaction, thereby blocking IL-6-induced downstream signaling [314].
- CDK9 and STAT3 have been implicated as targets of acetyl-bufalin in non-small cell lung cancer, contributing to its potent anti-tumor effects [55].
6.2. Receptor Tyrosine Kinases
6.3. MAPK Pathway and Transcriptional Regulators
6.4. Nuclear Receptors and Transcriptional Regulators
- CGs bind to the ligand-binding domain of RORγ/RORγT, nuclear receptors involved in immune regulation and tumor progression [286].
- SRC-3, a transcriptional coactivator of c-Myc, is a direct target of bufalin in chemoresistant colorectal cancer. Bufalin-mediated downregulation of SRC-3 suppresses c-Myc expression and metastasis. The overexpression of either SRC-3 or c-Myc reverses these effects, confirming a functional dependency [168].
6.5. Other Membrane Receptors
6.6. RNA-Binding Proteins
6.7. Oncoproteins and Apoptosis Regulators
6.8. Epigenetic Regulators
6.9. Hypoxia Response Regulators
7. Discussion
- Medicinal chemistry approaches to develop CG derivatives with reduced toxicity and enhanced selectivity.
- Advanced delivery systems, such as nanoparticles, micelles, and conjugates, which enable tissue-specific delivery and reduce systemic exposure.
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACTH | Adrenocorticotropic hormone |
ACD | Autophagic cell death |
AMOG | Adhesion Molecule on Glia |
AP-1 | Activator protein 1 |
ATP | Adenosine triphosphate |
CAMK | Calcium/calmodulin-dependent protein kinase |
CAFs | Cancer-associated fibroblasts |
CaMKKβ | Calcium/calmodulin-dependent protein kinase kinase β |
CGs | Cardiac glycosides |
CRT | Calreticulin |
DAMPs | Damage-associated molecular patterns |
EGFR | Epidermal growth factor receptor |
EMT | Epithelial–mesenchymal transition |
EO | Endogenous ouabain |
ER | Endoplasmic reticulum |
ERK | Extracellular signal-regulated kinase |
FXYD | Single-span transmembrane regulatory protein family of NKA |
GPX4 | Glutathione peroxidase 4 |
GSH | Glutathione |
HCMV | Human cytomegalovirus |
HIF-1α | Hypoxia-inducible factor 1 alpha |
HMGB1 | High mobility group box 1 |
HSV | Herpes simplex virus |
ICD | Immunogenic cell death |
IFN-γ | Interferon gamma |
IL | Interleukin |
IP3R | Inositol 1,4,5-trisphosphate receptor |
JAK | Janus kinase |
MAPK | Mitogen-activated protein kinase |
mTOR | Mammalian target of rapamycin |
NKA | Na+/K+-ATPase |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
NLRP3 | NOD-, LRR-, and pyrin domain-containing protein 3 |
NRF2 | Nuclear factor erythroid 2–related factor 2 |
PARP-1 | Poly(ADP-ribose) polymerase 1 |
PERK | PKR-like ER kinase |
PI3K | Phosphoinositide 3-kinase |
PKC | Protein kinase C |
PLC | Phospholipase C |
RORγ | Retinoic acid-related orphan receptor gamma |
ROS | Reactive oxygen species |
SASP | Senescence-associated secretory phenotype |
Src | Proto-oncogene tyrosine-protein kinase Src |
STAT | Signal transducer and activator of transcription |
TFEB | Transcription factor EB |
Th17 | T helper 17 cells |
TGF-β | Transforming growth factor beta |
TNF-α | Tumor necrosis factor alpha |
TRAIL | TNF-related apoptosis-inducing ligand |
UPR | Unfolded protein response |
VEGF | Vascular endothelial growth factor |
References
- Radford, D.J.; Gillies, A.D.; Hinds, J.A.; Duffy, P. Naturally Occurring Cardiac Glycosides. Med. J. Aust. 1986, 144, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Stoll, A. Les glycosides cardiotoniques [Cardiotonic glycosides]. Praxis 1948, 37, 156. [Google Scholar] [PubMed]
- Badri, S.; Pavitra, P.; Sameena, D.; Anitha, G.; Asifa, S.K.; Mahesh, K.; Pushpalatha, E. A Review on Medicinal Plants Containing Glycosides. UPI J. Pharm. Med. Health Sci. 2023, 6, 8–15. [Google Scholar] [CrossRef]
- Jia, J.; Li, J.; Zheng, Q.; Li, D. A Research Update on the Antitumor Effects of Active Components of Chi Nese Medicine ChanSu. Front. Oncol. 2022, 12, 1014637. [Google Scholar] [CrossRef]
- Zou, D.; Wang, Q.; Chen, T.; Sang, D.; Yang, T.; Wang, Y.; Gao, M.; He, F.; Li, Y.; He, L.; et al. Bufadienolides Originated from Toad Source and Their Anti-Inflammatory Activity. Front. Pharmacol. 2022, 13. [Google Scholar] [CrossRef]
- Withering, W. An Account of the Foxglove, and Some of Its Medical Uses; Cambridge University Press: Cambridge, UK, 2014; ISBN 1-108-07586-X. [Google Scholar]
- Tantivatana, P.; Wright, S.E. Estimation of Digoxin and Digitoxin in Digitalis Lanata. J. Pharm. Pharmacol. 1958, 10, 189–193. [Google Scholar] [CrossRef]
- Skou, J.C. The Influence of Some Cations on an Adenosine Triphosphatase from Peripheral Nerves. Biochim. Biophys. Acta 1957, 23, 394–401. [Google Scholar] [CrossRef]
- Crane, A.D.; Militello, M.; Faulx, M.D. Digoxin Is Still Useful, but Is Still Causing Toxicity. Cleve. Clin. J. Med. 2024, 91, 489–499. [Google Scholar] [CrossRef]
- Škubník, J.; Pavlíčková, V.; Rimpelová, S. Cardiac Glycosides as Immune System Modulators. Biomolecules 2021, 11, 659. [Google Scholar] [CrossRef]
- Newman, R.A.; Sastry, K.J.; Arav-Boger, R.; Cai, H.; Matos, R.; Harrod, R. Antiviral Effects of Oleandrin. J. Exp. Pharmacol. 2020, 12, 503–515. [Google Scholar] [CrossRef]
- Fender, J.; Klöcker, J.; Boivin-Jahns, V.; Ravens, U.; Jahns, R.; Lorenz, K. “Cardiac Glycosides”-Quo Vaditis?-Past, Present, and Future? Naunyn. Schmiedebergs Arch. Pharmacol. 2024, 397, 9521–9531. [Google Scholar] [CrossRef] [PubMed]
- Contreras, R.G.; Torres-Carrillo, A.; Flores-Maldonado, C.; Shoshani, L.; Ponce, A. Na(+)/K(+)-ATPase: More than an Electrogenic Pump. Int. J. Mol. Sci. 2024, 25, 6122. [Google Scholar] [CrossRef] [PubMed]
- Sheng, X.; Zhu, P.; Zhao, Y.; Zhang, J.; Li, H.; Zhao, H.; Qin, J. Effect of PI3K/AKT/mTOR Signaling Pathway on Regulating and Controlling the Anti-Invasion and Metastasis of Hepatoma Cells by Bufalin. Recent Pat. Anticancer. Drug Discov. 2021, 16, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Bartnik, M.; Facey, P. Chapter 7—Glycosides. In Pharmacognosy, 2nd ed.; McCreath, S.B., Clement, Y.N., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 103–165. ISBN 978-0-443-18657-8. [Google Scholar]
- Chapelon, A.-S.; Moraléda, D.; Rodriguez, R.; Ollivier, C.; Santelli, M. Enantioselective Synthesis of Steroids. Tetrahedron 2007, 63, 11511–11616. [Google Scholar] [CrossRef]
- Joubert, J.P.J. Cardiac Glycosides. In Toxicants of Plant Origin; CRC Press: Boca Raton, FL, USA, 1989; ISBN 978-1-003-41827-6. [Google Scholar]
- Barrueto, F.J.; Kirrane, B.M.; Cotter, B.W.; Hoffman, R.S.; Nelson, L.S. Cardioactive Steroid Poisoning: A Comparison of Plant- and Animal-Derived Compounds. J. Med. Toxicol. Off. J. Am. Coll. Med. Toxicol. 2006, 2, 152–155. [Google Scholar] [CrossRef]
- Azalim, P.; do Monte, F.M.; Rendeiro, M.M.; Liu, X.; O’Doherty, G.A.; Fontes, C.F.; Leitão, S.G.; Quintas, L.E.M.; Noël, F. Conformational States of the Pig Kidney Na(+)/K(+)-ATPase Differently Affect Bufadienolides and Cardenolides: A Directed Structure-Activity and Structure-Kinetics Study. Biochem. Pharmacol. 2020, 171, 113679. [Google Scholar] [CrossRef]
- Ren, J.; Gao, X.; Guo, X.; Wang, N.; Wang, X. Research Progress in Pharmacological Activities and Applications of Cardiotonic Steroids. Front. Pharmacol. 2022, 13, 902459. [Google Scholar] [CrossRef]
- Kowsalya, K.; Vidya, N.; Halka, J.; Preetha, J.S.Y.; Saradhadevi, M.; Sahayarayan, J.J.; Gurusaravanan, P.; Arun, M. Plant Glycosides and Glycosidases: Classification, Sources, and Therapeutic Insights in Current Medicine. Glycoconj. J. 2025, 42, 107–124. [Google Scholar] [CrossRef]
- He, Y.-L.; Yang, H.-Y.; Zhang, L.; Gong, Z.; Li, G.-L.; Gao, K. Research Progress on Plant-Derived Cardenolides (2010–2023). Chem. Biodivers. 2024, 21, e202401460. [Google Scholar] [CrossRef]
- Long, J.; Ouyang, J.-C.; Luo, Y.-H.; Wu, Q.-J.; Liao, X.-T.; Chen, Z.-L.; Wang, Q.-L.; Liang, X.-Y.; Liu, L.; Yang, X.-M.; et al. Three New Cardenolides from the Fruits of Cascabela Thevetia (L.) Lippold and Their Cytotoxic Activities. Nat. Prod. Res. 2024, 38, 211–219. [Google Scholar] [CrossRef]
- Mishra, V.K.; Rathour, B.K.; Mishra, S.K.; Sagar, R. Cardenolide and Pregnatriene Compounds from the Roots of Nerium Oleander. Nat. Prod. Res. 2021, 35, 4177–4181. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Singh, S.; Tewari, N.; Dey, P. A Toxic Shrub Turned Therapeutic: The Dichotomy of Nerium Oleander Bioactivities. Toxicon Off. J. Int. Soc. Toxinology 2023, 224, 107047. [Google Scholar] [CrossRef] [PubMed]
- Rajkovic, J.; Novakovic, R.; Grujic-Milanovic, J.; Ydyrys, A.; Ablaikhanova, N.; Calina, D.; Sharifi-Rad, J.; Al-Omari, B. An Updated Pharmacological Insight into Calotropin as a Potential Therapeutic Agent in Cancer. Front. Pharmacol. 2023, 14, 1160616. [Google Scholar] [CrossRef] [PubMed]
- Ji Ram, V.; Goel, A.; Pratap, R. Chapter 3 - Chemistry of Isolated 2-Pyranones. In Isolated Pyranones; Ji Ram, V., Goel, A., Pratap, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 11–175. ISBN 978-0-12-821216-5. [Google Scholar]
- Krenn, L.; Kopp, B. Bufadienolides from Animal and Plant Sources. Phytochemistry 1998, 48, 1–29. [Google Scholar] [CrossRef]
- Stoll, A.; Suter, E.; Kreis, W.; Bussemaker, B.B.; Hofmann, A. Die Herzaktiven Substanzen Der Meerzwiebel. Scillaren A. Helv. Chim. Acta 1933, 16, 703–733. [Google Scholar] [CrossRef]
- Asrorov, A.M.; Kayumov, M.; Mukhamedov, N.; Yashinov, A.; Mirakhmetova, Z.; Huang, Y.; Yili, A.; Aisa, H.A.; Tashmukhamedov, M.; Salikhov, S.; et al. Toad Venom Bufadienolides and Bufotoxins: An Updated Review. Drug Dev. Res. 2023, 84, 815–838. [Google Scholar] [CrossRef]
- Stefanowicz-Hajduk, J.; Hering, A.; Gucwa, M.; Hałasa, R.; Soluch, A.; Kowalczyk, M.; Stochmal, A.; Ochocka, R. Biological Activities of Leaf Extracts from Selected Kalanchoe Species and Their Relationship with Bufadienolides Content. Pharm. Biol. 2020, 58, 732–740. [Google Scholar] [CrossRef]
- Guo, J.; Chen, F.; Zhang, W.; Bai, H.; Li, L.; Ma, Y.; Yang, Z. Separation of Bufadienolides from Helleborus Thibetanus Franch. by a Combination Approach Involving Macroporous Resin Column Chromatography and Gradient Countercurrent Chromatography. J. Sep. Sci. 2024, 47, e2400145. [Google Scholar] [CrossRef]
- Yokosuka, A.; Inomata, M.; Yoshizawa, Y.; Iguchi, T.; Mimaki, Y. Bufadienolides and Ecdysteroids from the Whole Plants of Helleborus Niger and Their Cytotoxicity. J. Nat. Med. 2021, 75, 393–402. [Google Scholar] [CrossRef]
- Potterat, O.; Kaufmann, M.; Tschopp, C.; Caj, M.; Reinhardt, J.K.; Prescimone, A.; Shah, D.; Baumgartner, S.; Sciotti, M.-A.; Suter-Dick, L. Bufadienolides from Helleborus Foetidus and Their Cytotoxic Properties on MCF-7 Breast Cancer Cells. Phytochemistry 2025, 230, 114329. [Google Scholar] [CrossRef]
