Relationship Between Thyroid Dysfunction and Ovarian Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. GEPIA Dataset Analysis
2.3. Kaplan–Meier Plot Analysis
3. Ovarian Cancer
3.1. Ovarian Cancer Epidemiology and Stages
3.2. Ovarian Cancer Classification
4. The Associations of Hyperthyroidism and Hypothyroidism with Ovarian Cancer: Epidemiological, Clinical and Experimental Evidence
4.1. Thyroid Gland Dysfunction: Hyperthyroidism and Hypothyroidism
4.2. The Prevalence of Thyroid Dysfunction and the Risk or Mortality of Ovarian Cancer
4.2.1. Hyperthyroidism
4.2.2. Hypothyroidism
4.3. Indirect Dependence of Thyroid Dysfunction and Ovarian Cancer
5. The Expression Levels of Nuclear and Membrane Thyroid Hormone Receptors in Ovarian Cancer
5.1. The Expression of Nuclear Thyroid Hormone Receptors (TRs) in Ovarian Cancer: Classical Genomic Actions
5.2. Integrin αvβ3 Expression in Ovarian Cancer: Nongenomic Mechanism of Action
6. Relationship Between Thyroid Hormone Levels and the Progression of Ovarian Cancer
6.1. Thyroid Hormone Levels in Ovarian Cancer Patients
6.2. The Role of Thyroid Hormones in Ovarian Cancer Progression
6.3. The Role of Iodothyronine Deiodinases in Ovarian Cancer Progression
7. Thyroid Dysfunctions and Ovarian Cancer Metabolism
7.1. Associations Between Thyroid Dysfunction and the Blood Levels of Metabolic Hormones, Including Adipokines
7.1.1. Insulin
7.1.2. Adiponectin and Leptin
7.1.3. Apelin
7.1.4. Chemerin
7.1.5. Resistin
7.1.6. Visfatin (NAMPT)
7.1.7. Vaspin
7.1.8. Omentin (ITLN1, Intelectin-1)
Metabolic Hormones | Blood Levels of Metabolic Hormones in Patients with Thyroid Dysfunction Compared with Control Subjects | Correlation Between Metabolic Hormone Level and TH Levels | |||
---|---|---|---|---|---|
Hyperthyroidism | Hypothyroidism | Positive | Negative | ||
insulin | reduced half-life by an increased rate of degradation in diabetic patients [106] | associated with increased hyperinsulinemia [105] | fT4 [110] | T3 [110] | |
insulin resistance—result of both thyroid dysfunctions [107] | THs induce hyperinsulinemia and stimulate insulin secretion [103,104] | ||||
adiponectin | ↑ (5.73 ng/mL) [112] | ↓ (3 ng/mL) [112] | fT3, fT4 level [112] | Nd. | |
leptin | no change detected [112] | Nd. | |||
apelin | ↓ (3.7 ± 1.9 ng/mL) [120] | ↑ 4.8 ± 2.5 ng/mL) [120] | Nd. | ↓ TSH levels (with a stronger effect when coadministered with T4) [118,119] | |
normal population (3.4 ± 1.4 ng/mL) [120] apelin levels remain unchanged in subclinical hypothyroidism [121] | |||||
chemerin | ↑ 88 µg/L [127] | Nd. | TT3, TT4 and fT3 levels [127] | TSH and fT4 levels [127] | |
resistin | ↑ 6.378 ng/mL [112] ↑ 14.88 ng/mL [131] control (8.45 ng/mL) [131] | ↑ 5.81 ng/mL [112] ↑ 12.66 ng/mL [131] control (8.45 ng/mL) [131] | fT3 [129,130] fT4 [130] successful treatment of hyperthyroidism associated with decreased resistin levels [112,130] | TSH [130] short-term profound hypothyroidism decreases resistin level [132] | |
↓ in Graves’ disease, as a result of a decrease in the number of neutrophils [133] | no significant correlations between TH or TSH levels [131] | ||||
visfatin | ↓ (9.44 ng/mL) [136] | ↑ 49.93 (ng/mL) [136] | TSH [127,136] | fT3 [136] fT4 and TT4 [127,136] | |
control—38.6 ng/mL [136] | visfatin levels is decreased by T3 and T4 [112] | ||||
vaspin | Nd. | overt 1.20 ± 1.17 ng/mL [139] | subclinical 1.48 ± 0.93 ng/mL [139] | TSH [138] | Nd. |
control 0.95 ± 0.75 ng/mL [139] | TSH level is not correlated with vaspin level [139] | ||||
omentin | ↓ ~30 µg/L [127] | ↓ (before thyroid hormone therapy) [141] | Nd. | fT3 [127] |
8. Correlation Between the Treatment of Thyroid Dysfunction and Ovarian Cancer
8.1. Effects of Thyroid Dysfunction Treatments on Ovarian Cancer Risk and Progression
8.2. Effects of Treatments for Ovarian Cancer on Thyroid Dysfunction
9. Ovarian Cancer, Including Thyroid Tissue (Struma Ovarii)
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Søgaard, M.; Farkas, D.K.; Ehrenstein, V.; Jørgensen, J.O.; Dekkers, O.M.; Sørensen, H.T. Hypothyroidism and hyperthyroidism and breast cancer risk: A nationwide cohort study. Eur. J. Endocrinol. 2016, 174, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Bach, L.; Kostev, K.; Schiffmann, L.; Kalder, M. Association between thyroid gland diseases and breast cancer: A case–control study. Breast Cancer Res. Treat. 2020, 182, 207–213. [Google Scholar] [CrossRef]
- Ness, R.B.; Grisso, J.A.; Cottreau, C.; Klapper, J.; Vergona, R.; Wheeler, J.E.; Morgan, M.; Schlesselman, J.J. Factors related to inflammation of the ovarian epithelium and risk of ovarian cancer. Epidemiology 2000, 11, 111–117. [Google Scholar] [CrossRef]
- Wang, T.; Wang, X.; Wu, J.; Li, X. Cusal relationship between thyroid dysfunction and ovarian cancer: A two-sample Mendelian randomization study. BMC Cancer 2024, 24, 629. [Google Scholar]
- Journy, N.M.Y.; Bernier, M.O.; Doody, M.M.; Alexander, B.H.; Linet, M.S.; Kitahara, C.M. Hyperthyroidism, hypothyroidism, and cause-specific mortality in a large cohort of women. Thyroid 2017, 27, 1001–1010. [Google Scholar] [CrossRef]
