Copeptin as a Biomarker in Chronic Kidney Disease—A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources and Strategy
2.2. Eligibility Criteria
2.3. Risk of Bias Assessment in Individual Studies
2.4. Summary Measures and Synthesis of Results
3. Results
3.1. General Results
3.2. Study Characteristics
3.3. Definition of CKD
3.4. CPP Levels in CKD
3.4.1. CPP Levels in CKD Patients vs. Controls
3.4.2. Controls vs. CKD Stages (1–2/2, 3, 4, 5, and 4–5)
3.4.3. CPP Levels in CKD Patients According to the KDIGO CKD Classification
3.4.4. CKD Patients According to KDIGO CKD Classification
3.5. Bias Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.K.; Knicely, D.H.; Grams, M.E. Chronic Kidney Disease Diagnosis and Management: A Review. JAMA 2019, 322, 1294–1304. [Google Scholar] [CrossRef] [PubMed]
- Mu, D.; Cheng, J.; Qiu, L.; Cheng, X. Copeptin as a Diagnostic and Prognostic Biomarker in Cardiovascular Diseases. Front. Cardiovasc. Med. 2022, 9, 901990. [Google Scholar] [CrossRef] [PubMed]
- Morgenthaler, N.G. Copeptin: A biomarker of cardiovascular and renal function. Congest. Heart Fail. 2010, 16, S37–S44. [Google Scholar] [CrossRef]
- Gomes, D.A.; Beltrão, R.L.d.A.; Junior, F.M.d.O.; Junior, J.C.d.S.; de Arruda, E.P.C.; Lira, E.C.; da Rocha, M.J.A. Vasopressin and copeptin release during sepsis and septic shock. Peptides 2021, 136, 170437. [Google Scholar] [CrossRef]
- Afsar, B. Pathophysiology of copeptin in kidney disease and hypertension. Clin. Hypertens. 2017, 23, 13. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Non-Randomized Studies in Meta-Analysis. 2000. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 30 May 2025).
- Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions; Wiley: Hoboken, NJ, USA, 2019. [Google Scholar]
- Pikkemaat, M.; Melander, O.; Bengtsson Boström, K. Association between copeptin and declining glomerular filtration rate in people with newly diagnosed diabetes. The Skaraborg Diabetes Register. J. Diabetes Complicat. 2015, 29, 1062–1065. [Google Scholar] [CrossRef]
- Butler-Dawson, J.; Dally, M.; Johnson, R.J.; Johnson, E.C.; Krisher, L.; Sánchez-Lozada, L.-G.; Griffin, B.R.; Brindley, S.; Newman, L.S. Association of Copeptin, a Surrogate Marker of Arginine Vasopressin, with Decreased Kidney Function in Sugarcane Workers in Guatemala. Ann. Nutr. Metab. 2020, 76, 30–36. [Google Scholar] [CrossRef]
- Roussel, R.; Fezeu, L.; Marre, M.; Velho, G.; Fumeron, F.; Jungers, P.; Lantieri, O.; Balkau, B.; Bouby, N.; Bankir, L.; et al. Comparison between copeptin and vasopressin in a population from the community and in people with chronic kidney disease. J. Clin. Endocrinol. Metab. 2014, 99, 4656–4663. [Google Scholar] [CrossRef]
- Krane, V.; Genser, B.; E Kleber, M.; Drechsler, C.; März, W.; Delgado, G.; Allolio, B.; Wanner, C.; Fenske, W. Copeptin Associates with Cause-Specific Mortality in Patients with Impaired Renal Function: Results from the LURIC and the 4D Study. Clin. Chem. 2017, 63, 997–1007. [Google Scholar] [CrossRef] [PubMed]
- Bjornstad, P.; Maahs, D.M.; Johnson, R.J.; Rewers, M.; Snell-Bergeon, J.K. Copeptin is associated with atherosclerosis and diabetic kidney disease in type 1 diabetes. Diabetes 2016, 65, A122. [Google Scholar]
- Fenske, W.; Wanner, C.; Allolio, B.; Drechsler, C.; Blouin, K.; Lilienthal, J.; Krane, V. Copeptin levels associate with cardiovascular events in patients with ESRD and type 2 diabetes mellitus. J. Am. Soc. Nephrol. 2011, 22, 782–790. [Google Scholar] [CrossRef] [PubMed]