- Deng, L.-J.; Li, Y.; Qi, M.; Liu, J.-S.; Wang, S.; Hu, L.-J.; Lei, Y.-H.; Jiang, R.-W.; Chen, W.-M.; Qi, Q.; et al. Molecular Mechanisms of Bufadienolides and Their Novel Strategies for Cancer Treatment. Eur. J. Pharmacol. 2020, 887, 173379. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Feng, Y.; Lu, J.; Jia, L.; Shen, D.; Shang, J.; Chen, T.; Yin, P.; Chen, J.; Wang, J. Global Trends in Bufalin Application Research for Cancer from 2003 to 2022: A Bibliometric and Visualised Analysis. Heliyon 2024, 10, e24395. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Sun, W.; Tang, X.; Chen, J.; Zheng, H.; Yang, G.; Yao, G. Bufalin Alleviates Inflammatory Response and Oxidative Stress in Experimental Severe Acute Pancreatitis through Activating Keap1-Nrf2/HO-1 and Inhibiting NF-κB Pathways. Int. Immunopharmacol. 2024, 142, 113113. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Devi, S.; Sharma, A.; Sood, P. Pharmacological Insights and Role of Bufalin (Bufadienolides) in Inflammation Modulation: A Narrative Review. Inflammopharmacology 2024, 32, 3057–3077. [Google Scholar] [CrossRef]
- Zhao, J.-Z.; Xu, L.-M.; Li, L.-F.; Ren, G.-M.; Shao, Y.-Z.; Liu, Q.; Lu, T.-Y. Traditional Chinese Medicine Bufalin Inhibits Infectious Hematopoietic Necrosis Virus Infection in Vitro and in Vivo. Microbiol. Spectr. 2024, 12, e0501622. [Google Scholar] [CrossRef]
- Schoner, W. Endogenous Cardiac Glycosides, a New Class of Steroid Hormones. Eur. J. Biochem. 2002, 269, 2440–2448. [Google Scholar] [CrossRef]
- Blaustein, M.P.; Hamlyn, J.M. Sensational Site: The Sodium Pump Ouabain-Binding Site and Its Ligands. Am. J. Physiol. Cell Physiol. 2024, 326, C1120–C1177. [Google Scholar] [CrossRef]
- Hamlyn, J.M.; Blaustein, M.P. Endogenous Ouabain: Recent Advances and Controversies. Hypertension 2016, 68, 526–532. [Google Scholar] [CrossRef]
- Hamlyn, J.M.; Blaustein, M.P.; Bova, S.; DuCharme, D.W.; Harris, D.W.; Mandel, F.; Mathews, W.R.; Ludens, J.H. Identification and Characterization of a Ouabain-like Compound from Human Plasma. Proc. Natl. Acad. Sci. USA 1991, 88, 6259–6263. [Google Scholar] [CrossRef]
- Manunta, P.; Messaggio, E.; Casamassima, N.; Gatti, G.; Carpini, S.D.; Zagato, L.; Hamlyn, J.M. Endogenous Ouabain in Renal Na(+) Handling and Related Diseases. Biochim. Biophys. Acta 2010, 1802, 1214–1218. [Google Scholar] [CrossRef]
- Socha, M.W.; Chmielewski, J.; Pietrus, M.; Wartęga, M. Endogenous Digitalis-like Factors as a Key Molecule in the Pathophysiology of Pregnancy-Induced Hypertension and a Potential Therapeutic Target in Preeclampsia. Int. J. Mol. Sci. 2023, 24, 12743. [Google Scholar] [CrossRef] [PubMed]
- Bagrov, A.Y.; Fedorova, O.V.; Dmitrieva, R.I.; Howald, W.N.; Hunter, A.P.; Kuznetsova, E.A.; Shpen, V.M. Characterization of a Urinary Bufodienolide Na+,K+-ATPase Inhibitor in Patients after Acute Myocardial Infarction. Hypertension 1998, 31, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
- Komiyama, Y.; Dong, X.H.; Nishimura, N.; Masaki, H.; Yoshika, M.; Masuda, M.; Takahashi, H. A Novel Endogenous Digitalis, Telocinobufagin, Exhibits Elevated Plasma Levels in Patients with Terminal Renal Failure. Clin. Biochem. 2005, 38, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Goto, A.; Ishiguro, T.; Yamada, K.; Ishii, M.; Yoshioka, M.; Eguchi, C.; Shimora, M.; Sugimoto, T. Isolation of a Urinary Digitalis-like Factor Indistinguishable from Digoxin. Biochem. Biophys. Res. Commun. 1990, 173, 1093–1101. [Google Scholar] [CrossRef]
- Oda, M.; Kurosawa, M.; Numazawa, S.; Tanaka, S.; Akizawa, T.; Ito, K.; Maeda, M.; Yoshida, T. Determination of Bufalin-like Immunoreactivity in Serum of Humans and Rats by Time-Resolved Fluoroimmunoassay for Using a Monoclonal Antibody. Life Sci. 2001, 68, 1107–1117. [Google Scholar] [CrossRef]
- Pessôa, M.T.C.; Valadares, J.M.M.; Rocha, S.C.; Silva, S.C.; McDermott, J.P.; Sánchez, G.; Varotti, F.P.; Scavone, C.; Ribeiro, R.I.M.A.; Villar, J.A.F.P.; et al. 21-Benzylidene Digoxin Decreases Proliferation by Inhibiting the EGFR/ERK Signaling Pathway and Induces Apoptosis in HeLa Cells. Steroids 2020, 155, 108551. [Google Scholar] [CrossRef]
- Parreira, G.M.; Faria, J.A.; Marques, S.M.S.; Garcia, I.J.P.; Silva, I.F.; De Carvalho, L.E.D.; Villar, J.A.F.P.; Machado, M.V.; de Castro Lima, M.; Barbosa, L.A.; et al. The γ-Benzylidene Digoxin Derivative BD-15 Increases the A3-Na, K-ATPase Activity in Rat Hippocampus and Prefrontal Cortex and No Change on Heart. J. Membr. Biol. 2021, 254, 189–199. [Google Scholar] [CrossRef]
- Barathi, V.A.; Katz, A.; Chaudhary, S.; Li, H.-L.; Tal, D.M.; Marcovich, A.; Do, C.-W.; Karlish, S.J.D. A Digoxin Derivative That Potently Reduces Intraocular Pressure: Efficacy and Mechanism of Action in Different Animal Models. Am. J. Physiol. Cell Physiol. 2024, 326, C1505–C1519. [Google Scholar] [CrossRef]
- Valadares, J.M.M.; Azalim-Neto, P.; Liu, X.; Carrozza, N.C.; O’Doherty, G.A.; Quintas, L.E.M.; Barbosa, L.A. Pharmacodynamic Characterization and Evaluation of Oxidative Stress Effects of Digitoxigenin Derivatives on HeLa Cells. J. Membr. Biol. 2025. [Google Scholar] [CrossRef]
- Lei, M.; Xiao, Z.; Ma, B.; Chen, Y.; Liu, M.; Liu, J.; Guo, D.; Liu, X.; Hu, L. Synthesis and Biological Evaluation of Bufalin-3-Yl Nitrogen-Containing-Carbamate Derivatives as Anticancer Agents. Steroids 2016, 108, 56–60. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, F.; Zhuang, Y.; Liu, Y.; Xu, L.; Zhao, H.; Xiang, Y.; Dai, X.; Liu, Z.; Huang, X.; et al. Acetyl-Bufalin Shows Potent Efficacy against Non-Small-Cell Lung Cancer by Targeting the CDK9/STAT3 Signalling Pathway. Br. J. Cancer 2021, 124, 645–657. [Google Scholar] [CrossRef] [PubMed]
- Sampath, V.; Horesh, N.; Sasi, B.; Zannadeh, H.; Pogodin, I.; Singh, S.V.; Deutsch, J.; Lichtstein, D. Synthesis and Biological Evaluation of Novel Bufalin Derivatives. Int. J. Mol. Sci. 2022, 23, 4007. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Wang, C.; Ma, J.; Ma, H.; Wang, Y.; Zhang, H.; Zhu, Y.; Yao, J.; Luo, C.; Miao, Z.; et al. Discovery of 3-Peptide Substituted Arenobufagin Derivatives as Potent Antitumor Agents with Low Cardiotoxicity. Steroids 2021, 166, 108772. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Zhang, Y.; Yang, K.; Ma, J.; Dong, L.; Wu, C.; Lv, R.; Wang, C.; Luo, C.; Zhang, H.; et al. Discovery of Novel 3,11-Bispeptide Ester Arenobufagin Derivatives with Potential in Vivo Antitumor Activity and Reduced Cardiotoxicity. Chem. Biodivers. 2023, 20, e202200911. [Google Scholar] [CrossRef]
- Skou, J. Chr. Further Investigations on a Mg++ + Na+-Activated Adenosintriphosphatase, Possibly Related to the Active, Linked Transport of Na+ and K+ across the Nerve Membrane. Biochim. Biophys. Acta 1960, 42, 6–23. [Google Scholar] [CrossRef]
- Blaustein, M.P.; Chen, L.; Hamlyn, J.M.; Leenen, F.H.H.; Lingrel, J.B.; Wier, W.G.; Zhang, J. Pivotal Role of A2 Na(+) Pumps and Their High Affinity Ouabain Binding Site in Cardiovascular Health and Disease. J. Physiol. 2016, 594, 6079–6103. [Google Scholar] [CrossRef]
- McDermott, J.P.; Numata, S.; Blanco, G. Na,K-ATPase Atp1a4 Isoform Is Important for Maintaining Sperm Flagellar Shape. J. Assist. Reprod. Genet. 2021, 38, 1493–1505. [Google Scholar] [CrossRef]
- Arystarkhova, E.; Sweadner, K.J. Na,K-ATPase Expression Can Be Limited Post-Transcriptionally: A Test of the Role of the Beta Subunit, and a Review of Evidence. Int. J. Mol. Sci. 2024, 25, 7414. [Google Scholar] [CrossRef]
- Geering, K. Functional Roles of Na,K-ATPase Subunits. Curr. Opin. Nephrol. Hypertens. 2008, 17, 526. [Google Scholar] [CrossRef]
- Kanai, R.; Cornelius, F.; Ogawa, H.; Motoyama, K.; Vilsen, B.; Toyoshima, C. Binding of Cardiotonic Steroids to Na+,K+-ATPase in the E2P State. Proc. Natl. Acad. Sci. USA 2021, 118, e2020438118. [Google Scholar] [CrossRef]
- Bagrov, A.Y.; Shapiro, J.I.; Fedorova, O.V. Endogenous Cardiotonic Steroids: Physiology, Pharmacology, and Novel Therapeutic Targets. Pharmacol. Rev. 2009, 61, 9–38. [Google Scholar] [CrossRef] [PubMed]
- Tverskoi, A.M.; Poluektov, Y.M.; Klimanova, E.A.; Mitkevich, V.A.; Makarov, A.A.; Orlov, S.N.; Petrushanko, I.Y.; Lopina, O.D. Depth of the Steroid Core Location Determines the Mode of Na,K-ATPase Inhibition by Cardiotonic Steroids. Int. J. Mol. Sci. 2021, 22, 13268. [Google Scholar] [CrossRef]
- Pierre, S.V.; Xie, Z. The Na,K-ATPase Receptor Complex. Cell Biochem. Biophys. 2006, 46, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Askari, A. The Other Functions of the Sodium Pump. Cell Calcium 2019, 84, 102105. [Google Scholar] [CrossRef] [PubMed]
- Pierre, S.V.; Blanco, G. Na/K-ATPase Ion Transport and Receptor-Mediated Signaling Pathways. J. Membr. Biol. 2021, 254, 443–446. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Sehnal, D.; Bittrich, S.; Deshpande, M.; Svobodová, R.; Berka, K.; Bazgier, V.; Velankar, S.; Burley, S.K.; Koča, J.; Rose, A.S. Mol* Viewer: Modern Web App for 3D Visualization and Analysis of Large Biomolecular Structures. Nucleic Acids Res. 2021, 49, W431–W437. [Google Scholar] [CrossRef]
- Kanai, R.; Cornelius, F.; Vilsen, B.; Toyoshima, C. Cryoelectron Microscopy of Na+,K+-ATPase in the Two E2P States with and without Cardiotonic Steroids. Proc. Natl. Acad. Sci. USA 2022, 119, e2123226119. [Google Scholar] [CrossRef]
- Xie, Z.; Kometiani, P.; Liu, J.; Li, J.; Shapiro, J.I.; Askari, A. Intracellular Reactive Oxygen Species Mediate the Linkage of Na+/K+-ATPase to Hypertrophy and Its Marker Genes in Cardiac Myocytes. J. Biol. Chem. 1999, 274, 19323–19328. [Google Scholar] [CrossRef]
- Xie, Z. Molecular Mechanisms of Na/K-ATPase-Mediated Signal Transduction. Ann. N. Y. Acad. Sci. 2003, 986, 497–503. [Google Scholar] [CrossRef]
- Mohammadi, K.; Kometiani, P.; Xie, Z.; Askari, A. Role of Protein Kinase C in the Signal Pathways That Link Na+/K+-ATPase to ERK1/2. J. Biol. Chem. 2001, 276, 42050–42056. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tian, J.; Haas, M.; Shapiro, J.I.; Askari, A.; Xie, Z. Ouabain Interaction with Cardiac Na+/K+-ATPase Initiates Signal Cascades Independent of Changes in Intracellular Na+ and Ca2+ Concentrations. J. Biol. Chem. 2000, 275, 27838–27844. [Google Scholar] [CrossRef] [PubMed]
- Aperia, A.; Brismar, H.; Uhlén, P. Mending Fences: Na,K-ATPase Signaling via Ca2+ in the Maintenance of Epithelium Integrity. Cell Calcium 2020, 88, 102210. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Akkuratov, E.E.; Bai, Y.; Gaskill, C.M.; Askari, A.; Liu, L. Cell Signaling Associated with Na(+)/K(+)-ATPase: Activation of Phosphatidylinositide 3-Kinase IA/Akt by Ouabain Is Independent of Src. Biochemistry 2013, 52, 9059–9067. [Google Scholar] [CrossRef]
- Aizman, O.; Uhlén, P.; Lal, M.; Brismar, H.; Aperia, A. Ouabain, a Steroid Hormone That Signals with Slow Calcium Oscillations. Proc. Natl. Acad. Sci. USA 2001, 98, 13420–13424. [Google Scholar] [CrossRef]
- Zhang, S.; Malmersjö, S.; Li, J.; Ando, H.; Aizman, O.; Uhlén, P.; Mikoshiba, K.; Aperia, A. Distinct Role of the N-Terminal Tail of the Na,K-ATPase Catalytic Subunit as a Signal Transducer. J. Biol. Chem. 2006, 281, 21954–21962. [Google Scholar] [CrossRef]
- Panizza, E.; Zhang, L.; Fontana, J.M.; Hamada, K.; Svensson, D.; Akkuratov, E.E.; Scott, L.; Mikoshiba, K.; Brismar, H.; Lehtiö, J.; et al. Ouabain-Regulated Phosphoproteome Reveals Molecular Mechanisms for Na+, K+–ATPase Control of Cell Adhesion, Proliferation, and Survival. FASEB J. 2019, 33, 10193. [Google Scholar] [CrossRef]