- Shinderman-Maman, E.; Cohen, K.; Weingarten, C.; Nabriski, D.; Twito, O.; Baraf, L.; Hercbergs, A.; Davis, P.J.; Werner, H.; Ellis, M.; et al. The thyroid hormone-αvβ3 integrin axis in ovarian cancer: Regulation of gene transcription and MAPK-dependent proliferation. Oncogene 2016, 35, 1977–1987. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, L.; Zhu, B.; Feng, Y.; Yu, S.; An, N.; Wang, X. Effects of 3,5,3’-triiodothyronine (T3) and follicle-stimulating hormone on apoptosis and proliferation of rat ovarian granulosa cells. Chin. J. Physiol. 2013, 56, 298–305. [Google Scholar]
- Zhu, L.; Tian, G.; Yang, Q.; De, G.; Zhang, Z.; Wang, Y.; Nie, H.; Zhang, Y.; Yang, X.; Li, J. Thyroid hormone receptor β1 suppresses proliferation and migration by inhibiting PI3K/Akt signalling in human colorectal cancer cells. Oncol. Rep. 2016, 36, 1419–1426. [Google Scholar] [CrossRef] [PubMed]
- Gogola-Mruk, J.; Kumor, I.; Wojtaszek, G.; Kulig, K.; Ptak, A. GW0742 as a potential TRα and TRβ antagonist reduces the viability and metabolic activity of an adult granulosa tumour cell line and simultaneously upregulates TRβ expression. Cancers 2024, 16, 4069. [Google Scholar] [CrossRef]
- Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017, 45, W98–W102. [Google Scholar] [CrossRef]
- Győrffy, B. Discovery and ranking of the most robust prognostic biomarkers in serous ovarian cancer. GeroScience 2023, 45, 1889–1898. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chan, W.C.; Ngai, C.H.; Lok, V.; Zhang, L.; Lucero-Prisno, D.E.; Xu, W.; Zheng, Z.J.; Elcarte, E.; Withers, M.; et al. Worldwide burden, risk factors, and temporal trends of ovarian cancer: A global study. Cancers 2022, 14, 2230. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2020, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Colombet, M.; Soerjomatara, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef]
- Ferlay, J.; Ervik, M.; Lam, F.; Laversanne, M.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today; International Agency for Research on Cancer: Lyon, France, 2024; Available online: https://gco.iarc.who.int/today (accessed on 3 March 2025).
- Prat, J.; FIGO Committee on Gynecologic Oncology. Staging classification for cancer of the ovary, fallopian tube, and peritoneum. Int. J. Gynaecol. Obstet. 2014, 124, 1–5. [Google Scholar] [CrossRef]
- Gaitskell, K.; Hermon, C.; Barnes, I.; Pirie, K.; Floud, S.; Green, J.; Beral, V.; Reeves, G. K; Million Women Study Collaborators. Ovarian cancer survival by stage, histotype, and prediagnostic lifestyle factors, in the prospective UK Million Women Study. Cancer Epidemiol. 2022, 76, 102074. [Google Scholar] [CrossRef]
- Mori, K.M.; Neubauer, N.L. Minimally invasive surgery in gynecologic oncology. Obs. Gynecol 2013, 312982. [Google Scholar] [CrossRef]
- Flaum, N.; Crosbie, E.J.; Edmondson, R.J.; Smith, M.J.; Evans, D.G. Epithelial ovarian cancer risk: A review of the current genetic landscape. Clin. Genet. 2020, 97, 54–63. [Google Scholar] [CrossRef]
- Zamwar, U.M.; Anjankar, A.P. Aetiology, epidemiology, histopathology, classification, detailed evaluation, and treatment of ovarian cancer. Cureus 2022, 14, e30561. [Google Scholar] [CrossRef]
- Kurman, R.J.; Shih, I.M. The dualistic model of ovarian carcinogenesis: Revisited, revised, and expanded. Am. J. Pathol. 2016, 186, 733–747. [Google Scholar] [CrossRef]
- Van Nieuwenhuysen, E.; Lambrechts, S.; Lambrechts, D.; Leunen, K.; Amant, F.; Vergote, I. Genetic changes in nonepithelial ovarian cancer. Expert Rev. Anticancer. Ther. 2013, 13, 871–882. [Google Scholar] [CrossRef] [PubMed]
- Pectasides, D.; Pectasides, E.; Psyrri, A. Granulosa cell tumor of the ovary. Cancer Treat. Rev. 2008, 34, 1–12. [Google Scholar] [CrossRef]
- Khan, Y.S.; Farhana, A. Histology, Thyroid Gland; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Kelly, G.S. Peripheral metabolism of thyroid hormones: A review. Altern. Med. Rev. 2000, 5, 306–333. [Google Scholar]
- Vagenakis, A.G. Pituitary-thyroid interaction: Effects of thyroid hormone, non thyroidal illness and various agents on TSH secretion. Acta Med. Austriaca 1988, 15, 52–56. [Google Scholar] [PubMed]
- Nikrodhanond, A.A.; Ortiga-Carvalho, T.M.; Shibusawa, N.; Hashimoto, K.; Liao, X.H.; Refetoff, S.; Yamada, M.; Mori, M.; Wondisford, F.E. Dominant role of thyrotropin-releasing hormone in the hypothalamic-pituitary-thyroid axis. J. Biol. Chem. 2006, 281, 5000–5007. [Google Scholar] [CrossRef]
- Mathew, P.; Kaur, J.; Rawla, P. Hyperthyroidism; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Chaker, L.; Bianco, A.C.; Jonklaas, J.; Peeters, R.P. Hypothyroidism. Lancet 2017, 390, 1550–1562. [Google Scholar] [CrossRef] [PubMed]
- De Leo, S.; Lee, S.Y.; Braverman, L.E. Hyperthyroidism. Lancet 2016, 388, 906–918. [Google Scholar] [CrossRef]
- Garmendia Madariaga, A.; Santos Palacios, S.; Guillén-Grima, F.; Galofré, J.C. The incidence and prevalence of thyroid dysfunction in Europe: A meta-analysis. J. Clin. Endocrinol. Metab. 2014, 99, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Hollowell, J.G.; Staehling, N.W.; Flanders, W.D.; Hannon, W.H.; Gunter, E.W.; Spencer, C.A.; Braverman, L.E. Serum TSH, T4, and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol. Metab. 2002, 87, 489–499. [Google Scholar] [CrossRef]