- Boertien, W.E.; Riphagen, I.J.; Drion, I.; Alkhalaf, A.; Bakker, S.J.L.; Groenier, K.H.; Struck, J.; de Jong, P.E.; Bilo, H.J.G.; Kleefstra, N.; et al. Copeptin, a surrogate marker for arginine vasopressin, is associated with declining glomerular filtration in patients with diabetes mellitus (ZODIAC-33). Diabetologia 2013, 56, 1680–1688. [Google Scholar] [CrossRef] [PubMed]
- Meijer, E.; Bakker, S.J.; de Jong, P.E.; van der Heide, J.J.H.; van Son, W.J.; Struck, J.; Lems, S.P.; Gansevoort, R.T. Copeptin, a surrogate marker of vasopressin, is associated with accelerated renal function decline in renal transplant recipients. Transplantation 2009, 88, 561–567. [Google Scholar] [CrossRef]
- Pek, J.H.; Fook-Chong, S.M.C.; Choo, J.C.J.; Tan, C.H.C.; Lin, Z.; Chan, C.M.; Yeo, C.P.; Lim, S.H. Copeptin, myeloperoxidase and pro-adrenomedullin for acute coronary syndrome in patients with chronic kidney disease. Proc. Singap. Healthc. 2019, 28, 173–183. [Google Scholar] [CrossRef]
- Fijałkowski, M.; Safranow, K.; Lindholm, B.; Ciechanowski, K.; Muraszko, A.M.; Dołęgowska, B.; Dołęgowska, K.; Golembiewska, E. Dialysate copeptin and peritoneal transport in incident peritoneal dialysis patients. Int. Urol. Nephrol. 2019, 51, 1667–1673. [Google Scholar] [CrossRef]
- Szymczak, A.; Kusztal, M.; Gołębiowski, T.; Letachowicz, K.; Goździk, A.; Kościelska-Kasprzak, K.; Tukiendorf, A.; Krajewska, M. High Plasma Angiopoietin-2 Levels Predict the Need to Initiate Dialysis within Two Years in Patients with Chronic Kidney Disease. Int. J. Mol. Sci. 2023, 24, 10036. [Google Scholar] [CrossRef]
- Tasevska, I.; Enhörning, S.; Christensson, A.; Persson, M.; Nilsson, P.M.; Melander, O. Increased Levels of Copeptin, a Surrogate Marker of Arginine Vasopressin, Are Associated with an Increased Risk of Chronic Kidney Disease in a General Population. Am. J. Nephrol. 2016, 44, 22–28. [Google Scholar] [CrossRef]
- Roussel, R.; Matallah, N.; Bouby, N.; El Boustany, R.; Potier, L.; Fumeron, F.; Mohammedi, K.; Balkau, B.; Marre, M.; Bankir, L.; et al. Plasma Copeptin and Decline in Renal Function in a Cohort from the Community: The Prospective, D.E.S.I.R. Study. Am. J. Nephrol. 2015, 42, 107–114. [Google Scholar] [CrossRef]
- Velho, G.; Bouby, N.; Hadjadj, S.; Matallah, N.; Mohammedi, K.; Fumeron, F.; Potier, L.; Bellili-Munoz, N.; Taveau, C.; Alhenc-Gelas, F.; et al. Plasma copeptin and renal outcomes in patients with type 2 diabetes and albuminuria. Diabetes Care 2013, 36, 3639–3645. [Google Scholar] [CrossRef]
- Velho, G.; El Boustany, R.; Lefèvre, G.; Mohammedi, K.; Fumeron, F.; Potier, L.; Bankir, L.; Bouby, N.; Hadjadj, S.; Marre, M.; et al. Plasma Copeptin, Kidney Outcomes, Ischemic Heart Disease, and All-Cause Mortality in People With Long-standing Type 1 Diabetes. Diabetes Care 2016, 39, 2288–2295. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, A.; Lu, Y.; Kawano, H.; Horie, S.; Muto, S. Association of arginine vasopressin surrogate marker urinary copeptin with severity of autosomal dominant polycystic kidney disease (ADPKD). Clin. Exp. Nephrol. 2015, 19, 1199–1205. [Google Scholar] [CrossRef]
- Corradi, V.; Martino, F.; Gastaldon, F.; Scalzotto, E.; Caprara, C.; Fortunato, A.; Pinaffo, G.; Marchetti, C.; Fabbi, F.; Giavarina, D.; et al. Copeptin levels and kidney function in ADPKD: Case-control study. Clin. Nephrol. 2016, 86, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Fenske, W.; Wanner, C. Copeptin: A marker for ADPKD progression? Nephrol. Dial. Transplant. 2012, 27, 3985–3987. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, A.; Corpeleijn, E.; Meijer, E.; Postmus, D.; Gansevoort, R.T.; Gans, R.O.B.; Struck, J.; Hillege, H.L.; Stolk, R.P.; Navis, G.; et al. Sex differences in the association between plasma copeptin and incident type 2 diabetes: The Prevention of Renal and Vascular Endstage Disease (PREVEND) study. Diabetologia 2012, 55, 1963–1970. [Google Scholar] [CrossRef]