- Pratt, R.D.; Brickman, C.R.; Cottrill, C.L.; Shapiro, J.I.; Liu, J. The Na/K-ATPase Signaling: From Specific Ligands to General Reactive Oxygen Species. Int. J. Mol. Sci. 2018, 19, 2600. [Google Scholar] [CrossRef]
- Huang, W.H.; Wang, Y.; Askari, A. (Na+ + K+)-ATPase: Inactivation and Degradation Induced by Oxygen Radicals. Int. J. Biochem. 1992, 24, 621–626. [Google Scholar] [CrossRef]
- Orlov, S.N.; Klimanova, E.A.; Tverskoi, A.M.; Vladychenskaya, E.A.; Smolyaninova, L.V.; Lopina, O.D. Na+i,K+i-Dependent and -Independent Signaling Triggered by Cardiotonic Steroids: Facts and Artifacts. Mol. J. Synth. Chem. Nat. Prod. Chem. 2017, 22, 635. [Google Scholar] [CrossRef]
- Fedorov, D.A.; Sidorenko, S.V.; Yusipovich, A.I.; Parshina, E.Y.; Tverskoi, A.M.; Abramicheva, P.A.; Maksimov, G.V.; Orlov, S.N.; Lopina, O.D.; Klimanova, E.A. Na+ i/K+ i Imbalance Contributes to Gene Expression in Endothelial Cells Exposed to Elevated NaCl. Heliyon 2021, 7, e08088. [Google Scholar] [CrossRef] [PubMed]
- Klimanova, E.A.; Tverskoi, A.M.; Koltsova, S.V.; Sidorenko, S.V.; Lopina, O.D.; Tremblay, J.; Hamet, P.; Kapilevich, L.V.; Orlov, S.N. Time- and Dose Dependent Actions of Cardiotonic Steroids on Transcriptome and Intracellular Content of Na+ and K+: A Comparative Analysis. Sci. Rep. 2017, 7, 45403. [Google Scholar] [CrossRef] [PubMed]
- Lopina, O.D.; Fedorov, D.A.; Sidorenko, S.V.; Bukach, O.V.; Klimanova, E.A. Sodium Ions as Regulators of Transcription in Mammalian Cells. Biochem. Mosc. 2022, 87, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Cereijido, M.; Contreras, R.G.; Shoshani, L.; Larre, I. The Na+-K+-ATPase as Self-Adhesion Molecule and Hormone Receptor. Am. J. Physiol. Cell Physiol. 2012, 302, C473–C481. [Google Scholar] [CrossRef]
- Shoshani, L.; Contreras, R.G.; Roldán, M.L.; Moreno, J.; Lázaro, A.; Balda, M.S.; Matter, K.; Cereijido, M. The Polarized Expression of Na+,K+-ATPase in Epithelia Depends on the Association between Beta-Subunits Located in Neighboring Cells. Mol. Biol. Cell 2005, 16, 1071–1081. [Google Scholar] [CrossRef]
- Vagin, O.; Dada, L.A.; Tokhtaeva, E.; Sachs, G. The Na-K-ATPase A1β1 Heterodimer as a Cell Adhesion Molecule in Epithelia. Am. J. Physiol. Cell Physiol. 2012, 302, C1271–C1281. [Google Scholar] [CrossRef]
- Páez, O.; Martínez-Archundia, M.; Villegas-Sepúlveda, N.; Roldan, M.L.; Correa-Basurto, J.; Shoshani, L. A Model for the Homotypic Interaction between Na(+),K(+)-ATPase β(1) Subunits Reveals the Role of Extracellular Residues 221-229 in Its Ig-Like Domain. Int. J. Mol. Sci. 2019, 20, 4538. [Google Scholar] [CrossRef]
- Padilla-Benavides, T.; Roldán, M.L.; Larre, I.; Flores-Benitez, D.; Villegas-Sepúlveda, N.; Contreras, R.G.; Cereijido, M.; Shoshani, L. The Polarized Distribution of Na+,K+-ATPase: Role of the Interaction between {beta} Subunits. Mol. Biol. Cell 2010, 21, 2217–2225. [Google Scholar] [CrossRef]
- Tokhtaeva, E.; Sachs, G.; Souda, P.; Bassilian, S.; Whitelegge, J.P.; Shoshani, L.; Vagin, O. Epithelial Junctions Depend on Intercellular Trans-Interactions between the Na,K-ATPase Β1 Subunits. J. Biol. Chem. 2011, 286, 25801–25812. [Google Scholar] [CrossRef]
- Contreras, R.G.; Shoshani, L.; Flores-Maldonado, C.; Lázaro, A.; Cereijido, M. Relationship between Na(+),K(+)-ATPase and Cell Attachment. J. Cell Sci. 1999, 112 Pt 23, 4223–4232. [Google Scholar] [CrossRef]
- Lobato-Álvarez, J.A.; Roldán, M.L.; López-Murillo, T.D.C.; González-Ramírez, R.; Bonilla-Delgado, J.; Shoshani, L. The Apical Localization of Na(+), K(+)-ATPase in Cultured Human Retinal Pigment Epithelial Cells Depends on Expression of the β(2) Subunit. Front. Physiol. 2016, 7, 450. [Google Scholar] [CrossRef] [PubMed]
- Vilchis-Nestor, C.A.; Roldán, M.L.; Leonardi, A.; Navea, J.G.; Padilla-Benavides, T.; Shoshani, L. Ouabain Enhances Cell-Cell Adhesion Mediated by β(1) Subunits of the Na(+),K(+)-ATPase in CHO Fibroblasts. Int. J. Mol. Sci. 2019, 20, 2111. [Google Scholar] [CrossRef] [PubMed]
- Gloor, S.; Antonicek, H.; Sweadner, K.J.; Pagliusi, S.; Frank, R.; Moos, M.; Schachner, M. The Adhesion Molecule on Glia (AMOG) Is a Homologue of the Beta Subunit of the Na,K-ATPase. J. Cell Biol. 1990, 110, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Müller-Husmann, G.; Gloor, S.; Schachner, M. Functional Characterization of Beta Isoforms of Murine Na,K-ATPase. Th e Adhesion Molecule on Glia (AMOG/Beta 2), but Not Beta 1, Promotes Ne Urite Outgrowth. J. Biol. Chem. 1993, 268, 26260–26267. [Google Scholar] [CrossRef]
- Roldán, M.L.; Ramírez-Salinas, G.L.; Martinez-Archundia, M.; Cuellar-Perez, F.; Vilchis-Nestor, C.A.; Cancino-Diaz, J.C.; Shoshani, L. The β(2)-Subunit (AMOG) of Human Na(+), K(+)-ATPase Is a Homophilic Adhesion Molecule. Int. J. Mol. Sci. 2022, 23, 7753. [Google Scholar] [CrossRef]
- Antonicek, H.; Persohn, E.; Schachner, M. Biochemical and Functional Characterization of a Novel Neuron-Glia Adhesion Molecule That Is Involved in Neuronal Migration. J. Cell Biol. 1987, 104, 1587–1595. [Google Scholar] [CrossRef]
- Hossan, M.S.; Chan, Z.-Y.; Collins, H.M.; Shipton, F.N.; Butler, M.S.; Rahmatullah, M.; Lee, J.B.; Gershkovich, P.; Kagan, L.; Khoo, T.-J.; et al. Cardiac Glycoside Cerberin Exerts Anticancer Activity through PI3K/AKT/mTOR Signal Transduction Inhibition. Cancer Lett. 2019, 453, 57–73. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, H.; Sun, H.; Ding, X.; Liu, G.; Yang, F.; Feng, G.; Dong, X.; Zhu, Y.; Wang, X.; et al. Bufalin Targeting BFAR Inhibits the Occurrence and Metastasis of Gastric Cancer through PI3K/AKT/mTOR Signal Pathway. Apoptosis Int. J. Program. Cell Death 2023, 28, 1390–1405. [Google Scholar] [CrossRef]
- Reddy, D.; Ghosh, P.; Kumavath, R. Strophanthidin Attenuates MAPK, PI3K/AKT/mTOR, and Wnt/β-Catenin Signaling Pathways in Human Cancers. Front. Oncol. 2019, 9, 1469. [Google Scholar] [CrossRef]
- Xiang, C.; Cao, J.; Hu, R.; Li, K.; Meng, T.; Xia, Y.; Meng, Q.; Liu, K.; Liu, L.; Zhu, X. Oleandrin Inhibits Osteoclast Differentiation by Targeting the LRP4/MAPK/NF-κB Signalling Pathway to Treat Osteoporosis. Int. Immunopharmacol. 2025, 148, 114073. [Google Scholar] [CrossRef]
- Coleman, D.T.; Gray, A.L.; Stephens, C.A.; Scott, M.L.; Cardelli, J.A. Repurposed Drug Screen Identifies Cardiac Glycosides as Inhibitors of TGF-β-Induced Cancer-Associated Fibroblast Differentiation. Oncotarget 2016, 7, 32200–32209. [Google Scholar] [CrossRef] [PubMed]
- Yun, W.; Qian, L.; Yuan, R.; Xu, H. Periplocymarin Protects against Myocardial Fibrosis Induced by β-Adrenergic Activation in Mice. Biomed. Pharmacother. 2021, 139, 111562. [Google Scholar] [CrossRef] [PubMed]
- Cowman, S.J.; Koh, M.Y. Revisiting the HIF Switch in the Tumor and Its Immune Microenvironment. Trends Cancer 2022, 8, 28–42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Qian, D.Z.; Tan, Y.S.; Lee, K.; Gao, P.; Ren, Y.R.; Rey, S.; Hammers, H.; Chang, D.; Pili, R.; et al. Digoxin and Other Cardiac Glycosides Inhibit HIF-1alpha Synthesis and Block Tumor Growth. Proc. Natl. Acad. Sci. USA 2008, 105, 19579–19586. [Google Scholar] [CrossRef]
- Lee, D.-H.; Cheul Oh, S.; Giles, A.J.; Jung, J.; Gilbert, M.R.; Park, D.M. Cardiac Glycosides Suppress the Maintenance of Stemness and Malignancy via Inhibiting HIF-1α in Human Glioma Stem Cells. Oncotarget 2017, 8, 40233–40245. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, C.; Sun, Y.; Li, Y.; Wu, H.; Ma, S.; Shang, J.; Zhan, Y.; Yin, P.; Gao, F. Bufalin Exacerbates Photodynamic Therapy of Colorectal Cancer by Targeting SRC-3/HIF-1α Pathway. Int. J. Pharm. 2022, 624, 122018. [Google Scholar] [CrossRef]
- Su, S.; Dou, H.; Wang, Z.; Zhang, Q. Bufalin Inhibits Ovarian Carcinoma via Targeting mTOR/HIF-α Pathway. Basic Clin. Pharmacol. Toxicol. 2021, 128, 224–233. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhou, Z.; Zhang, Q.; Zhou, X.; Yang, J.; Yang, M.-R.; Zhu, G.-Y.; Jiang, Z.-H.; Li, T.; Lin, Q.; et al. Non-Classical Cardenolides from Calotropis Gigantea Exhibit Anticancer Effect as HIF-1 Inhibitors. Bioorganic Chem. 2021, 109, 104740. [Google Scholar] [CrossRef]
- Zhong, X.; Feng, W.; Liu, L.; Liu, Q.; Xu, Q.; Liu, M.; Liu, X.; Xu, S.; Deng, M.; Lin, C. Periplogenin Inhibits Pathologic Synovial Proliferation and Infiltration in Rheumatoid Arthritis by Regulating the JAK2/3-STAT3 Pathway. Int. Immunopharmacol. 2024, 128, 111487. [Google Scholar] [CrossRef]
- Fan, C.-L.; Liang, S.; Ye, M.-N.; Cai, W.-J.; Chen, M.; Hou, Y.-L.; Guo, J.; Dai, Y. Periplocymarin Alleviates Pathological Cardiac Hypertrophy via Inhibiting the JAK2/STAT3 Signalling Pathway. J. Cell. Mol. Med. 2022, 26, 2607–2619. [Google Scholar] [CrossRef]
- Kong, W.-S.; Shen, F.-X.; Xie, R.-F.; Zhou, G.; Feng, Y.-M.; Zhou, X. Bufothionine Induces Autophagy in H22 Hepatoma-Bearing Mice by Inhibiting JAK2/STAT3 Pathway, a Possible Anti-Cancer Mechanism of Cinobufacini. J. Ethnopharmacol. 2021, 270, 113848. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Li, M.Y.; Wang, Z.; Zuo, H.X.; Wang, J.Y.; Xing, Y.; Jin, C.; Xu, G.; Piao, L.; Piao, H.; et al. Convallatoxin Promotes Apoptosis and Inhibits Proliferation and Angiogenesis through Crosstalk between JAK2/STAT3 (T705) and mTOR/STAT3 (S727) Signaling Pathways in Colorectal Cancer. Phytomedicine Int. J. Phytother. Phytopharm. 2020, 68, 153172. [Google Scholar] [CrossRef] [PubMed]
- Reddy, D.; Kumavath, R.; Tan, T.Z.; Ampasala, D.R.; Kumar, A.P. Peruvoside Targets Apoptosis and Autophagy through MAPK Wnt/β-Catenin and PI3K/AKT/mTOR Signaling Pathways in Human Cancers. Life Sci. 2020, 241, 117147. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zheng, J.; Chen, S.; Meng, F.-D.; Ning, J.; Sun, S.-L. Oleandrin, a Cardiac Glycoside, Induces Immunogenic Cell Death via the PERK/elF2α/ATF4/CHOP Pathway in Breast Cancer. Cell Death Dis. 2021, 12, 314. [Google Scholar] [CrossRef]
- Zhao, W.; Li, G.; Zhang, Q.; Chen, M.; He, L.; Wu, Z.; Zhang, Y.; Fan, M.; Liang, Y.; Zhang, W.; et al. Cardiac Glycoside Neriifolin Exerts Anti-Cancer Activity in Prostate Cancer Cells by Attenuating DNA Damage Repair through Endoplasmic Reticulum Stress. Biochem. Pharmacol. 2023, 209, 115453. [Google Scholar] [CrossRef]
- Pavlovic, D. Endogenous Cardiotonic Steroids and Cardiovascular Disease, Where to Next? Cell Calcium 2020, 86, 102156. [Google Scholar] [CrossRef]
- Blaustein, M.P.; Hamlyn, J.M. Ouabain, Endogenous Ouabain and Ouabain-like Factors: The Na+ Pump/Ouabain Receptor, Its Linkage to NCX, and Its Myriad Functions. Cell Calcium 2020, 86, 102159. [Google Scholar] [CrossRef]
- Bejček, J.; Jurášek, M.; Spiwok, V.; Rimpelová, S. Quo Vadis Cardiac Glycoside Research? Toxins 2021, 13, 344. [Google Scholar] [CrossRef]
- Irgashev, I. Features and Benefits of Cardiac Glycosides in Chronic Heart Failure. Mod. Sci. Res. 2025, 4, 1292–1303. [Google Scholar]
- Riaz, T.; Akram, M.; Laila, U.; Zainab, R.; Khalil, M.T.; Iftikhar, M.; Ozdemir, F.A.; Sołowski, G.; Altable, M.; Sfera, A.; et al. Therapeutic Applications of Glycosides Obtained from Medicinal Plants. Int. Arch. Integr. Med. 2023, 10, 30–38. [Google Scholar]