- Savant, S.S.; Sriramkumar, S.; O’Hagan, H.M. The role of inflammation and inflammatory mediators in epithelial ovarian cancer. Cancers 2018, 10, 251. [Google Scholar] [CrossRef]
- Silva, J.F.; Ocarino, N.M.; Serakides, R. Thyroid hormones and female reproduction. Biol. Reprod. 2018, 99, 907–921. [Google Scholar] [CrossRef] [PubMed]
- Tresa, A.; Rema, P.; Suchetha, S.; Dinesh, D.; Sivaranjith, J.; Nath, A.G. Hypothyroidism presenting as ovarian cysts: A case series. Indian J. Surg. Oncol. 2021, 12, 343–347. [Google Scholar] [CrossRef]
- Perveen, R.; Asaduzzaman, M.D. Massive ovarian enlargement with multiple cysts mimicking ovarian neoplasm and primary hypothyroidism. Bangladesh J. Obs. Gynaecol. 2020, 33, 78–81. [Google Scholar] [CrossRef]
- Rae, M.T.; Gubbay, O.; Kostogiannou, A.; Price, D.; Critchley, H.O.; Hillier, S.G. Thyroid hormone signalling in human ovarian surface epithelial cells. J. Clin. Endocrinol. Metab. 2007, 92, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Lee, M.K.; Lee, J.H.; Kim, K.; Bae, K.; Sohn, S.Y. Cancer risks of patients with Graves’ disease who received antithyroid drugs as initial treatment: A nationwide population-based analysis. Thyroid 2024, 34, 1271–1279. [Google Scholar] [CrossRef]
- Minlikeeva, A.N.; Freudenheim, J.L.; Cannioto, R.A.; Eng, K.H.; Szender, J.B.; Mayor, P.; Etter, J.L.; Cramer, D.W.; Diergaarde, B.; Doherty, A.J. History of thyroid disease and survival of ovarian cancer patients: Results from the Ovarian Cancer Association Consortium. Br. J. Cancer 2017, 117, 1063–1069. [Google Scholar] [CrossRef]
- Ramadan, H. Navigating the thyroid-gynecologic interplay: A systematic review and meta-analysis. Obstet. Gynecol. Sci. 2024, 67, 525–533. [Google Scholar] [CrossRef]
- Kang, J.H.; Kueck, A.S.; Stevens, R.; Curhan, G.; De Vivo, I.; Rosner, B.; Alexander, E.; Tworoger, S.S. A large cohort study of hypothyroidism and hyperthyroidism in relation to gynecologic cancers. Obstet. Gynecol. Int. 2013, 2013, 743721. [Google Scholar] [CrossRef] [PubMed]
- Leung, J.H.; Wang, S.Y.; Leung, H.W.C.; Yu, T.S.; Chan, A.L.F. Hypothyroidism and hyperthyroidism related to gynecologic cancers: A nationwide population-based cohort study. Sci. Rep. 2024, 14, 1892. [Google Scholar] [CrossRef]
- Elgebaly, M.M.; Abdel-Hamed, A.R.; Mesbah, N.M.; Abo-Elmatty, D.M.; Abouzid, A.; Abdelrazek, M.A. Hypothyroidism affects progression and outcomes of breast cancer but not ovarian cancer. J. Immunoass. Immunochem. 2022, 43, 288–298. [Google Scholar] [CrossRef]
- Mukherjee, P.; Sanyal, S.; Chadha, S.; Mukherjee, S. Impact of PCOS on ovarian cancer and thyroid disorders: A review. Endocr. Metab. Immune Disord. Drug Targets 2024, 24, 562–572. [Google Scholar] [CrossRef] [PubMed]
- Harris, H.R.; Terry, K.L. PCOS and risk of endometrial, ovarian, and breast cancer: A systematic review. Fertil. Res. Pract. 2016, 2, 14. [Google Scholar] [CrossRef] [PubMed]
- Chittenden, B.G.; Fullerton, G.; Maheshwari, A.; Bhattacharya, S. PCOS and the risk of gynecological cancer: A systematic review. Reprod. Biomed. Online 2009, 19, 398–405. [Google Scholar] [CrossRef]
- Hansen, K.A.; Tho, S.P.; Hanly, M.; Moretuzzo, R.W.; McDonough, P.G. Massive ovarian enlargement in primary hypothyroidism. Fertil. Steril. 1997, 67, 169–171. [Google Scholar] [CrossRef]
- Pascual, A.; Aranda, A. Thyroid hormone receptors, cell growth and differentiation. Biochim. Biophys. Acta 2013, 1830, 3908–3916. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Leonard, J.L.; Davis, P.J. Molecular aspects of thyroid hormone actions. Endocr. Rev. 2010, 31, 139–170. [Google Scholar] [CrossRef]
- Ortiga-Carvalho, T.M.; Sidhaye, A.R.; Wondisford, F.E. Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat. Rev. Endocrinol. 2014, 10, 582–591. [Google Scholar] [CrossRef] [PubMed]
- Brent, G.A. Mechanisms of thyroid hormone action. J. Clin. Investig. 2012, 122, 3035–3043. [Google Scholar] [CrossRef]
- Williams, G.R. Cloning and characterization of two novel thyroid hormone receptor beta isoforms. Mol. Cell. Biol. 2000, 20, 8329–8342. [Google Scholar] [CrossRef]
- Wondisford, F.E. Thyroid hormone action: Insight from transgenic mouse models. J. Investig. Med. 2003, 51, 215–220. [Google Scholar] [CrossRef]
- Roggero, V.R.; Zhang, J.; Parente, L.E.; Doshi, Y.; Dziedzic, R.C.; McGregor, E.L.; Varjabedian, A.D.; Schad, S.E.; Bondzi, C.; Allison, L.A. Nuclear import of the thyroid hormone receptor α1 is mediated by importin 7, importin β1, and adaptor importin α1. Mol. Cell. Endocrinol. 2016, 419, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, K.S.; Dziedzic, R.C.; Nelson, H.N.; Stern, M.E.; Roggero, V.R.; Bondzi, C.; Allison, L.A. Multiple exportins influence thyroid hormone receptor localization. Mol. Cell. Endocrinol. 2015, 411, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Aghajanova, L.; Lindeberg, M.; Carlsson, I.B.; Stavreus-Evers, A.; Zhang, P.; Scott, J.E.; Hovatta, O.; Skjöldebrand-Sparre, L. Receptors for thyroid-stimulating hormone and thyroid hormones in human ovarian tissue. Reprod. Biomed. Online 2009, 18, 337–347. [Google Scholar] [CrossRef]
- Ditsch, N.; Heublein, S.; Jeschke, U.; Sattler, C.; Kuhn, C.; Hester, A.; Czogalla, B.; Trillsch, F.; Mahner, S.; Engel, J.; et al. Cytoplasmic versus nuclear THR alpha expression determines survival of ovarian cancer patients. J. Cancer Res. Clin. Oncol. 2020, 146, 1923–1932. [Google Scholar] [CrossRef]
- Heublein, S.; Jeschke, U.; Sattler, C.; Kuhn, C.; Hester, A.; Czogalla, B.; Trillsch, F.; Mahner, S.; Mayr, D.; Schmoeckel, E.; et al. Subcellular distribution of thyroid hormone receptor beta in ovarian cancer. Int. J. Mol. Sci. 2022, 23, 2698. [Google Scholar] [CrossRef]
- Bergh, J.J.; Lin, H.Y.; Lansing, L.; Mohamed, S.N.; Davis, F.B.; Mousa, S.; Davis, P.J. Integrin alphaVbeta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 2005, 146, 2864–2871. [Google Scholar] [CrossRef] [PubMed]
- Cayrol, F.; Díaz Flaqué, M.C.; Fernando, T.; Yang, S.N.; Sterle, H.A.; Bolontrade, M.; Amorós, M.; Isse, B.; Farías, R.N.; Ahn, H.; et al. Integrin αvβ3 acting as membrane receptor for thyroid hormones mediates angiogenesis in malignant T cells. Blood 2015, 125, 841–851. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, F.; Chen, X. Integrin alpha(v)beta(3)-targeted cancer therapy. Drug Dev. Res. 2008, 69, 329–339. [Google Scholar] [CrossRef]
- Yang, Y.S.H.; Ko, P.J.; Pan, Y.S.; Lin, H.Y.; Whang-Peng, J.; Davis, P.J.; Wang, K. Role of thyroid hormone-integrin αvβ3-signal and therapeutic strategies in colorectal cancers. J. Biomed. Sci. 2021, 28, 24. [Google Scholar] [CrossRef]
- Seraya-Bareket, C.; Weisz, A.; Shinderman-Maman, E.; Teper-Roth, S.; Stamler, D.; Arbib, N.; Kadan, Y.; Fishman, A.; Kidron, D.; Edelstein, E.; et al. The identification of nuclear αvβ3 integrin in ovarian cancer: Nonparadigmal localization with cancer promoting actions. Oncogenesis 2020, 9, 69. [Google Scholar] [CrossRef]
- Liapis, H.; Adler, L.M.; Wick, M.R.; Rader, J.S. Expression of alpha(v)beta3 integrin is less frequent in ovarian epithelial tumors of low malignant potential in contrast to ovarian carcinomas. Hum. Pathol. 1997, 28, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, J.; Lin, B.; Wang, C.; Li, Q.; Liu, S.; Yan, L.; Zhang, S.; Iwamori, M. Study on the expression and clinical significances of lewis y antigen and integrin αv, β3 in epithelial ovarian tumors. Int. J. Mol. Sci. 2011, 12, 3409–3421. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.T.; Wang, L.M.; Changou, C.A.; Chin, Y.T.; Yang, Y.S.H.; Lai, H.Y.; Lee, S.Y.; Yang, Y.N.; Whang-Peng, J.; Liu, L.F.; et al. Crosstalk between integrin αvβ3 and ERα contributes to thyroid hormone-induced proliferation of ovarian cancer cells. Oncotarget 2017, 8, 24237–24249. [Google Scholar] [CrossRef]
- Dolinschek, R.; Hingerl, J.; Benge, A.; Zafiu, C.; Schüren, E.; Ehmoser, E.K.; Lössner, D.; Reuning, U. Constitutive activation of integrin αvβ3 contributes to anoikis resistance of ovarian cancer cells. Mol. Oncol. 2021, 15, 503–522. [Google Scholar] [CrossRef] [PubMed]
- Hapke, S.; Kessler, H.; Luber, B.; Benge, A.; Hutzler, P.; Höfler, H.; Schmitt, M.; Reuning, U. Ovarian cancer cell proliferation and motility is induced by engagement of integrin alpha(v)beta3/Vitronectin interaction. Biol. Chem. 2003, 384, 1073–1083. [Google Scholar] [CrossRef]
- Lössner, D.; Abou-Ajram, C.; Benge, A.; Reuning, U. Integrin alphavbeta3 mediates upregulation of epidermal growth-factor receptor expression and activity in human ovarian cancer cells. Int. J. Biochem. Cell Biol. 2008, 40, 2746–2761. [Google Scholar] [CrossRef]
- Gao, J.; Hu, Z.; Liu, D.; Liu, J.; Liu, C.; Hou, R.; Gao, S.; Zhang, D.; Zhang, S.; Lin, B. Expression of Lewis y antigen and integrin αv, β3 in ovarian cancer and their relationship with chemotherapeutic drug resistance. J. Exp. Clin. Cancer Res. 2013, 32, 36. [Google Scholar] [CrossRef]
- Kaur, S.; Kenny, H.A.; Jagadeeswaran, S.; Zillhardt, M.R.; Montag, A.G.; Kistner, E.; Yamada, S.D.; Mitra, A.K.; Lengyel, E. {beta}3-integrin expression on tumor cells inhibits tumor progression, reduces metastasis, and is associated with a favourable prognosis in patients with ovarian cancer. Am. J. Pathol. 2009, 175, 2184–2196. [Google Scholar] [CrossRef]
- Rasool, M.; Naseer, M.I.; Zaigham, K.; Malik, A.; Riaz, N.; Alam, R.; Manan, A.; Sheikh, I.A.; Asif, M. Comparative study of alterations in tri-iodothyronine (T3) and thyroxine (T4) hormone levels in breast and ovarian cancer. Pak. J. Med. Sci. 2014, 30, 1356–1360. [Google Scholar]
- Pandey, S.K.; Pandey, H.S.; Kalra, V. Study of prevalence of thyroid disorders in pregnant females of a tertiary care hospital of Garhwal region of Uttarakhand. Ann. Int. Med. Dent. Res. 2018, 4, 25. [Google Scholar] [CrossRef]
- Yang, M.; Guo, X. Detection of TSH, FT3, FT4, and TRAb in ovarian cancer with highly sensitive electrochemical immunoassay. Eur. J. Inflamm. 2018, 16, 205873921879670. [Google Scholar] [CrossRef]
- Shinderman-Maman, E.; Weingarten, C.; Moskovich, D.; Werner, H.; Hercbergs, A.; Davis, P.J.; Ellis, M.; Ashur-Fabian, O. Molecular insights into the transcriptional regulatory role of thyroid hormones in ovarian cancer. Mol. Carcinog. 2018, 57, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Shinderman-Maman, E.; Cohen, K.; Moskovich, D.; Hercbergs, A.; Werner, H.; Davis, P.J.; Ellis, M.; Ashur-Fabian, O. Thyroid hormones derivatives reduce proliferation and induce cell death and DNA damage in ovarian cancer. Sci. Rep. 2017, 7, 16475. [Google Scholar] [CrossRef]