- Khandelwal, R.; Vagha, J.D.; Meshram, R.J.; Patel, A. A Comprehensive Review on Unveiling the Journey of Digoxin: Past, Present, and Future Perspectives. Cureus 2024, 16, e56755. [Google Scholar] [CrossRef] [PubMed]
- Vishram-Nielsen, J.K.K.; Tomasoni, D.; Gustafsson, F.; Metra, M. Contemporary Drug Treatment of Advanced Heart Failure with Reduced Ejection Fraction. Drugs 2022, 82, 375–405. [Google Scholar] [CrossRef] [PubMed]
- Makhsumov, S.M.; Zayseva, O.A.; Djanaev, G.Y. Drugs Used in Heart Failure. J. Appl. Med. Sci. 2024, 7, 15–20. [Google Scholar]
- Miró, Ò.; Martín Mojarro, E.; Lopez-Ayala, P.; Llorens, P.; Gil, V.; Alquézar-Arbé, A.; Bibiano, C.; Pavón, J.; Massó, M.; Strebel, I.; et al. Association of Intravenous Digoxin Use in Acute Heart Failure with Rapid Atrial Fibrillation and Short-Term Mortality According to Patient Age, Renal Function, and Serum Potassium. Eur. J. Emerg. Med. Off. J. Eur. Soc. Emerg. Med. 2024, 31, 347–355. [Google Scholar] [CrossRef]
- Garg, U.; Christian, M. 5 Emergency and Intensive Care Management: For Acute Poisonings and Toxicities. In Interpreting Laboratory Tests in Intensive Care; CRC Press: Boca Raton, FL, USA, 2024; ISBN 978-1-003-44971-3. [Google Scholar]
- Khalaf, F.K.; Dube, P.; Mohamed, A.; Tian, J.; Malhotra, D.; Haller, S.T.; Kennedy, D.J. Cardiotonic Steroids and the Sodium Trade Balance: New Insights into Trade-Off Mechanisms Mediated by the Na+/K+-ATPase. Int. J. Mol. Sci. 2018, 19, 2576. [Google Scholar] [CrossRef]
- Manunta, P.; Hamilton, J.; Rogowski, A.C.; Hamilton, B.P.; Hamlyn, J.M. Chronic Hypertension Induced by Ouabain but Not Digoxin in the Rat: Antihypertensive Effect of Digoxin and Digitoxin. Hypertens. Res. 2000, 23, S77–S85. [Google Scholar] [CrossRef]
- Blaustein, M.P.; Gottlieb, S.S.; Hamlyn, J.M.; Leenen, F.H.H. Whither Digitalis? What We Can Still Learn from Cardiotonic Steroids about Heart Failure and Hypertension. Am. J. Physiol. Heart Circ. Physiol. 2022, 323, H1281–H1295. [Google Scholar] [CrossRef]
- Manunta, P.; Hamilton, B.P.; Hamlyn, J.M. Salt Intake and Depletion Increase Circulating Levels of Endogenous Ouabain in Normal Men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, R553–R559. [Google Scholar] [CrossRef]
- Manfrini, V.; Badagliacca, R.; Messaggio, E.; Poscia, R.; Torre, R.; Manunta, P.; Vizza, C.D. Exploratory Study on the Endogenous Ouabain in Idiopathic Pulmonary Arterial Hypertension Patients. Ann. Ist. Super. Sanita 2023, 59, 76–79. [Google Scholar] [CrossRef]
- Tomaschitz, A.; Piecha, G.; Ritz, E.; Meinitzer, A.; Haas, J.; Pieske, B.; Wiecek, A.; Rus-Machan, J.; Toplak, H.; März, W.; et al. Marinobufagenin in Essential Hypertension and Primary Aldosteronism: A Cardiotonic Steroid with Clinical and Diagnostic Implications. Clin. Exp. Hypertens. 2015, 37, 108–115. [Google Scholar] [CrossRef]
- Tian, J.; Haller, S.; Periyasamy, S.; Brewster, P.; Zhang, H.; Adlakha, S.; Fedorova, O.V.; Xie, Z.-J.; Bagrov, A.Y.; Shapiro, J.I.; et al. Renal Ischemia Regulates Marinobufagenin Release in Humans. Hypertension 2010, 56, 914–919. [Google Scholar] [CrossRef] [PubMed]
- Fedorova, O.V.; Shapiro, J.I.; Bagrov, A.Y. Endogenous Cardiotonic Steroids and Salt-Sensitive Hypertension. Biochim. Biophys. Acta 2010, 1802, 1230–1236. [Google Scholar] [CrossRef] [PubMed]
- Aung, K.; Ream-Winnick, S.; Lane, M.; Akinlusi, I.; Shi, T.; Htay, T. Sodium Homeostasis and Hypertension. Curr. Cardiol. Rep. 2023, 25, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Łabno-Kirszniok, K.; Kujawa-Szewieczek, A.; Wiecek, A.; Piecha, G. The Effects of Short-Term Changes in Sodium Intake on Plasma Marinobufagenin Levels in Patients with Primary Salt-Sensitive and Salt-Insensitive Hypertension. Nutrients 2021, 13, 1502. [Google Scholar] [CrossRef]
- Schoner, W.; Scheiner-Bobis, G. Role of Endogenous Cardiotonic Steroids in Sodium Homeostasis. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 2008, 23, 2723–2729. [Google Scholar] [CrossRef]
- Cereijido, M.; Contreras, R.G.; Shoshani, L. Cell Adhesion, Polarity, and Epithelia in the Dawn of Metazoans. Physiol. Rev. 2004, 84, 1229–1262. [Google Scholar] [CrossRef]
- Cereijido, M.; Contreras, R.G.; Shoshani, L.; Flores-Benitez, D.; Larre, I. Tight Junction and Polarity Interaction in the Transporting Epithelial Phenotype. Biochim. Biophys. Acta 2008, 1778, 770–793. [Google Scholar] [CrossRef]
- Rincon-Heredia, R.; Flores-Benitez, D.; Flores-Maldonado, C.; Bonilla-Delgado, J.; García-Hernández, V.; Verdejo-Torres, O.; Castillo, A.M.; Larré, I.; Poot-Hernández, A.C.; Franco, M.; et al. Ouabain Induces Endocytosis and Degradation of Tight Junction Proteins through ERK1/2-Dependent Pathways. Exp. Cell Res. 2014, 320, 108–118. [Google Scholar] [CrossRef]
- Contreras, R.G.; Flores-Beni Tez, D.; Flores-Maldonado, C.; Larre, I.; Shoshani, L.; Cereijido, M. Na+,K+-ATPase and Hormone Ouabain:New Roles for an Old Enzyme and an Old Inhibitor. Cell. Mol. Biol. Noisy-Gd. Fr. 2006, 52, 31–40. [Google Scholar]
- Larre, I.; Lazaro, A.; Contreras, R.G.; Balda, M.S.; Matter, K.; Flores-Maldonado, C.; Ponce, A.; Flores-Benitez, D.; Rincon-Heredia, R.; Padilla-Benavides, T.; et al. Ouabain Modulates Epithelial Cell Tight Junction. Proc. Natl. Acad. Sci. USA 2010, 107, 11387–11392. [Google Scholar] [CrossRef]
- Castillo, A.; Ortuño-Pineda, C.; Flores-Maldonado, C.; Larre, I.; Martínez Rendón, J.; Hinojosa, L.; Ponce, A.; Ogazón, A.; Serrano, M.; Valdes, J.; et al. Ouabain Modulates the Adherens Junction in Renal Epithelial Cells. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2019, 52, 1381–1397. [Google Scholar] [CrossRef]
- Ponce, A.; Larre, I.; Castillo, A.; García-Villegas, R.; Romero, A.; Flores-Maldonado, C.; Martinez-Rendón, J.; Contreras, R.G.; Cereijido, M. Ouabain Increases Gap Junctional Communication in Epithelial Cells. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2014, 34, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Ponce, A.; Larre, I.; Castillo, A.; Flores-Maldonado, C.; Verdejo-Torres, O.; Contreras, R.G.; Cereijido, M. Ouabain Modulates the Distribution of Connexin 43 in Epithelial Cells. Cell. Physiol. Biochem. 2016, 39, 1329–1338. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Rubi, M.; Jimenez, L.; Martinez-Rendon, J.; Cereijido, M.; Ponce, A. Ouabain Promotes Gap Junctional Intercellular Communication in Cancer Cells. Int. J. Mol. Sci. 2020, 22, 358. [Google Scholar] [CrossRef]
- Ogazon Del Toro, A.; Jimenez, L.; Hinojosa, L.; Martínez-Rendón, J.; Castillo, A.; Cereijido, M.; Ponce, A. Influence of Endogenous Cardiac Glycosides, Digoxin, and Marinobufagenin in the Physiology of Epithelial Cells. Cardiol. Res. Pract. 2019, 2019, 8646787. [Google Scholar] [CrossRef]
- Larre, I.; Castillo, A.; Flores-Maldonado, C.; Contreras, R.G.; Galvan, I.; Muñoz-Estrada, J.; Cereijido, M. Ouabain Modulates Ciliogenesis in Epithelial Cells. Proc. Natl. Acad. Sci. USA 2011, 108, 20591–20596. [Google Scholar] [CrossRef]
- Cereijido, M.; Jimenez, L.; Hinojosa, L.; Castillo, A.; Martínez-Rendon, J.; Ponce, A. Ouabain-Induced Changes in the Expression of Voltage-Gated Potassium Channels in Epithelial Cells Depend on Cell-Cell Contacts. Int. J. Mol. Sci. 2022, 23, 3257. [Google Scholar] [CrossRef]
- Ponce, A.; Larre, I.; Jimenez, L.; Roldán, M.L.; Shoshani, L.; Cereijido, M. Ouabain’s Influence on TRPV4 Channels of Epithelial Cells: An Exploration of TRPV4 Activity, Expression, and Signaling Pathways. Int. J. Mol. Sci. 2023, 24, 16687. [Google Scholar] [CrossRef]
- Ogazon Del Toro, A.; Jimenez, L.; Serrano Rubi, M.; Cereijido, M.; Ponce, A. Ouabain Enhances Gap Junctional Intercellular Communication by Inducing Paracrine Secretion of Prostaglandin E2. Int. J. Mol. Sci. 2021, 22, 6244. [Google Scholar] [CrossRef]
- Martínez-Rendón, J.; Hinojosa, L.; Xoconostle-Cázares, B.; Ramírez-Pool, J.A.; Castillo, A.; Cereijido, M.; Ponce, A. Ouabain Induces Transcript Changes and Activation of RhoA/ROCK Signaling in Cultured Epithelial Cells (MDCK). Curr. Issues Mol. Biol. 2023, 45, 7538–7556. [Google Scholar] [CrossRef]
- Dizon, D.S.; Kamal, A.H. Cancer Statistics 2024: All Hands on Deck. CA. Cancer J. Clin. 2024, 74, 8–9. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. The Hallmarks of Cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Vishnoi, K.; Viswakarma, N.; Rana, A.; Rana, B. Transcription Factors in Cancer Development and Therapy. Cancers 2020, 12, 2296. [Google Scholar] [CrossRef] [PubMed]
- Stenkvist, B.; Bengtsson, E.; Eriksson, O.; Holmquist, J.; Nordin, B.; Westman-Naeser, S.; Eklund, G. Cardiac Glycosides and Breast Cancer. Lancet 1979, 313, 563. [Google Scholar] [CrossRef]
- Kumavath, R.; Paul, S.; Pavithran, H.; Paul, M.K.; Ghosh, P.; Barh, D.; Azevedo, V. Emergence of Cardiac Glycosides as Potential Drugs: Current and Future Scope for Cancer Therapeutics. Biomolecules 2021, 11, 1275. [Google Scholar] [CrossRef]
- Reddy, D.; Kumavath, R.; Barh, D.; Azevedo, V.; Ghosh, P. Anticancer and Antiviral Properties of Cardiac Glycosides: A Review to Explore the Mechanism of Actions. Molecules 2020, 25, 3596. [Google Scholar] [CrossRef]
- Ho, H.-Y.; Chen, M.-K.; Lin, C.-C.; Lo, Y.-S.; Chuang, Y.-C.; Hsieh, M.-J. Arenobufagin Induces Cell Apoptosis by Modulating the Cell Cycle Regulator Claspin and the JNK Pathway in Nasopharyngeal Carcinoma Cells. Expert Opin. Ther. Targets 2024, 28, 461–471. [Google Scholar] [CrossRef]
- Hu, R.; Tang, S.; Xiang, Y.; Qin, S. Arenobufagin Induces Ferroptosis in Glioblastoma Cells via Modulating the MiR-149-5p/AEBP1 Axis. J. Appl. Toxicol. JAT 2025, 45, 606–619. [Google Scholar] [CrossRef]
- Chen, L.; Mai, W.; Chen, M.; Hu, J.; Zhuo, Z.; Lei, X.; Deng, L.; Liu, J.; Yao, N.; Huang, M.; et al. Arenobufagin Inhibits Prostate Cancer Epithelial-Mesenchymal Transition and Metastasis by down-Regulating β-Catenin. Pharmacol. Res. 2017, 123, 130–142. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, C.; Wang, M.; Cheng, H.; Wu, H.; Luo, S.; Zhang, M.; Duan, X.; Li, Q. Arenobufagin Regulates the P62-Keap1-Nrf2 Pathway to Induce Autophagy-Dependent Ferroptosis in HepG2 Cells. Naunyn. Schmiedebergs Arch. Pharmacol. 2024, 397, 4895–4909. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Q.; Zou, G.; Gao, G.; Yue, Q. Arenobufagin, Isolated from Toad Venom, Inhibited Epithelial-to-Mesenchymal Transition and Suppressed Migration and Invasion of Lung Cancer Cells via Targeting IKKβ/NFκB Signal Cascade. J. Ethnopharmacol. 2020, 250, 112492. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Wu, H.; Zhu, T.; Liu, Z.; Liu, C.; Yan, C.; Wu, Z.; Xu, Y.; Bai, Y.; Yang, L.; et al. Acetyl-Cinobufagin Suppresses Triple-Negative Breast Cancer Progression by Inhibiting the STAT3 Pathway. Aging 2023, 15, 8258–8274. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wu, C.; Yu, K.; Liu, J.; Yang, J.; Li, W.; Tang, X.; Shi, Y.; Xu, K.; Chen, Y.; et al. Bufalin Targets the SRC-3/c-Myc Pathway in Chemoresistant Cells to Regulate Metastasis Induced by Chemoresistance in Colorectal Cancer. J. Cancer Res. Clin. Oncol. 2025, 151, 71. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Xia, Q.; Sun, Y.; Wang, H.; Chen, J.; Li, Y.; Gao, F.; Yin, P.; Yuan, Z. Bufalin-Loaded Multifunctional Photothermal Nanoparticles Inhibit the Anaerobic Glycolysis by Targeting SRC-3/HIF-1α Pathway for Improved Mild Photothermal Therapy in CRC. Int. J. Nanomed. 2024, 19, 7831–7850. [Google Scholar] [CrossRef]