- Yu, Y.; Yao, Y.; Liu, Y.; Sun, Y.; Feng, H.; Kong, N.; Chen, R.; Wu, M.; Guo, S.; Tian, S.; et al. Effects of thyroid hormones on cellular development in human ovarian granulosa tumor cells (KGN). Reprod. Sci. 2024, 32, 1545–1556. [Google Scholar] [CrossRef]
- Verga Falzacappa, C.; Mangialardo, C.; Patriarca, V.; Bucci, B.; Amendola, D.; Raffa, S.; Torrisi, M.R.; Silvestrini, G.; Ballanti, P.; Moriggi, G.; et al. Thyroid hormones induce cell proliferation and survival in ovarian granulosa cells COV434. J. Cell. Physiol. 2009, 221, 242–253. [Google Scholar] [CrossRef]
- Miro, C.; Nappi, A.; Cicatiello, A.G.; Di Cicco, E.; Sagliocchi, S.; Murolo, M.; Belli, V.; Troiani, T.; Albanese, S.; Amiranda, S.; et al. Thyroid hormone enhances angiogenesis and the Warburg effect in squamous cell carcinomas. Cancers 2021, 13, 2743. [Google Scholar] [CrossRef]
- Weingarten, C.; Jenudi, Y.; Tshuva, R.Y.; Moskovich, D.; Alfandari, A.; Hercbergs, A.; Davis, P.J.; Ellis, M.; Ashur-Fabian, O. The interplay between epithelial–mesenchymal transition (EMT) and the thyroid hormones-αvβ3 axis in ovarian cancer. Horm. Cancer 2018, 9, 22–32. [Google Scholar] [CrossRef]
- Chin, Y.T.; Wei, P.L.; Ho, Y.; Nana, A.W.; Changou, C.A.; Chen, Y.R.; Yang, Y.S.; Hsieh, M.T.; Hercbergs, A.; Davis, P.J.; et al. Thyroxine inhibits resveratrol-caused apoptosis by PD-L1 in ovarian cancer cells. Endocr. Relat. Cancer 2018, 25, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Sabatino, L.; Vassalle, C.; Del Seppia, C.; Iervasi, G. Deiodinases and the three types of thyroid hormone deiodination reactions. Endocrinol. Metab. 2021, 36, 952–964. [Google Scholar] [CrossRef]
- Larsen, P.R.; Zavacki, A.M. The role of the iodothyronine deiodinases in the physiology and pathophysiology of thyroid hormone action. Eur. Thyroid. J. 2012, 1, 232–242. [Google Scholar] [CrossRef]
- Moskovich, D.; Alfandari, A.; Finkelshtein, Y.; Weisz, A.; Katzav, A.; Kidron, D.; Edelstein, E.; Veroslavski, D.; Perets, R.; Arbib, N.; et al. DIO3, the thyroid hormone inactivating enzyme, promotes tumorigenesis and metabolic reprogramming in high grade serous ovarian cancer. Cancer Lett. 2021, 501, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Alfandari, A.; Moskovich, D.; Weisz, A.; Katzav, A.; Kidron, D.; Beiner, M.; Josephy, D.; Asali, A.; Hants, Y.; Yagur, Y.; et al. The selenoenzyme type I iodothyronine deiodinase: A new tumor suppressor in ovarian cancer. Mol. Oncol. 2024, 18, 2298–2313. [Google Scholar] [CrossRef]
- Mariani, A.; Wang, C.; Oberg, A.L.; Riska, S.M.; Torres, M.; Kumka, J.; Multinu, F.; Sagar, G.; Roy, D.; Jung, D.B.; et al. Genes associated with bowel metastases in ovarian cancer. Gynecol. Oncol. 2019, 154, 495–504. [Google Scholar] [CrossRef]
- Rohdenburg, G.L. Thyroid diabetes. Endocrinology 1920, 4, 63–70. [Google Scholar] [CrossRef]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef] [PubMed]
- Suhane, S.; Ramanujan, V.K. Thyroid hormone differentially modulates Warburg phenotype in breast cancer cells. Biochem. Biophys. Res. Commun. 2011, 414, 73–78. [Google Scholar] [CrossRef]
- Czarnecka, A.M.; Matak, D.; Szymanski, L.; Czarnecka, K.H.; Lewicki, S.; Zdanowski, R.; Brzezianska-Lasota, E.; Szczylik, C. Triiodothyronine regulates cell growth and survival in renal cell cancer. Int. J. Oncol. 2016, 49, 1666–1678. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.Y.; Sun, M.; Tang, H.Y.; Lin, C.; Luidens, M.K.; Mousa, S.A.; Incerpi, S.; Drusano, G.L.; Davis, F.B.; Davis, P.J. L-Thyroxine vs. 3,5,3’-triiodo-L-thyronine and cell proliferation: Activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Am. J. Physiol. Cell Physiol. 2009, 296, C980–C991. [Google Scholar] [CrossRef]
- Ahmed, N.; Stenvers, K.L. Getting to know ovarian cancer ascites: Opportunities for targeted therapy-based translational research. Front. Oncol. 2013, 3, 256. [Google Scholar] [CrossRef]
- Chiarugi, P.; Giannoni, E. Anoikis: A necessary death program for anchorage-dependent cells. Biochem. Pharmacol. 2008, 76, 1352–1364. [Google Scholar] [CrossRef]
- Gandhi, N.; Das, G.M. Metabolic reprogramming in breast cancer and its therapeutic implications. Cells 2019, 8, 89. [Google Scholar] [CrossRef] [PubMed]
- Gogola-Mruk, J.; Marynowicz, W.; Krawczyk, K.; Ptak, A. Visfatin increases the invasive potential of ovarian granulosa tumor spheroids by reprogramming glucose metabolism. Reproduction 2023, 165, 521–531. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Liu, K.R.; Zhang, J.N.; Liu, Y.; Zhu, Y. Visfatin derived from ascites promotes ovarian cancer cell migration through Rho/ROCK signalling-mediated actin polymerization. Eur. J. Cancer Prev. 2015, 24, 231–239. [Google Scholar] [CrossRef]