- Zheng, Y.-D.; He, Z.; Su, Z.-C.; Wang, H.; Jiang, X.-H.; Fang, X.; Lu, S.-L.; Li, Y. Bufalin Induces Apoptosis and Autophagy via the Ca2+/CaMKKβ/AMPK/Beclin1 Signaling Pathway in Osteosarcoma Cells. Cell Biol. Int. 2023, 47, 1344–1353. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, X.; Ding, X.; Liu, G.; Yang, F.; Song, Q.; Sun, H.; Chen, G.; Li, S.; Li, Y.; et al. Bufalin Targeting CAMKK2 Inhibits the Occurrence and Development of Intrahepatic Cholangiocarcinoma through Wnt/β-Catenin Signal Pathway. J. Transl. Med. 2023, 21, 900. [Google Scholar] [CrossRef]
- Qian, Z.; Tian, X.; Miao, Y.; Xu, X.; Cheng, X.; Wu, M.; Yu, Y. Bufalin Inhibits the Proliferation of Lung Cancer Cells by Suppressing Hippo-YAP Pathway. Cell. Signal. 2023, 109, 110746. [Google Scholar] [CrossRef]
- Ju, Q.; Shi, Q.; Liu, C.; Fu, G.; Shi, H. Bufalin Suppresses Esophageal Squamous Cell Carcinoma Progression by Activating the PIAS3/STAT3 Signaling Pathway. J. Thorac. Dis. 2023, 15, 2141–2160. [Google Scholar] [CrossRef]
- Farooqi, A.A.; Rakhmetova, V.S.; Kapanova, G.; Tashenova, G.; Tulebayeva, A.; Akhenbekova, A.; Ibekenov, O.; Turgambayeva, A.; Xu, B. Bufalin-Mediated Regulation of Cell Signaling Pathways in Different Cancers: Spotlight on JAK/STAT, Wnt/β-Catenin, mTOR, TRAIL/TRAIL-R, and Non-Coding RNAs. Molecules 2023, 28, 2231. [Google Scholar] [CrossRef]
- Zhu, Z.; Liang, S.; Hong, Y.; Qi, Y.; Sun, Q.; Zhu, X.; Wei, Y.; Xu, Y.; Chen, Q. Bufotalin Enhances Apoptosis and TMZ Chemosensitivity of Glioblastoma Cells by Promoting Mitochondrial Dysfunction via AKT Signaling Pathway. Aging 2024, 16, 9264–9279. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, K.; Li, X.; Wang, X.; Li, G.; Wang, Y. Cinobufagin Enhances the Sensitivity of Cisplatin-Resistant Lung Cancer Cells to Chemotherapy by Inhibiting the PI3K/AKT and MAPK/ERK Pathways. J. Cell. Mol. Med. 2025, 29, e70501. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Luo, M. Cinobufotalin Regulates the USP36/c-Myc Axis to Suppress Malignant Phenotypes of Colon Cancer Cells in Vitro and in Vivo. Aging 2024, 16, 5526–5544. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Geng, Z.; Ding, X.; Lou, Y.; Zhang, X. Convallatoxin Suppresses Osteosarcoma Cell Proliferation, Migration, Invasion, and Enhances Osteogenic Differentiation by Downregulating Parathyroid Hormone Receptor 1 (PTHR1) Expression and Inactivating Wnt/β-Catenin Pathway. Bioengineered 2022, 13, 13280–13292. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Wang, R.; Huang, C.; Xu, X.; Xiao, X.; Wu, L.; Wei, J.; Long, T.; Gao, C. Digitoxin Inhibits ICC Cell Properties via the NF-κB/ST6GAL1 Signaling Pathway. Oncol. Rep. 2024, 52, 103. [Google Scholar] [CrossRef]
- Yun, H.H.; Kim, S.; Kuh, H.-J.; Lee, J.-H. Downregulation of BIS Sensitizes A549 Cells for Digoxin-Mediated Inhibition of Invasion and Migration by the STAT3-Dependent Pathway. Biochem. Biophys. Res. Commun. 2020, 524, 643–648. [Google Scholar] [CrossRef]
- Ma, K.; Zhang, C.; Li, W. Gamabufotalin Suppressed Osteosarcoma Stem Cells through the TGF-β/Periostin/PI3K/AKT Pathway. Chem. Biol. Interact. 2020, 331, 109275. [Google Scholar] [CrossRef]
- Lan, Y.-L.; Chen, C.; Wang, X.; Lou, J.-C.; Xing, J.-S.; Zou, S.; Hu, J.-L.; Lyu, W.; Zhang, B. Gamabufotalin Induces a Negative Feedback Loop Connecting ATP1A3 Expression and the AQP4 Pathway to Promote Temozolomide Sensitivity in Glioblastoma Cells by Targeting the Amino Acid Thr794. Cell Prolif. 2020, 53, e12732. [Google Scholar] [CrossRef]
- Reddy, D.; Kumavath, R.; Ghosh, P.; Barh, D. Lanatoside C Induces G2/M Cell Cycle Arrest and Suppresses Cancer Cell Growth by Attenuating MAPK, Wnt, JAK-STAT, and PI3K/AKT/mTOR Signaling Pathways. Biomolecules 2019, 9, 792. [Google Scholar] [CrossRef]
- Huang, S.; Huang, D.; Jin, Y.; Shao, C.; Su, X.; Yang, R.; Jiang, J.; Wu, J. Lanatoside C Inhibits Proliferation and Induces Apoptosis in Human Prostate Cancer Cells Through the TNF/IL-17 Signaling Pathway. Int. J. Mol. Sci. 2025, 26, 2558. [Google Scholar] [CrossRef]
- Hu, Q.-Y.; Zhang, X.-K.; Wang, J.-N.; Chen, H.-X.; He, L.-P.; Tang, J.-S.; Yao, X.-S.; Liu, J. Malayoside, a Cardenolide Glycoside Extracted from Antiaris Toxicaria Lesch, Induces Apoptosis in Human Non-Small Lung Cancer Cells via MAPK-Nur77 Signaling Pathway. Biochem. Pharmacol. 2021, 190, 114622. [Google Scholar] [CrossRef]
- Hu, X.; Chen, T.; Zhang, S.; Zhang, Q.; Li, C.; Wang, X. Antitumour Effect of Odoroside A and Its Derivative on Human Leukaemia Cells through the ROS/JNK Pathway. Basic Clin. Pharmacol. Toxicol. 2022, 130, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.S.; Rugira, T.; Jin, H.; Park, S.W.; Kim, H.J. Oleandrin and Its Derivative Odoroside A, Both Cardiac Glycosides, Exhibit Anticancer Effects by Inhibiting Invasion via Suppressing the STAT-3 Signaling Pathway. Int. J. Mol. Sci. 2018, 19, 3350. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.; Dong, X.; Yan, F.; Guo, H.; Yang, J. Oleandrin: A Systematic Review of Its Natural Sources, Structural Properties, Detection Methods, Pharmacokinetics and Toxicology. Front. Pharmacol. 2022, 13, 822726. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.-J.; Zhan, Y.-C.; Li, H.-Y.; Wang, Z. Ouabain Impairs Cancer Metabolism and Activates AMPK-Src Signaling Pathway in Human Cancer Cell Lines. Acta Pharmacol. Sin. 2020, 41, 110–118. [Google Scholar] [CrossRef]
- Lai, Y.; Chang, H.; Chen, H.; Chang, G.; Chen, J.J. Peruvoside Is a Novel Src Inhibitor That Suppresses NSCLC Cell Growth and Motility by Downregulating Multiple Src-EGFR-Related Pathways. Am. J. Cancer Res. 2022, 12, 2576–2593. [Google Scholar]
- Hu, Y.; Liu, F.; Jia, X.; Wang, P.; Gu, T.; Liu, H.; Liu, T.; Wei, H.; Chen, H.; Zhao, J.; et al. Periplogenin Suppresses the Growth of Esophageal Squamous Cell Carcinoma in Vitro and in Vivo by Targeting STAT3. Oncogene 2021, 40, 3942–3958. [Google Scholar] [CrossRef]
- Zhou, G.; Zhu, Z.; Li, L.; Ding, J. Resibufogenin Inhibits Ovarian Clear Cell Carcinoma (OCCC) Growth in Vivo, and Migration of OCCC Cells in Vitro, by down-Regulating the PI3K/AKT and Actin Cytoskeleton Signaling Pathways. Am. J. Transl. Res. 2019, 11, 6290–6303. [Google Scholar]
- Zhou, Y.; Hong, Z.; Jin, K.; Lin, C.; Xiang, J.; Ge, H.; Zheng, Z.; Shen, J.; Deng, S. Resibufogenin Inhibits the Malignant Characteristics of Multiple Myeloma Cells by Blocking the PI3K/Akt Signaling Pathway. Exp. Ther. Med. 2022, 24, 441. [Google Scholar] [CrossRef]
- Yang, T.; Jiang, Y.-X.; Wu, Y.; Lu, D.; Huang, R.; Wang, L.-L.; Wang, S.-Q.; Guan, Y.-Y.; Zhang, H.; Luan, X. Resibufogenin Suppresses Triple-Negative Breast Cancer Angiogenesis by Blocking VEGFR2-Mediated Signaling Pathway. Front. Pharmacol. 2021, 12, 682735. [Google Scholar] [CrossRef]
- Huang, J.; Deng, C.; Guo, T.; Chen, X.; Chen, P.; Du, S.; Lu, M. Cinobufotalin Induces Ferroptosis to Suppress Lung Cancer Cell Growth by lncRNA LINC00597/Hsa-miR-367-3p/TFRC Pathway via Resibufogenin. Anticancer Agents Med. Chem. 2023, 23, 717–725. [Google Scholar] [CrossRef]
- Qiang, L.-Z.; Fang, S.-Z. Telocinobufagin Suppresses Malignant Metastasis of Undifferentiated Thyroid Carcinoma via Modulation of the LARP1-mTOR Pathway. Kaohsiung J. Med. Sci. 2025, 41, e12934. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Cai, H.; Ma, S.; Zhu, W.; Zhao, H.; Li, J.; Ye, H.; Yang, L.; Zhao, C.; Huang, X.; et al. Telocinobufagin Has Antitumor Effects in Non-Small-Cell Lung Cancer by Inhibiting STAT3 Signaling. J. Nat. Prod. 2022, 85, 765–775. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.-R.; Lin, W.-Y.; Bai, L.-Y.; Hu, J.-L.; Feng, C.-H. Antitumor Activity of the Cardiac Glycoside αlDiginoside by Modulating Mcl-1 in Human Oral Squamous Cell Carcinoma Cells. Int. J. Mol. Sci. 2020, 21, 7947. [Google Scholar] [CrossRef] [PubMed]
- Varela-Eirín, M.; Demaria, M. Cellular Senescence. Curr. Biol. 2022, 32, R448–R452. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, Y.; Zhang, S.; Wang, Y.; Du, Y.; Hao, S.; Ni, T. The Regulation of Cellular Senescence in Cancer. Biomolecules 2025, 15, 448. [Google Scholar] [CrossRef]
- Martin, N.; Soriani, O.; Bernard, D. Cardiac Glycosides as Senolytic Compounds. Trends Mol. Med. 2020, 26, 243–245. [Google Scholar] [CrossRef]
- Triana-Martínez, F.; Picallos-Rabina, P.; Da Silva-Álvarez, S.; Pietrocola, F.; Llanos, S.; Rodilla, V.; Soprano, E.; Pedrosa, P.; Ferreirós, A.; Barradas, M.; et al. Identification and Characterization of Cardiac Glycosides as Senolytic Compounds. Nat. Commun. 2019, 10, 4731. [Google Scholar] [CrossRef]
- Guerrero, A.; Herranz, N.; Sun, B.; Wagner, V.; Gallage, S.; Guiho, R.; Wolter, K.; Pombo, J.; Irvine, E.E.; Innes, A.J.; et al. Cardiac Glycosides Are Broad-Spectrum Senolytics. Nat. Metab. 2019, 1, 1074–1088. [Google Scholar] [CrossRef]
- Smer-Barreto, V.; Quintanilla, A.; Elliott, R.J.R.; Dawson, J.C.; Sun, J.; Campa, V.M.; Lorente-Macías, Á.; Unciti-Broceta, A.; Carragher, N.O.; Acosta, J.C.; et al. Discovery of Senolytics Using Machine Learning. Nat. Commun. 2023, 14, 3445. [Google Scholar] [CrossRef]
- Takaya, K.; Asou, T.; Kishi, K. Identification of Resibufogenin, a Component of Toad Venom, as a Novel Senolytic Compound in Vitro and for Potential Skin Rejuvenation in Male Mice. Biogerontology 2023, 24, 889–900. [Google Scholar] [CrossRef]
- Ketelut-Carneiro, N.; Fitzgerald, K.A. Apoptosis, Pyroptosis, and Necroptosis—Oh My! The Many Ways a Cell Can Die. J. Mol. Biol. 2022, 434, 167378. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, M.; Ahmad, R.; Tantry, I.Q.; Ahmad, W.; Siddiqui, S.; Alam, M.; Abbas, K.; Moinuddin; Hassan, M.I.; Habib, S.; et al. Apoptosis: A Comprehensive Overview of Signaling Pathways, Morphological Changes, and Physiological Significance and Therapeutic Implications. Cells 2024, 13, 1838. [Google Scholar] [CrossRef] [PubMed]
- Karati, D.; Kumar, D. Molecular Insight into the Apoptotic Mechanism of Cancer Cells: An Explicative Review. Curr. Mol. Pharmacol. 2024, 17, e18761429273223. [Google Scholar] [CrossRef] [PubMed]
- Ainembabazi, D.; Zhang, Y.; Turchi, J.J. The Mechanistic Role of Cardiac Glycosides in DNA Damage Response and Repair Signaling. Cell. Mol. Life Sci. CMLS 2023, 80, 250. [Google Scholar] [CrossRef]
- Škubník, J.; Svobodová Pavlíčková, V.; Psotová, J.; Rimpelová, S. Cardiac Glycosides as Autophagy Modulators. Cells 2021, 10, 3341. [Google Scholar] [CrossRef]
- Dong, Q.; Turdu, G.; Akber Aisa, H.; Yili, A. Arenobufagin, Isolated from Bufo Viridis Toad Venom, Inhibits A549 Cells Proliferation by Inducing Apoptosis and G2/M Cell Cycle Arrest. Toxicon Off. J. Int. Soc. Toxinology 2024, 240, 107641. [Google Scholar] [CrossRef]