- Tiwari, A.; Ocon-Grove, O.M.; Hadley, J.A.; Giles, J.R.; Johnson, P.A.; Ramachandran, R. Expression of adiponectin and its receptors is altered in epithelial ovarian tumors and ascites-derived ovarian cancer cell lines. Int. J. Gynecol. Cancer 2015, 25, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Ptak, A.; Gregoraszczuk, E.L. Bisphenol A induces leptin receptor expression, creating more binding sites for leptin, and activates the JAK/Stat, MAPK/ERK and PI3K/Akt signalling pathways in human ovarian cancer cell. Toxicol. Lett. 2012, 210, 332–337. [Google Scholar] [CrossRef]
- Aydogan, B.I.; Sahin, M. Adipocytokines in thyroid dysfunction. Inflamm 2013, 2013, 646271. [Google Scholar] [CrossRef]
- Wang, X.; Sun, J.; Li, J.; Cai, L.; Chen, Q.; Wang, Y.; Yang, Z.; Liu, W.; Lv, H.; Wang, Z. Bidirectional Mendelian randomization study of insulin-related traits and risk of ovarian cancer. Front. Endocrinol. 2023, 14, 1131767. [Google Scholar] [CrossRef]
- Kalli, K.R.; Falowo, O.I.; Bale, L.K.; Zschunke, M.A.; Roche, P.C.; Conover, C.A. Functional insulin receptors on human epithelial ovarian carcinoma cells: Implications for IGF-II mitogenic signalling. Endocrinology 2002, 143, 3259–3267. [Google Scholar] [CrossRef] [PubMed]
- Joung, K.H.; Jeong, J.W.; Ku, B.J. The association between type 2 diabetes mellitus and women cancer: The epidemiological evidence and putative mechanisms. Biomed. Res. Int. 2015, 2015, 920618. [Google Scholar] [CrossRef]
- O’Meara, N.M.; Blackman, J.D.; Sturis, J.; Polonsky, K.S. Alterations in the kinetics of C-peptide and insulin secretion in hyperthyroidism. J. Clin. Endocrinol. Metab. 1993, 76, 79–84. [Google Scholar]
- Verga Falzacappa, C.; Mangialardo, C.; Madaro, L.; Ranieri, D.; Lupoi, L.; Stigliano, A.; Torrisi, M.R.; Bouchè, M.; Toscano, V.; Misiti, S. Thyroid hormone T3 counteracts STZ induced diabetes in mouse. PLoS ONE 2011, 6, e19839. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Jin, C.; Wang, H.; Lai, Y.; Li, J.; Shan, Z. Subclinical hypothyroidism increases insulin resistance in normoglycemic people. Front. Endocrinol. 2023, 14, 1106968. [Google Scholar] [CrossRef]
- Dimitriadis, G.; Baker, B.; Marsh, H.; Mandarino, L.; Rizza, R.; Bergman, R.; Haymond, M.; Gerich, J. Effect of thyroid hormone excess on action, secretion, and metabolism of insulin in humans. Am. J. Physiol. 1985, 248, E593–E601. [Google Scholar] [CrossRef] [PubMed]
- Brenta, G. Why can insulin resistance be a natural consequence of thyroid dysfunction? J. Thyroid. Res. 2011, 2011, 152850. [Google Scholar] [CrossRef]
- Ahrén, B.; Lundquist, I.; Hedner, P.; Valdemarsson, S.; Scherstén, B. Glucose tolerance and insulin and C-peptide responses after various insulin secretory stimuli in hyper and hypothyroid subjects before and after treatment. Diabetes Res. 1985, 2, 95–103. [Google Scholar]
- Spira, D.; Buchmann, N.; Dörr, M.; Markus, M.R.P.; Nauck, M.; Schipf, S.; Spranger, J.; Demuth, I.; Steinhagen-Thiessen, E.; Völzke, H.; et al. Association of thyroid function with insulin resistance: Data from two population-based studies. Eur. Thyroid. J. 2022, 11, e210063. [Google Scholar] [CrossRef] [PubMed]
- Sathish, R.; Mohan, V. Diabetes and thyroid diseases-a review. Int. J. Diabetes Dev. Ctries. 2003, 23, 120–123. [Google Scholar]
- Diaz, E.S.; Karlan, B.Y.; Li, A.J. Obesity-associated adipokines correlate with survival in epithelial ovarian cancer. Gynecol. Oncol. 2013, 129, 353–357. [Google Scholar] [CrossRef]
- Yaturu, S.; Prado, S.; Grimes, S.R. Changes in adipocyte hormones leptin, resistin, and adiponectin in thyroid dysfunction. J. Cell. Biochem. 2004, 93, 491–496. [Google Scholar] [CrossRef]
- Unal, I.; Khiavi, I.R.; Tasar, G.E.; Goksuluk, D.; Boyraz, G.; Ozgul, N.; Usubutun, A.; Yuruker, S.; Zeybek, N.D. Tumor apelin immunoreactivity is correlated with body mass index in ovarian high grade serous carcinoma. Biotech. Histochem. 2020, 95, 27–36. [Google Scholar] [CrossRef]
- Neelakantan, D.; Dogra, S.; Devapatla, B.; Jaiprasart, P.; Mukashyaka, M.C.; Janknecht, R.; Dwivedi, S.K.D.; Bhattacharya, R.; Husain, S.; Ding, K.; et al. Multifunctional APJ Pathway Promotes Ovarian Cancer Progression and Metastasis. Mol. Cancer Res. 2019, 17, 1378–1390. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Fiedor, E.; Ptak, A. Bisphenol A and its derivatives tetrabromobisphenol A and tetrachlorobisphenol A induce apelin expression and secretion in ovarian cancer cells through a peroxisome proliferator-activated receptor gamma-dependent mechanism. Toxicol. Lett. 2017, 269, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Berta, J.; Hoda, M.A.; Laszlo, V.; Rozsas, A.; Garay, T.; Torok, S.; Grusch, M.; Berger, W.; Paku, S.; Renyi-Vamos, F.; et al. Apelin promotes lymphangiogenesis and lymph node metastasis. Oncotarget 2014, 5, 4426–4437. [Google Scholar] [CrossRef] [PubMed]
- Dogra, S.; Neelakantan, D.; Patel, M.M.; Griesel, B.; Olson, A.; Woo, S. Adipokine Apelin/APJ Pathway Promotes Peritoneal Dissemination of Ovarian Cancer Cells by Regulating Lipid Metabolism. Mol. Cancer Res. 2021, 19, 1534–1545. [Google Scholar] [CrossRef]
- Badavi, M.; Grootveld, M.; Jafari, F.; Dianat, M.; Faraji Shahrivar, F. Supplement therapy with apelin for improving the TSH level and lipid disorders in PTU-induced hypothyroid rats. Biotechnol. Appl. Biochem. 2022, 69, 668–675. [Google Scholar] [CrossRef]