- Wei, X.; Yang, J.; Mao, Y.; Zhao, H.; Si, N.; Wang, H.; Bian, B. Arenobufagin Inhibits the Phosphatidylinositol 3-Kinase/Protein Kinase B/Mammalian Target of Rapamycin Pathway and Induces Apoptosis and Autophagy in Pancreatic Cancer Cells. Pancreas 2020, 49, 261–272. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Wang, X.; Yang, Q.; Zhou, X.; Wu, J.; Yang, X.; Zhao, Y.; Lin, R.; Xie, Y.; et al. Bufalin Induces Mitochondrial Dysfunction and Promotes Apoptosis of Glioma Cells by Regulating Annexin A2 and DRP1 Protein Expression. Cancer Cell Int. 2021, 21, 424. [Google Scholar] [CrossRef]
- Pan, L.; Nie, L.; Yao, S.; Bi, A.; Ye, Y.; Wu, Y.; Tan, Z.; Wu, Z. Bufalin Exerts Antitumor Effects in Neuroblastoma via the Induction of Reactive Oxygen Species-mediated Apoptosis by Targeting the Electron Transport Chain. Int. J. Mol. Med. 2020, 46, 2137–2149. [Google Scholar] [CrossRef]
- LingHu, H.R.; Luo, H.; Gang, L. Bufalin Induces Glioma Cell Death by Apoptosis or Necroptosis. OncoTargets Ther. 2020, 13, 4767–4778. [Google Scholar] [CrossRef]
- Han, Q.; Zhang, C.; Zhang, Y.; Li, Y.; Wu, L.; Sun, X. Bufarenogin Induces Intrinsic Apoptosis via Bax and ANT Cooperation. Pharmacol. Res. Perspect. 2021, 9, e00694. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Jung, H.J. Bufotalin Suppresses Proliferation and Metastasis of Triple-Negative Breast Cancer Cells by Promoting Apoptosis and Inhibiting the STAT3/EMT Axis. Molecules 2023, 28, 6783. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liang, B.; Xu, H.; Gong, Y.; Hu, W.; Jin, Z.; Wu, X.; Chen, X.; Li, M.; Shi, L.; et al. Cinobufagin Induces FOXO1-Regulated Apoptosis, Proliferation, Migration, and Invasion by Inhibiting G9a in Non-Small-Cell Lung Cancer A549 Cells. J. Ethnopharmacol. 2022, 291, 115095. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.; Xue, M.; Guo, X.; Jiang, W.; Zhao, Y.; Zhang, Z.; Wang, X.; Hu, Y.; Zhang, Q.; Dun, W.; et al. Cinobufagin Induces Acute Promyelocytic Leukaemia Cell Apoptosis and PML-RARA Degradation in a Caspase-Dependent Manner by Inhibiting the β-Catenin Signalling Pathway. Pharm. Biol. 2022, 60, 1801–1811. [Google Scholar] [CrossRef]
- Niu, J.; Wang, J.; Zhang, Q.; Zou, Z.; Ding, Y. Cinobufagin-Induced DNA Damage Response Activates G(2)/M Checkpoint and Apoptosis to Cause Selective Cytotoxicity in Cancer Cells. Cancer Cell Int. 2021, 21, 446. [Google Scholar] [CrossRef]
- Pan, Z.; Luo, Y.; Xia, Y.; Zhang, X.; Qin, Y.; Liu, W.; Li, M.; Liu, X.; Zheng, Q.; Li, D. Cinobufagin Induces Cell Cycle Arrest at the S Phase and Promotes Apoptosis in Nasopharyngeal Carcinoma Cells. Biomed. Pharmacother. 2020, 122, 109763. [Google Scholar] [CrossRef]
- Mi, C.; Cao, X.; Ma, K.; Wei, M.; Xu, W.; Lin, Y.; Zhang, J.; Wang, T.-Y. Digitoxin Promotes Apoptosis and Inhibits Proliferation and Migration by Reducing HIF-1α and STAT3 in KRAS Mutant Human Colon Cancer Cells. Chem. Biol. Interact. 2022, 351, 109729. [Google Scholar] [CrossRef]
- Hsieh, M.-J.; Lin, C.-C.; Lo, Y.-S.; Ho, H.-Y.; Chuang, Y.-C.; Chen, M.-K. Hellebrigenin Induces Oral Cancer Cell Apoptosis by Modulating MAPK Signalling and XIAP Expression. J. Cell. Mol. Med. 2024, 28, e18071. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, H.-Y.; Gao, L.; Bai, M.-Z.; Fu, W.-K.; Huang, C.-F.; Mi, N.-N.; Ma, H.-D.; Lu, Y.-W.; Jiang, N.-Z.; et al. Lanatoside C Decelerates Proliferation and Induces Apoptosis through Inhibition of STAT3 and ROS-Mediated Mitochondrial Membrane Potential Transformation in Cholangiocarcinoma. Front. Pharmacol. 2023, 14, 1098915. [Google Scholar] [CrossRef]
- Li, X.-X.; Wang, D.-Q.; Sui, C.-G.; Meng, F.-D.; Sun, S.-L.; Zheng, J.; Jiang, Y.-H. Oleandrin Induces Apoptosis via Activating Endoplasmic Reticulum Stress in Breast Cancer Cells. Biomed. Pharmacother. 2020, 124, 109852. [Google Scholar] [CrossRef]
- Wang, L.; Cai, W.; Han, B.; Zhang, J.; Yu, B.; Chen, M. Ouabain Exhibited Strong Anticancer Effects in Melanoma Cells via Induction of Apoptosis, G2/M Phase Arrest, and Migration Inhibition. OncoTargets Ther. 2021, 14, 1261–1273. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wang, G.; Zhao, L.; Dai, S.; Han, J.; Hu, X.; Zhou, C.; Wang, F.; Ma, H.; Li, B.; et al. Periplocymarin Induced Colorectal Cancer Cells Apoptosis Via Impairing PI3K/AKT Pathway. Front. Oncol. 2021, 11, 753598. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, Y.; Zhang, Y.; Ji, W.; Wang, L.; Lee, S.C. Periplogenin Activates ROS-ER Stress Pathway to Trigger Apoptosis via BIP-eIF2α- CHOP and IRE1α-ASK1-JNK Signaling Routes. Anticancer Agents Med. Chem. 2021, 21, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Gu, L.; Zeng, F.; Liu, X.; Zhou, Y.; Dou, Y.; Han, J.; Zhao, Y.; Zhang, Y.; Luo, Q.; et al. Strophanthidin Induces Apoptosis of Human Lung Adenocarcinoma Cells by Promoting TRAIL-DR5 Signaling. Molecules 2024, 29, 877. [Google Scholar] [CrossRef]
- Tang, D.; Chen, X.; Kang, R.; Kroemer, G. Ferroptosis: Molecular Mechanisms and Health Implications. Cell Res. 2021, 31, 107–125. [Google Scholar] [CrossRef]
- Dixon, S.J.; Olzmann, J.A. The Cell Biology of Ferroptosis. Nat. Rev. Mol. Cell Biol. 2024, 25, 424–442. [Google Scholar] [CrossRef]
- Zhou, Q.; Meng, Y.; Li, D.; Yao, L.; Le, J.; Liu, Y.; Sun, Y.; Zeng, F.; Chen, X.; Deng, G. Ferroptosis in Cancer: From Molecular Mechanisms to Therapeutic Strategies. Signal Transduct. Target. Ther. 2024, 9, 1–30. [Google Scholar] [CrossRef]
- Tan, Z.; Huang, H.; Sun, W.; Li, Y.; Jia, Y. Current Progress of Ferroptosis Study in Ovarian Cancer. Front. Mol. Biosci. 2022, 9, 966007. [Google Scholar] [CrossRef]
- Chen, K.; Li, A.; Wang, J.; Li, D.; Wang, X.; Liu, C.; Wang, Z. Arenobufagin Causes Ferroptosis in Human Gastric Cancer Cells by Increasing Rev-Erbα Expression. J. Tradit. Complement. Med. 2023, 13, 72–80. [Google Scholar] [CrossRef]
- Long, J.; Wang, W.; Chu, J.; Li, Y.; Wang, M.; Su, J.; Yang, Y.; Wang, G.; Li, Q.; Cheng, H. Overexpression of Nrf2 Reverses Ferroptosis Induced by Arenobufagin in Gastric Cancer. Toxicol. Appl. Pharmacol. 2024, 484, 116842. [Google Scholar] [CrossRef]
- Wu, S.; Wu, X.; Wang, Q.; Chen, Z.; Li, L.; Chen, H.; Qi, H. Bufalin Induces Ferroptosis by Modulating the 2,4-Dienoyl-CoA Reductase (DECR1)-SLC7A11 Axis in Breast Cancer. Phytomedicine Int. J. Phytother. Phytopharm. 2024, 135, 156130. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Zhang, X.; Liu, N.; Tang, L.; Peng, C.; Chen, X. Pyroptosis: Mechanisms and Diseases. Signal Transduct. Target. Ther. 2021, 6, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Olona, A.; Hateley, C.; Guerrero, A.; Ko, J.-H.; Johnson, M.R.; Anand, P.K.; Thomas, D.; Gil, J.; Behmoaras, J. Cardiac Glycosides Cause Cytotoxicity in Human Macrophages and Ameliorate White Adipose Tissue Homeostasis. Br. J. Pharmacol. 2022, 179, 1874–1886. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhang, Y.; Li, H.; Zhang, H.; Xie, J.; Li, Z.; Zhang, K.; Yu, Y.; Mei, L. Bufalin CaCO3 Nanoparticles Triggered Pyroptosis through Calcium Overload via Na+/Ca2+ Exchanger Reverse for Cancer Immunotherapy. Nano Lett. 2024, 24, 12691–12700. [Google Scholar] [CrossRef]
- Gupta, G.; Afzal, M.; Moglad, E.; Goyal, A.; Almalki, W.H.; Goyal, K.; Rana, M.; Ali, H.; Rekha, A.; Kazmi, I.; et al. Parthanatos and Apoptosis: Unraveling Their Roles in Cancer Cell Death and Therapy Resistance. EXCLI J. 2025, 24, 351–380. [Google Scholar] [CrossRef]
- Zhou, M.; Boulos, J.C.; Klauck, S.M.; Efferth, T. The Cardiac Glycoside ZINC253504760 Induces Parthanatos-Type Cell Death and G2/M Arrest via Downregulation of MEK1/2 Phosphorylation in Leukemia Cells. Cell Biol. Toxicol. 2023, 39, 2971–2997. [Google Scholar] [CrossRef]
- Iba, T.; Helms, J.; Maier, C.L.; Ferrer, R.; Levy, J.H. Autophagy and Autophagic Cell Death in Sepsis: Friend or Foe? J. Intensive Care 2024, 12, 41. [Google Scholar] [CrossRef]
- Liu, S.; Yao, S.; Yang, H.; Liu, S.; Wang, Y. Autophagy: Regulator of Cell Death. Cell Death Dis. 2023, 14, 1–17. [Google Scholar] [CrossRef]
- Debnath, J.; Gammoh, N.; Ryan, K.M. Autophagy and Autophagy-Related Pathways in Cancer. Nat. Rev. Mol. Cell Biol. 2023, 24, 560–575. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Nguyen, T.M.; Ngoc, D.T.M.; You, T.; Park, M.K.; Lee, C.H. Unraveling the Janus-Faced Role of Autophagy in Hepatocellular Carcinoma: Implications for Therapeutic Interventions. Int. J. Mol. Sci. 2023, 24, 16255. [Google Scholar] [CrossRef]
- Galluzzi, L.; Vitale, I.; Warren, S.; Adjemian, S.; Agostinis, P.; Martinez, A.B.; Chan, T.A.; Coukos, G.; Demaria, S.; Deutsch, E.; et al. Consensus Guidelines for the Definition, Detection and Interpretation of Immunogenic Cell Death. J. Immunother. Cancer 2020, 8, e000337. [Google Scholar] [CrossRef] [PubMed]
- Kroemer, G.; Galassi, C.; Zitvogel, L.; Galluzzi, L. Immunogenic Cell Stress and Death. Nat. Immunol. 2022, 23, 487–500. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Tait, S.W.G. Targeting Immunogenic Cell Death in Cancer. Mol. Oncol. 2020, 14, 2994–3006. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Guilbaud, E.; Schmidt, D.; Kroemer, G.; Marincola, F.M. Targeting Immunogenic Cell Stress and Death for Cancer Therapy. Nat. Rev. Drug Discov. 2024, 23, 445–460. [Google Scholar] [CrossRef]
- Menger, L.; Vacchelli, E.; Kepp, O.; Eggermont, A.; Tartour, E.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial Watch: Cardiac Glycosides and Cancer Therapy. Oncoimmunology 2013, 2, e23082. [Google Scholar] [CrossRef]
- Sukkurwala, A.Q.; Adjemian, S.; Senovilla, L.; Michaud, M.; Spaggiari, S.; Vacchelli, E.; Baracco, E.E.; Galluzzi, L.; Zitvogel, L.; Kepp, O.; et al. Screening of Novel Immunogenic Cell Death Inducers within the NCI Mechanistic Diversity Set. Oncoimmunology 2014, 3, e28473. [Google Scholar] [CrossRef]
- Xiang, Y.; Chen, L.; Li, L.; Huang, Y. Restoration and Enhancement of Immunogenic Cell Death of Cisplatin by Coadministration with Digoxin and Conjugation to HPMA Copolymer. ACS Appl. Mater. Interfaces 2020, 12, 1606–1616. [Google Scholar] [CrossRef]
- Glaviano, A.; Singh, S.K.; Lee, E.H.C.; Okina, E.; Lam, H.Y.; Carbone, D.; Reddy, E.P.; O’Connor, M.J.; Koff, A.; Singh, G.; et al. Cell Cycle Dysregulation in Cancer. Pharmacol. Rev. 2025, 77, 100030. [Google Scholar] [CrossRef]
- Mhaidly, N.; Barake, N.; Trelcat, A.; Journe, F.; Saussez, S.; Descamps, G. Bufalin Suppresses Head and Neck Cancer Development by Modulating Immune Responses and Targeting the β-Catenin Signaling Pathway. Cancers 2024, 16, 2739. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, F.; Huang, C.; Zhang, J.; Wu, J. Bufalin Inhibits Epithelial-Mesenchymal Transition and Increases Radiosensitivity of Non-Small Cell Lung Cancer via Inhibition of the Src Signaling. J. Thorac. Dis. 2023, 15, 123–134. [Google Scholar] [CrossRef]