- Taheri, S.; Murphy, K.; Cohen, M.; Sujkovic, E.; Kennedy, A.; Dhillo, W.; Dakin, C.; Sajedi, A.; Ghatei, M.; Bloom, S. The effects of centrally administered apelin-13 on food intake, water intake and pituitary hormone release in rats. Biochem. Biophys. Res. Commun. 2002, 291, 1208–1212. [Google Scholar] [CrossRef]
- Gürel, A.; Doğantekin, A.; Özkan, Y.; Aydın, S. Serum apelin levels in patients with thyroid dysfunction. Int. J. Clin. Exp. Med. 2015, 8, 16394–16398. [Google Scholar]
- Zorlu, M.; Kiskac, M.; Karatoprak, C.; Kesgin, S.; Cakirca, M.; Yildiz, K.; Ardic, C.; Cikrikcioglu, M.A.; Erkoc, R. Assessment of serum apelin and lipocalin-2 levels in patients with subclinical hypothyroidism. Ann. Endocrinol. 2014, 75, 10–14. [Google Scholar] [CrossRef]
- Wittamer, V.; Franssen, J.D.; Vulcano, M.; Mirjolet, J.F.; Le Poul, E.; Migeotte, I.; Brézillon, S.; Tyldesley, R.; Blanpain, C.; Detheux, M.; et al. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med. 2003, 198, 977–985. [Google Scholar] [CrossRef]
- Gao, C.; Shi, J.; Zhang, J.; Li, Y.; Zhang, Y. Chemerin promotes proliferation and migration of ovarian cancer cells by upregulating expression of PD-L1. J. Zhejiang Univ. Sci. B 2022, 23, 164–170. [Google Scholar] [CrossRef]
- Schmitt, M.; Gallistl, J.; Schüler-Toprak, S.; Fritsch, J.; Buechler, C.; Ortmann, O.; Treeck, O. Anti-Tumoral Effect of Chemerin on Ovarian Cancer Cell Lines Mediated by Activation of Interferon Alpha Response. Cancers 2022, 14, 4108. [Google Scholar] [CrossRef] [PubMed]
- Treeck, O.; Buechler, C.; Ortmann, O. Chemerin and Cancer. Int. J. Mol. Sci. 2019, 20, 3750. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Rak, A.; Ptak, A. Bisphenol A and its derivatives decrease expression of chemerin, which reverses its stimulatory action in ovarian cancer cells. Toxicol. Lett. 2018, 291, 61–69. [Google Scholar] [CrossRef]
- Alshaikh, E.M.; Omar, U.M.; Alsufiani, H.M.; Mansouri, R.A.; Tarbiah, N.I.; Alshaikh, A.A.; Rahimulddin, S.A.; Doghaither, H.A. The potential influence of hyperthyroidism on circulating adipokines chemerin, visfatin, and omentin. Int. J. Health Sci. 2019, 13, 44–47. [Google Scholar]
- Pang, L.; Chang, X. Resistin Expression in Epithelial Ovarian Cancer promotes the Proliferation and Migration of Ovarian Cancer Cells to Worsen Prognosis. J. Cancer 2021, 12, 6796–6804. [Google Scholar] [CrossRef]
- Zhou, L.; Song, K.; Luo, W. Association between circulating resistin levels and thyroid dysfunction: A systematic review and meta-analysis. Front. Endocrinol. 2023, 13, 1071922. [Google Scholar] [CrossRef]
- Iglesias, P.; Alvarez Fidalgo, P.; Codoceo, R.; Díez, J.J. Serum concentrations of adipocytokines in patients with hyperthyroidism and hypothyroidism before and after control of thyroid function. Clin. Endocrinol. 2003, 59, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Eke Koyuncu, C.; Turkmen Yildirmak, S.; Temizel, M.; Ozpacaci, T.; Gunel, P.; Cakmak, M.; Ozbanazi, Y.G. Serum resistin and insulin-like growth factor-1 levels in patients with hypothyroidism and hyperthyroidism. J. Thyroid. Res. 2013, 2013, 306750. [Google Scholar] [CrossRef]
- Owecki, M.; El Ali, Z.; Waśko, R.; Nikisch, E.; Sowiński, J. Circulating resistin levels are lower in hypothyroid women but independent from thyroid hormones concentrations. Neuroendocr. Lett. 2008, 29, 131–136. [Google Scholar]
- Peng, Y.; Qi, Y.; Huang, F.; Chen, X.; Zhou, Y.; Ye, L.; Wang, W.; Ning, G.; Wang, S. Downregulated resistin level in consequence of decreased neutrophil counts in untreated Grave’s disease. Oncotarget 2016, 7, 78680–78687. [Google Scholar] [CrossRef]
- Shackelford, R.E.; Bui, M.M.; Coppola, D.; Hakam, A. Over-expression of nicotinamide phosphoribosyltransferase in ovarian cancers. Int. J. Clin. Exp. Pathol. 2010, 3, 522–527. [Google Scholar] [PubMed]
- Li, D.; Chen, N.N.; Cao, J.M.; Sun, W.P.; Zhou, Y.M.; Li, C.Y.; Wang, X.X. BRCA1 as a nicotinamide adenine dinucleotide (NAD)-dependent metabolic switch in ovarian cancer. Cell Cycle 2014, 13, 2564–2571. [Google Scholar] [CrossRef]
- Ozkaya, M.; Sahin, M.; Cakal, E.; Yuzbasioglu, F.; Sezer, K.; Kilinc, M.; Imrek, S.S. Visfatin plasma concentrations in patients with hyperthyroidism and hypothyroidism before and after control of thyroid function. J. Endocrinol. Investig. 2009, 32, 435–439. [Google Scholar] [CrossRef] [PubMed]
- González, C.R.; Caminos, J.E.; Vázquez, M.J.; Garcés, M.F.; Cepeda, L.A.; Angel, A.; González, A.C.; García-Rendueles, M.E.; Sangiao-Alvarellos, S.; López, M.; et al. Regulation of visceral adipose tissue-derived serine protease inhibitor by nutritional status, metformin, gender and pituitary factors in rat white adipose tissue. J. Physiol. 2009, 587, 3741–3750. [Google Scholar] [CrossRef]
- Handisurya, A.; Riedl, M.; Vila, G.; Maier, C.; Clodi, M.; Prikoszovich, T.; Ludvik, B.; Prager, G.; Luger, A.; Kautzky-Willer, A. Serum vaspin concentrations in relation to insulin sensitivity following RYGB-induced weight loss. Obes. Surg. 2010, 20, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Cinar, N.; Gülçelik, N.E.; Aydín, K.; Akın, S.; Usman, A.; Gürlek, A. Serum vaspin levels in hypothyroid patients. Eur. J. Endocrinol. 2011, 165, 563–569. [Google Scholar] [CrossRef]
- Au-Yeung, C.L.; Yeung, T.L.; Achreja, A.; Zhao, H.; Yip, K.P.; Kwan, S.Y.; Onstad, M.; Sheng, J.; Zhu, Y.; Baluya, D.L.; et al. ITLN1 modulates invasive potential and metabolic reprogramming of ovarian cancer cells in omental microenvironment. Nat. Commun. 2020, 11, 3546. [Google Scholar] [CrossRef]
- Cerit, E.T.; Akturk, M.; Altinova, A.E.; Tavil, Y.; Ozkan, C.; Yayla, C.; Altay, M.; Demirtas, C.; Cakir, N. Evaluation of body composition changes, epicardial adipose tissue, and serum omentin-1 levels in overt hypothyroidism. Endocrine 2015, 49, 196–203. [Google Scholar] [CrossRef]
- Patil, N.; Rehman, A.; Anastasopoulou, C.; Jialal, I.; Saathoff, A.D. Hypothyroidism (Nursing); StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Tomer, Y. Genetic susceptibility to autoimmune thyroid disease: Past, present, and future. Thyroid 2010, 20, 715–725. [Google Scholar] [CrossRef]
- Muderris, I.I.; Boztosun, A.; Oner, G.; Bayram, F. Effect of thyroid hormone replacement therapy on ovarian volume and androgen hormones in patients with untreated primary hypothyroidism. Ann. Saudi. Med. 2011, 31, 145–151. [Google Scholar] [CrossRef]
- Markman, T.M.; Markman, M.; Clark, B.W. Case of Ovarian Cancer in a Woman with Undiagnosed Graves’ Disease: A Case Report and Review of the Literature. Case Rep. Oncol. 2017, 10, 452–454. [Google Scholar] [CrossRef] [PubMed]
- Skarf, L.M.; Dezube, B.J.; Bryan, B.; Berkenblit, A. Ovarian carcinoma with thyroid metastases causing clinical hypothyroidism: A case report. Gynecol. Oncol. 2006, 102, 394–396. [Google Scholar] [CrossRef]
- Kimura, R.; Imaeda, K.; Mizuno, T.; Wakami, K.; Yamada, K.; Okayama, N.; Kamiya, Y.; Joh, T. Severe ascites with hypothyroidism and elevated CA125 concentration: A case report. Endocr. J. 2007, 54, 751–755. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.; Stewart, C.J.; Garrett, K.L.; Rye, M.; Cohen, P.A. Novel BRAF and KRAS Mutations in Papillary Thyroid Carcinoma Arising in Struma Ovarii. Endocr. Pathol. 2015, 26, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Grandet, P.J.; Remi, M.H. Struma ovarii with hyperthyroidism. Clin. Nucl. Med. 2000, 25, 763–765. [Google Scholar] [CrossRef]
- Mesquita, J.B.; Biscolla, R.P.M. Hyperthyroidism in thyroid carcinoma originating in struma ovarii. Endocrinol. Diabetes Metab. Case Rep. 2024, 2024, 24-0082. [Google Scholar] [CrossRef]
- Lebreton, C.; Al Ghuzlan, A.; Floquet, A.; Kind, M.; Leboulleux, S.; Godbert, Y. Cancer thyroïdien sur struma ovarii: Généralités et principes de prise en charge [Thyroid carcinoma on struma ovarii: Diagnosis and treatment]. Bull. Cancer 2018, 105, 281–289. [Google Scholar] [CrossRef]
- Koehler, V.F.; Keller, P.; Waldmann, E.; Schwenk, N.; Kitzberger, C.; Schmohl, K.A.; Knösel, T.; Stief, C.G.; Spitzweg, C. An unusual case of struma ovarii. Endocrinol. Diabetes Metab. Case Rep. 2021, 20-0142. [Google Scholar] [CrossRef]
- Carvalho, J.P.; Carvalho, F.M.; Lima de Oliveira, F.F.; Asato de Camargo, R.Y. Hypothyroidism following struma ovarii tumor resection: A case report. Rev. Hosp. Clin. 2002, 57, 112–114. [Google Scholar] [CrossRef]
Thyroid Dysfunction | Incidence and Mortality | HR and Cl | Number of OC Patients | Authors |
---|---|---|---|---|
HYPERTHYROIDISM |
| HR:1,8; (1.0–3.0) 95% CI | 767 and 1367 controls | [3] |
positive correlation with incidence of OC in women aged 29–50 years | Nd. | 12 | [37] | |
| HR: 1.31; (1.13–1.52) 95% CI | 404 and 578 controls | [38] | |
| HR: 1.094; (1.029–1.164) 95% CI | 1218 and 198,523 controls several | [4] | |
| HR: 5.33; (2.17–13.08) 95% Cl HR: 1.65; (0.81–3.37) 95% Cl | 5 and 143 controls several | [5] | |
| HR: 2.14; 95% Cl; | 1501 and 69,119 control | [40] | |
| HR: 1.94; (1.19 –3.18) 95% CI | 160 | [39] | |
| HR: 0.67; (0.30–1.49) 95% CI | 6 and 1052 controls | [41] | |
| Nd | 44 852 | [42] | |
HYPOTHYROIDISM |
| Nd | 296 872 | [42] |
medium association with OC mortalityworse 5-year OC survival | HR: 1.16; (1.03–1.32) 95% CI | several 624 | [39] | |
| HR: 0.84; (0.68–1.04) 95% CI | 92 and 1052 controls | [41] | |
| Nd | 1218 and 198,523 controls | [4] | |
| HR: 1.35;95% CI | 4456 and 69,119 control | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gogola-Mruk, J.; Sirek, A.; Kumor, I.; Wojtaszek, G.; Roszak, K.; Kulig, K.; Ptak, A. Relationship Between Thyroid Dysfunction and Ovarian Cancer. Biomolecules 2025, 15, 870. https://doi.org/10.3390/biom15060870
Gogola-Mruk J, Sirek A, Kumor I, Wojtaszek G, Roszak K, Kulig K, Ptak A. Relationship Between Thyroid Dysfunction and Ovarian Cancer. Biomolecules. 2025; 15(6):870. https://doi.org/10.3390/biom15060870
Chicago/Turabian StyleGogola-Mruk, Justyna, Aleksandra Sirek, Izabela Kumor, Gabriela Wojtaszek, Klaudia Roszak, Karolina Kulig, and Anna Ptak. 2025. "Relationship Between Thyroid Dysfunction and Ovarian Cancer" Biomolecules 15, no. 6: 870. https://doi.org/10.3390/biom15060870
APA StyleGogola-Mruk, J., Sirek, A., Kumor, I., Wojtaszek, G., Roszak, K., Kulig, K., & Ptak, A. (2025). Relationship Between Thyroid Dysfunction and Ovarian Cancer. Biomolecules, 15(6), 870. https://doi.org/10.3390/biom15060870