- Li, J.; Ma, R.; Lv, J.-L.; Ren, Y.-S.; Tan, Y.-J.; Wang, H.-M.; Wang, Z.-E.; Wang, B.-S.; Yu, J.-N.; Wang, Y.-L.; et al. Telocinobufagin, a PLK1 Suppressor That Inhibits Tumor Growth and Metastasis by Modulating CDC25c and CTCF in HNSCC Cells. Phytomedicine 2024, 127, 155440. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, B.C.; Soares, B.M.; Barreto, F.S.; Magalhães, H.I.F.; Ferreira, J.R.d.O.; Almeida, A.T.A.d.; Araújo Beserra Filho, J.I.; Silva, J.; Dos Santos, H.S.; Marinho, E.S.; et al. Hellebrigenin Triggers Death of Promyelocytic Leukemia Cells by Non-Genotoxic Ways. Toxicon Off. J. Int. Soc. Toxinology 2024, 238, 107591. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yao, Z.; Xue, Z.; Wang, S.; Liu, X.; Hu, Y.; Zhang, Y.; Wang, J.; Li, X.; Chen, A. Resibufogenin Targets the ATP1A1 Signaling Cascade to Induce G2/M Phase Arrest and Inhibit Invasion in Glioma. Front. Pharmacol. 2022, 13, 855626. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hou, Y.; Hou, L.; Wang, W.; Li, K.; Zhang, Z.; Du, B.; Kong, D. Digoxin Exerts Anticancer Activity on Human Nonsmall Cell Lung Cancer Cells by Blocking PI3K/Akt Pathway. Biosci. Rep. 2021, 41, BSR20211056. [Google Scholar] [CrossRef]
- Zhuang, Y.; Liu, K.; He, Q.; Gu, X.; Jiang, C.; Wu, J. Hypoxia Signaling in Cancer: Implications for Therapeutic Interventions. MedComm 2023, 4, e203. [Google Scholar] [CrossRef]
- Ortmann, B.M. Hypoxia-Inducible Factor in Cancer: From Pathway Regulation to Therapeutic Opportunity. BMJ Oncol. 2024, 3. [Google Scholar] [CrossRef]
- Han, Y.; Zhu, B.; Meng, S. Endothelial Cell in Tumor Angiogenesis: Origins, Mechanisms, and Therapeutic Implication. Genes Dis. 2025, 101611. [Google Scholar] [CrossRef]
- Lorenc, P.; Sikorska, A.; Molenda, S.; Guzniczak, N.; Dams-Kozlowska, H.; Florczak, A. Physiological and Tumor-Associated Angiogenesis: Key Factors and Therapy Targeting VEGF/VEGFR Pathway. Biomed. Pharmacother. 2024, 180, 117585. [Google Scholar] [CrossRef]
- Lin, J.; Denmeade, S.; Carducci, M.A. HIF-1alpha and Calcium Signaling as Targets for Treatment of Prostate Cancer by Cardiac Glycosides. Curr. Cancer Drug Targets 2009, 9, 881–887. [Google Scholar] [CrossRef]
- Fang, K.; Zhan, Y.; Zhu, R.; Wang, Y.; Wu, C.; Sun, M.; Qiu, Y.; Yuan, Z.; Liang, X.; Yin, P.; et al. Bufalin Suppresses Tumour Microenvironment-Mediated Angiogenesis by Inhibiting the STAT3 Signalling Pathway. J. Transl. Med. 2021, 19, 383. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, L.; Sun, K.; Guo, R.; Li, Z.; Wen, Q.; Fu, G.; Yang, S. Integrated Network Pharmacology, Proteomics, Molecular Docking, and Experiments in Vivo and in Vitro to Explore the Efficacy and Potential Mechanism of Bufalin against Hepatocellular Carcinoma Angiogenesis. J. Ethnopharmacol. 2025, 345, 119589. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.; Zhou, R.; Zhen, L.; Lan, J.; Li, Z.; Gu, D.; Nie, W.; Shen, Y.; Zhang, M.; Zhang, T.; et al. Tumor-Targeted Nanosystem with Hypoxia Inducible Factor 1α Inhibition for Synergistic Chemo-Photodynamic Therapy against Hypoxic Tumor. Colloids Surf. B Biointerfaces 2025, 248, 114456. [Google Scholar] [CrossRef] [PubMed]
- Weng, L.; Zhao, M.; Chen, Z.; Zhu, L. Hypoxia-Targeted Responsive Delivery of Doxorubicin and Digoxin for Synergistic Treatment of Triple-Negative Breast Cancer. Mol. Pharm. 2025, 22, 2142–2158. [Google Scholar] [CrossRef] [PubMed]
- Castaneda, M.; den Hollander, P.; Kuburich, N.A.; Rosen, J.M.; Mani, S.A. Mechanisms of Cancer Metastasis. Semin. Cancer Biol. 2022, 87, 17–31. [Google Scholar] [CrossRef]
- Fares, J.; Fares, M.Y.; Khachfe, H.H.; Salhab, H.A.; Fares, Y. Molecular Principles of Metastasis: A Hallmark of Cancer Revisited. Signal Transduct. Target. Ther. 2020, 5, 28. [Google Scholar] [CrossRef]
- Wang, M.; Hu, S.; Yang, J.; Yuan, L.; Han, L.; Liang, F.; Zhang, F.; Zhao, H.; Liu, Y.; Gao, N. Arenobufagin Inhibits Lung Metastasis of Colorectal Cancer by Targeting C-MYC/Nrf2 Axis. Phytomedicine 2024, 127, 155391. [Google Scholar] [CrossRef]
- Ding, L.; Yang, Y.; Lu, Q.; Qu, D.; Chandrakesan, P.; Feng, H.; Chen, H.; Chen, X.; Liao, Z.; Du, J.; et al. Bufalin Inhibits Tumorigenesis, Stemness, and Epithelial-Mesenchymal Transition in Colorectal Cancer through a C-Kit/Slug Signaling Axis. Int. J. Mol. Sci. 2022, 23, 13354. [Google Scholar] [CrossRef]
- Wang, H.; Chen, J.; Li, S.; Yang, J.; Tang, D.; Wu, W.; Yu, K.; Cao, Y.; Xu, K.; Yin, P.; et al. Bufalin Reverses Cancer-Associated Fibroblast-Mediated Colorectal Cancer Metastasis by Inhibiting the STAT3 Signaling Pathway. Apoptosis Int. J. Program. Cell Death 2023, 28, 594–606. [Google Scholar] [CrossRef]
- Hou, R.; Liu, X.; Yang, H.; Deng, S.; Cheng, C.; Liu, J.; Li, Y.; Zhang, Y.; Jiang, J.; Zhu, Z.; et al. Chemically Synthesized Cinobufagin Suppresses Nasopharyngeal Carcinoma Metastasis by Inducing ENKUR to Stabilize P53 Expression. Cancer Lett. 2022, 531, 57–70. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, H.; Qian, X.; Xue, M.; Sun, A.; Yin, Y.; Tang, J.; Zhang, J. Inhibitory Impact Of Cinobufagin In Triple-Negative Breast Cancer Metastasis: Involvements Of Macrophage Reprogramming Through Upregulated MME and Inactivated FAK/STAT3 Signaling. Clin. Breast Cancer 2024, 24, e244–e257.e1. [Google Scholar] [CrossRef]
- Li, W.; Pei, S.; Zhang, X.; Qi, D.; Zhang, W.; Dou, Y.; Yang, R.; Yao, X.; Zhang, Z.; Xie, S.; et al. Cinobufotalin Inhibits the Epithelial-Mesenchymal Transition of Hepatocellular Carcinoma Cells through down-Regulate β-Catenin in Vitro and in Vivo. Eur. J. Pharmacol. 2022, 922, 174886. [Google Scholar] [CrossRef] [PubMed]
- Karaś, K.; Sałkowska, A.; Dastych, J.; Bachorz, R.A.; Ratajewski, M. Cardiac Glycosides with Target at Direct and Indirect Interactions with Nuclear Receptors. Biomed. Pharmacother. 2020, 127, 110106. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.R.; Leung, M.W.L.; Huang, P.; Ryan, D.A.; Krout, M.R.; Malapaka, R.R.V.; Chow, J.; Manel, N.; Ciofani, M.; Kim, S.V.; et al. Digoxin and Its Derivatives Suppress TH17 Cell Differentiation by Antagonizing RORγt Activity. Nature 2011, 472, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Fujita-Sato, S.; Ito, S.; Isobe, T.; Ohyama, T.; Wakabayashi, K.; Morishita, K.; Ando, O.; Isono, F. Structural Basis of Digoxin That Antagonizes RORgamma t Receptor Activity and Suppresses Th17 Cell Differentiation and Interleukin (IL)-17 Production. J. Biol. Chem. 2011, 286, 31409–31417. [Google Scholar] [CrossRef]
- Cascão, R.; Vidal, B.; Raquel, H.; Neves-Costa, A.; Figueiredo, N.; Gupta, V.; Fonseca, J.E.; Moita, L.F. Effective Treatment of Rat Adjuvant-Induced Arthritis by Celastrol. Autoimmun. Rev. 2012, 11, 856–862. [Google Scholar] [CrossRef]
- Lee, J.; Baek, S.; Lee, J.; Lee, J.; Lee, D.-G.; Park, M.-K.; Cho, M.-L.; Park, S.-H.; Kwok, S.-K. Digoxin Ameliorates Autoimmune Arthritis via Suppression of Th17 Differentiation. Int. Immunopharmacol. 2015, 26, 103–111. [Google Scholar] [CrossRef]
- Titus, H.E.; Xu, H.; Robinson, A.P.; Patel, P.A.; Chen, Y.; Fantini, D.; Eaton, V.; Karl, M.; Garrison, E.D.; Rose, I.V.L.; et al. Repurposing the Cardiac Glycoside Digoxin to Stimulate Myelin Regeneration in Chemically-Induced and Immune-Mediated Mouse Models of Multiple Sclerosis. Glia 2022, 70, 1950–1970. [Google Scholar] [CrossRef]
- Tani, S.; Takano, R.; Tamura, S.; Oishi, S.; Iwaizumi, M.; Hamaya, Y.; Takagaki, K.; Nagata, T.; Seto, S.; Horii, T.; et al. Digoxin Attenuates Murine Experimental Colitis by Downregulating Th17-Related Cytokines. Inflamm. Bowel Dis. 2017, 23, 728–738. [Google Scholar] [CrossRef]
- Saeed, H.; Mateen, S.; Moin, S.; Khan, A.Q.; Owais, M. Cardiac Glycoside Digoxin Ameliorates Pro-Inflammatory Cytokines in PBMCs of Rheumatoid Arthritis Patients in Vitro. Int. Immunopharmacol. 2020, 82, 106331. [Google Scholar] [CrossRef]
- Karaś, K.; Sałkowska, A.; Sobalska-Kwapis, M.; Walczak-Drzewiecka, A.; Strapagiel, D.; Dastych, J.; Bachorz, R.A.; Ratajewski, M. Digoxin, an Overlooked Agonist of RORγ/RORγT. Front. Pharmacol. 2018, 9, 1460. [Google Scholar] [CrossRef]
- Karwaciak, I.; Pastwińska, J.; Sałkowska, A.; Bachorz, R.A.; Ratajewski, M. Evaluation of the Activity of Cardiac Glycosides on RORγ and RORγT Nuclear Receptors. Arch. Biochem. Biophys. 2024, 759, 110085. [Google Scholar] [CrossRef] [PubMed]
- Li, I.-H.; Pan, K.-T.; Wang, W.-M.; Chien, W.-C.; Shih, J.-H.; Kao, L.-T. Digoxin Use and Following Risk of Psoriasis: A Population-Based Cohort Study in Taiwan. J. Dermatol. 2020, 47, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-Z.; Wang, Y.-L.; Yu, Y. Immunoenhancement Effect of Cinobufagin on Macrophages and the Cyclophosphamide-Induced Immunosuppression Mouse Model. Int. Immunopharmacol. 2024, 131, 111885. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Luo, J.; Qin, L.; Tang, C.; Qiu, C.; Li, J. Network Pharmacology and Molecular Docking-Based Screening of Immunotherapeutic Targets for HuaChanSu Against Breast Cancer. Mol. Biotechnol. 2024, 1–11. [Google Scholar] [CrossRef]
- Yuan, B.; He, J.; Kisoh, K.; Hayashi, H.; Tanaka, S.; Si, N.; Zhao, H.-Y.; Hirano, T.; Bian, B.; Takagi, N. Effects of Active Bufadienolide Compounds on Human Cancer Cells and CD4+CD25+Foxp3+ Regulatory T Cells in Mitogen-Activated Human Peripheral Blood Mononuclear Cells. Oncol. Rep. 2016, 36, 1377–1384. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, X.; Han, J.; Peng, W.; Fang, Z.; Zhou, Y.; Xu, X.; Lin, J.; Xiao, F.; Zhao, L.; et al. Convallatoxin Promotes M2 Macrophage Polarization to Attenuate Atherosclerosis Through PPARγ-Integrin Avβ5 Signaling Pathway. Drug Des. Devel. Ther. 2021, 15, 803–812. [Google Scholar] [CrossRef]
- Samolej, J.; White, I.J.; Strang, B.L.; Mercer, J. Cardiac Glycosides Inhibit Early and Late Vaccinia Virus Protein Expression. J. Gen. Virol. 2024, 105, 001971. [Google Scholar] [CrossRef]
- Burkard, C.; Verheije, M.H.; Haagmans, B.L.; van Kuppeveld, F.J.; Rottier, P.J.M.; Bosch, B.-J.; de Haan, C.A.M. ATP1A1-Mediated Src Signaling Inhibits Coronavirus Entry into Host Cells. J. Virol. 2015, 89, 4434–4448. [Google Scholar] [CrossRef]
- Yang, C.-W.; Chang, H.-Y.; Lee, Y.-Z.; Hsu, H.-Y.; Lee, S.-J. The Cardenolide Ouabain Suppresses Coronaviral Replication via Augmenting a Na(+)/K(+)-ATPase-Dependent PI3K_PDK1 Axis Signaling. Toxicol. Appl. Pharmacol. 2018, 356, 90–97. [Google Scholar] [CrossRef]
- Mandal, D.; Feng, Z.; Stoltzfus, C.M. Excessive RNA Splicing and Inhibition of HIV-1 Replication Induced by Modified U1 Small Nuclear RNAs. J. Virol. 2010, 84, 12790–12800. [Google Scholar] [CrossRef]
- Škubník, J.; Bejček, J.; Pavlíčková, V.S.; Rimpelová, S. Repurposing Cardiac Glycosides: Drugs for Heart Failure Surmounting Viruses. Molecules 2021, 26, 5627. [Google Scholar] [CrossRef] [PubMed]
- Jahanshahi, S.; Ouyang, H.; Ahmed, C.; Zahedi Amiri, A.; Dahal, S.; Mao, Y.-Q.; Van Ommen, D.A.J.; Malty, R.; Duan, W.; Been, T.; et al. Broad Spectrum Post-Entry Inhibitors of Coronavirus Replication: Cardiotonic Steroids and Monensin. Virology 2024, 589, 109915. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, B.; Fernández-Oliva, A.; García-Serradilla, M.; Risco, C. Digoxin Is a Potent Inhibitor of Bunyamwera Virus Infection in Cell Culture. J. Gen. Virol. 2023, 104. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wang, S.; Lin, X.; Yang, S.; Ba, X.; Xiong, D.; Xiao, L.; Li, R. Lanatoside C Inhibits Herpes Simplex Virus 1 Replication by Regulating NRF2 Distribution within Cells. Phytomedicine 2024, 124, 155308. [Google Scholar] [CrossRef]
- Qayed, W.S.; Ferreira, R.S.; Silva, J.R.A. In Silico Study towards Repositioning of FDA-Approved Drug Candidates for Anticoronaviral Therapy: Molecular Docking, Molecular Dynamics and Binding Free Energy Calculations. Molecules 2022, 27, 5988. [Google Scholar] [CrossRef]
- Carvalho, D.C.M.; Dunn, T.; Campos, R.K.; Tierney, J.A.; Onyoni, F.; Cavalcante-Silva, L.H.A.; Pena, L.J.; Rodrigues-Mascarenhas, S.; Wu, P.; Weaver, S.C. Antiviral and Immunomodulatory Effects of Ouabain against Congenital Zika Syndrome Model. Mol. Ther. J. Am. Soc. Gene Ther. 2025, 33, 465–470. [Google Scholar] [CrossRef]
- Wang, D.; Liu, J.; Zhu, Q.; Wei, X.; Zhang, X.; Chen, Q.; Zhao, Y.; Tang, H.; Xu, W. Ouabain Ameliorates Alzheimer’s Disease-Associated Neuropathology and Cognitive Impairment in FAD4T Mice. Nutrients 2024, 16, 3558. [Google Scholar] [CrossRef]
- Song, H.-L.; Demirev, A.V.; Kim, N.-Y.; Kim, D.-H.; Yoon, S.-Y. Ouabain Activates Transcription Factor EB and Exerts Neuroprotection in Models of Alzheimer’s Disease. Mol. Cell. Neurosci. 2019, 95, 13–24. [Google Scholar] [CrossRef]
- Erdogan, M.A.; Kirazlar, M.; Yigitturk, G.; Erbas, O. Digoxin Exhibits Neuroprotective Properties in a Rat Model of Dementia. Neurochem. Res. 2022, 47, 1290–1298. [Google Scholar] [CrossRef]
- Nguyen, L.D.; Wei, Z.; Silva, M.C.; Barberán-Soler, S.; Zhang, J.; Rabinovsky, R.; Muratore, C.R.; Stricker, J.M.S.; Hortman, C.; Young-Pearse, T.L.; et al. Small Molecule Regulators of microRNAs Identified by High-Throughput Screen Coupled with High-Throughput Sequencing. Nat. Commun. 2023, 14, 7575. [Google Scholar] [CrossRef]
- Valvassori, S.S.; Aguiar-Geraldo, J.M.; Possamai-Della, T.; da-Rosa, D.D.; Peper-Nascimento, J.; Cararo, J.H.; Quevedo, J. Depressive-like Behavior Accompanies Neuroinflammation in an Animal Model of Bipolar Disorder Symptoms Induced by Ouabain. Pharmacol. Biochem. Behav. 2022, 219, 173434. [Google Scholar] [CrossRef] [PubMed]
- Valvassori, S.S.; Dal-Pont, G.C.; Varela, R.B.; Resende, W.R.; Gava, F.F.; Mina, F.G.; Budni, J.; Quevedo, J. Ouabain Induces Memory Impairment and Alter the BDNF Signaling Pathway in an Animal Model of Bipolar Disorder: Cognitive and Neurochemical Alterations in BD Model. J. Affect. Disord. 2021, 282, 1195–1202. [Google Scholar] [CrossRef] [PubMed]
- Castro de Jesus, L.; Gonçalves-de-Albuquerque, C.F.; Burth, P. Onset of Bipolar Disorder by COVID-19: The Roles of Endogenous Ouabain and the Na,K-ATPase. J. Psychiatr. Res. 2024, 179, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Tsyvunin, V.; Shtrygol, S.; Mishchenko, M.; Lytkin, D.; Taran, A.; Shtrygol, D.; Gorbach, T. Effect of Digoxin, Sodium Valproate, and Celecoxib on the Cerebral Cyclooxygenase Pathway and Neuron-Specific Enolase under the Pentylenetetrazole-Induced Kindling in Mice. Ceska Slov. Farm. Cas. Ceske Farm. Spolecnosti Slov. Farm. Spolecnosti 2023, 72, 172–183. [Google Scholar] [CrossRef]
- Sibarov, D.A.; Zhuravleva, Z.D.; Ilina, M.A.; Boikov, S.I.; Stepanenko, Y.D.; Karelina, T.V.; Antonov, S.M. Unveiling the Role of Cholesterol in Subnanomolar Ouabain Rescue of Cortical Neurons from Calcium Overload Caused by Excitotoxic Insults. Cells 2023, 12, 2011. [Google Scholar] [CrossRef]
- Hashimoto, J.; Fujita, E.; Tanimoto, K.; Kondo, S.; Matsumoto-Miyai, K. Effects of Cardiac Glycoside Digoxin on Dendritic Spines and Motor Learning Performance in Mice. Neuroscience 2024, 541, 77–90. [Google Scholar] [CrossRef]
- Laudisio, A.; Marzetti, E.; Pagano, F.; Cocchi, A.; Bernabei, R.; Zuccalà, G. Digoxin and Cognitive Performance in Patients with Heart Failure: A Cohort, Pharmacoepidemiological Survey. Drugs Aging 2009, 26, 103–112. [Google Scholar] [CrossRef]
- Cao, J.; Yao, D.; Li, R.; Guo, X.; Hao, J.; Xie, M.; Li, J.; Pan, D.; Luo, X.; Yu, Z.; et al. Digoxin Ameliorates Glymphatic Transport and Cognitive Impairment in a Mouse Model of Chronic Cerebral Hypoperfusion. Neurosci. Bull. 2022, 38, 181–199. [Google Scholar] [CrossRef]
- Li, T.; Song, X.; Chen, J.; Li, Y.; Lin, J.; Li, P.; Yu, S.; Durojaye, O.A.; Yang, F.; Liu, X.; et al. Kupffer Cell-Derived IL6 Promotes Hepatocellular Carcinoma Metastasis Via the JAK1-ACAP4 Pathway. Int. J. Biol. Sci. 2025, 21, 285–305. [Google Scholar] [CrossRef]
- Pavithran, H.; Kumavath, R.; Ghosh, P. Transcriptome Profiling of Cardiac Glycoside Treatment Reveals EGR1 and Downstream Proteins of MAPK/ERK Signaling Pathway in Human Breast Cancer Cells. Int. J. Mol. Sci. 2023, 24, 15922. [Google Scholar] [CrossRef]
- Meng, Q.; Liu, K.; Liu, Z.; Liu, J.; Tian, Z.; Qin, S.; Wei, J.; Cheng, L. Digoxin Protects against Intervertebral Disc Degeneration via TNF/NF-κB and LRP4 Signaling. Front. Immunol. 2023, 14, 1251517. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Ding, X.; Jiang, N.; Zeng, C.; Wu, J.; Cai, X.-Y.; Hettinghouse, A.; Khleborodova, A.; Lei, Z.-N.; Chen, Z.-S.; et al. Digoxin Targets Low Density Lipoprotein Receptor-Related Protein 4 and Protects against Osteoarthritis. Ann. Rheum. Dis. 2022, 81, 544–555. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Tang, J.; Geng, X.; Li, Q.; Wang, F.; Zhao, H.; Narla, G.; Yao, X.; Zhang, Y. Targeting UHRF1-Dependent DNA Repair Selectively Sensitizes KRAS Mutant Lung Cancer to Chemotherapy. Cancer Lett. 2020, 493, 80–90. [Google Scholar] [CrossRef] [PubMed]
Name | Target/Pathway | Effect | Tissue | Ref |
---|---|---|---|---|
Arenobufagin | c-Jun N-terminal kinases (JNK) | Apoptosis | Nasopharyngeal carcinoma | [162] |
MiR-149-5p/AEBP1 | Ferroptosis | Glioblastoma | [163] | |
β-catenin | EMT | Prostate | [164] | |
p62-Keap1-Nrf2 | Autophagy | Liver | [165] | |
IKKβ/NFκB | Migration | Lung | [166] | |
Acetyl-bufalin | CDK9/STAT3 | Growth | Non-small lung | [55] |
Acetyl-cinobufagin | STAT3 | Proliferation, migration, EMT | Breast | [167] |
Bufalin | SRC-3/c-Myc | Metastasis | Colon | [168] |
SRC-3/HIF-1α | Glycolysis | Colon | [169] | |
Ca2+/CaMKKβ/AMPK/Beclin1 | Apoptosis, autophagy | Osteosarcoma | [170] | |
CAMKK2/Wnt/β-catenin | Proliferation, metastasis | Bile ducts | [171] | |
Hippo-YAP | Proliferation | Lung | [172] | |
PIAS3/STAT3 | Proliferation, migration, invasion | Esophagus | [173] | |
BFAR/PI3K/AKT/mTOR | Metastasis | Stomach | [102] | |
AK/STAT, Wnt/β-Catenin, mTOR, TRAIL/TRAIL-R | Proliferation, metastasis | Various | [174] | |
Bufotalin | AKT | Apoptosis | Glioblastoma | [175] |
Cerberin | PI3K/AKT/mTOR | Apoptosis | ND | [101] |
Cinobufagin | PI3K/AKT, MAPK/ERK | Growth | Lung | [176] |
Cinobufotalin | USP36/c-Myc axis | Proliferation, migration, invasion | Colon | [177] |
Convallatoxin | Wnt/β-catenin | Proliferation, migration, invasion | Bone | [178] |
Digitoxin | NF-κB/ST6GAL1 | Proliferation, migration | Liver | [179] |
Digoxin | HIF-1α | Growth | ND | [108] |
STAT3 | Migration | Lung | [180] | |
Gamabufotalin | TGF-β/periostin/PI3K/AKT | Metastasis | Bones | [181] |
NAK(ATP1A3)-AQP4 | Growth | Glioblastoma | [182] | |
Lanatoside C | MAPK, Wnt, JAK-STAT, and PI3K/AKT/mTOR | Growth | Breast, lung, liver | [183] |
TNF/IL-17 | Proliferation, apoptosis | Prostate | [184] | |
Malayoside | MAPK-Nur77 | Apoptosis | Non-small lung | [185] |
Odoroside A | ROS/JNK | Proliferation | Leukemia | [186] |
STAT-3 | Invasion | Breast | [187] | |
Oleandrin | PERK/elF2α/ATF4/CHOP | Immunogenic cell death | Breast | [118,188] |
Ouabain | AMPK-Src | Autophagy, metabolism | [189] | |
Peruvoside | MAPK Wnt/β-catenin, PI3K/AKT/mTOR | Growth | Breast, lung, and liver | [117] |
Src-EGFR | Growth, invasion | Lung | [190] | |
Periplogenin | JAK2/3-STAT3 | Growth | Esophagus | [191] |
Resibufogenin | PI3K/AKT a | Growth, migration | Ovary | [192] |
Resibufogenin | PI3K/Akt | Viability, migration invasion, | Bone marrow | [193] |
VEGFR2-(VEG) | Angiogenesis | Breast | [194] | |
lncRNA LINC00597/hsa-miR-367-3p/TFRC | Ferroptosis | Lung | [195] | |
Telocinobufagin | LARP1-mTOR | Metastasis | Thyroid | [196] |
STAT3/PARP1 | Apoptosis | Lung | [197] | |
αldiginoside | JAK-STAT | Apoptosis | ND | [198] |
CG Name | Target or Pathway | Cancer Type | Ref |
---|---|---|---|
21-Benzylidene digoxin | (−) EGFR/ERK | HeLa cells | [50] |
Arenobufagin | Modulating claspin and JNK pathway | Nasopharyngeal carcinoma cells | [162] |
Induces apoptosis and G2/M arrest | A549 cells | [211] | |
(−) PI3K/AKT/mTOR | Pancreatic Cancer Cells | [212] | |
Bufalin | Ca2+/CaMKKβ/AMPK/Beclin1 | Osteosarcoma cells | [170] |
Annexin A2 and DRP1 regulation | Glioma cells | [213] | |
ROS | Neuroblastoma | [214] | |
Unspecified | Glioma | [215] | |
Bufarenogin | Bax and ANT cooperation | Unspecified | [216] |
Bufotalin | Mitochondrial dysfunction via AKT signaling pathway | Glioblastoma cells | [175] |
Inhibiting the STAT3/EMT Axis | Triple-negative breast cancer cells | [217] | |
Cinobufagin | G9a | Non-small-cell lung cancer A549 cells | [218] |
(−) β-catenin signaling | Acute promyelocytic leukemia | [219] | |
DNA damage response, G2/M checkpoint | Unspecified cancer cells | [220] | |
Unspecified | Nasopharyngeal carcinoma cells | [221] | |
Convallatoxin | JAK2/STAT3 and mTOR/STAT3 | Colorectal cancer | [116] |
Digitoxin | HIF-1α and STAT3 | KRAS mutant human colon cancer cells | [222] |
Hellebrigenin | MAPK signaling and XIAP expression | Oral cancer | [223] |
Lanatoside C | TNF/IL-17 signaling pathway | Human prostate cancer cells | [184] |
Inhibition of STAT3 | Cholangiocarcinoma | [224] | |
Malayoside | MAPK-Nur77 signaling | Human non-small lung cancer cells | [185] |
Oleandrin | ROS-ER Stress | Breast cancer cells | [225] |
Ouabain | Induction of apoptosis, G2/M arrest, migration inhibition | Melanoma cells | [226] |
Periplocymarin | PI3K/AKT pathway | Colorectal cancer cells | [227] |
Periplogenin | ROS-ER stress | Unspecified | [228] |
Peruvoside | MAPK, Wnt/β-catenin, PI3K/AKT/mTOR | Human cancers | [117] |
Strophanthidin | Promoting TRAIL-DR5 signaling | Lung Adenocarcinoma | [229] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponce, A.; Flores-Maldonado, C.; Contreras, R.G. Cardiac Glycosides: From Natural Defense Molecules to Emerging Therapeutic Agents. Biomolecules 2025, 15, 885. https://doi.org/10.3390/biom15060885
Ponce A, Flores-Maldonado C, Contreras RG. Cardiac Glycosides: From Natural Defense Molecules to Emerging Therapeutic Agents. Biomolecules. 2025; 15(6):885. https://doi.org/10.3390/biom15060885
Chicago/Turabian StylePonce, Arturo, Catalina Flores-Maldonado, and Ruben G. Contreras. 2025. "Cardiac Glycosides: From Natural Defense Molecules to Emerging Therapeutic Agents" Biomolecules 15, no. 6: 885. https://doi.org/10.3390/biom15060885
APA StylePonce, A., Flores-Maldonado, C., & Contreras, R. G. (2025). Cardiac Glycosides: From Natural Defense Molecules to Emerging Therapeutic Agents. Biomolecules, 15(6), 885. https://doi.org/10.3390/biom15060885