- El Boustany, R.; Tasevska, I.; Meijer, E.; Kieneker, L.M.; Enhörning, S.; Lefèvre, G.; Mohammedi, K.; Marre, M.; Fumeron, F.; Balkau, B.; et al. Plasma copeptin and chronic kidney disease risk in 3 European cohorts from the general population. JCI Insight 2018, 3, e121479. [Google Scholar] [CrossRef]
- Enhörning, S.; Christensson, A.; Melander, O. Plasma copeptin as a predictor of kidney disease. Nephrol. Dial. Transplant. 2019, 34, 74–82. [Google Scholar] [CrossRef]
- Park, S.; Kim, Y.W.; Park, B.S.; Lee, Y.J. Copeptin and volume status in malnourished patient with chronic kidney disease. Nephrol. Dial. Transplant. 2018, 33, i478-i9. [Google Scholar] [CrossRef]
- Golembiewska, E.; Machowska, A.; Stenvinkel, P.; Lindholm, B. Prognostic value of copeptin in chronic kidney disease: From general population to end-stage renal disease. Curr. Protein Pept. Sci. 2017, 18, 1232–1243. [Google Scholar] [CrossRef] [PubMed]
- Sheikh Davoodi, N.; Minoo, F. The Correlation Between Copeptin and Volume Status in Chronic Hemodialysis Patients. Iran. J. Kidney Dis. 2022, 16, 298–303. [Google Scholar] [PubMed]
- Alaaraji, S.F.T.; Awad, M.M.; Ismail, M.A. Study the association of asprosin and dickkopf-3 with KIM-1, NTpro-BNP, GDF-15 and CPP among male iraqi with chronic kidney disease. Syst. Rev. Pharm. 2020, 11, 10–17. [Google Scholar]
- Bjurman, C.; Petzold, M.; Venge, P.; Farbemo, J.; Fu, M.L.; Hammarsten, O. High-sensitive cardiac troponin, NT-proBNP, hFABP and copeptin levels in relation to glomerular filtration rates and a medical record of cardiovascular disease. Clin. Biochem. 2015, 48, 302–307. [Google Scholar] [CrossRef]
- Engelbertz, C.; Brand, E.; Fobker, M.; Fischer, D.; Pavenstädt, H.; Reinecke, H. Elevated copeptin is a prognostic factor for mortality even in patients with renal dysfunction. Int. J. Cardiol. 2016, 221, 327–332. [Google Scholar] [CrossRef]
- Li, X.; Yang, X.C.; Sun, Q.M.; Chen, X.D.; Li, Y.C. Brain natriuretic peptide and copeptin levels are associated with cardiovascular disease in patients with chronic kidney disease. Chin. Med. J. 2013, 126, 823–827. [Google Scholar] [CrossRef]
- Nakae, A.; Ozaki, E.; Kuriyama, N.; Tomida, S.; Koyama, T. Copeptin is associated with microalbuminuria and renal function in the general Japanese population. Endocr. J. 2023, 70, 797–804. [Google Scholar] [CrossRef]
- Niemczyk, S.; Niemczyk, L.; Żmudzki, W.; Saracyn, M.; Czarzasta, K.; Szamotulska, K.; Cudnoch-Jędrzejewska, A. Copeptin Blood Content as a Diagnostic Marker of Chronic Kidney Disease. Adv. Exp. Med. Biol. 2018, 1096, 83–91. [Google Scholar]
- Villela-Torres, M.D.L.L.; Higareda-Mendoza, A.E.; Gómez-García, A.; Alvarez-Paredes, A.R.; García-López, E.; Stenvikel, P.; Gu, H.F.; Rashid-Qureshi, A.; Lindholm, B.; Alvarez-Aguilar, C. Copeptin Plasma Levels are Associated with Decline of Renal Function in Patients with Type 2 Diabetes Mellitus. Arch. Med. Res. 2018, 49, 36–43. [Google Scholar] [CrossRef]
- Velho, G.; Ragot, S.; El Boustany, R.; Saulnier, P.J.; Fraty, M.; Mohammedi, K.; Fumeron, F.; Potier, L.; Marre, M.; Hadjadj, S.; et al. Plasma copeptin, kidney disease, and risk for cardiovascular morbidity and mortality in two cohorts of type 2 diabetes. Cardiovasc. Diabetol. 2018, 17, 110. [Google Scholar] [CrossRef]
- Iglesias, P.; Silvestre, R.A.; Fernández-Reyes, M.J.; Díez, J.J. The role of copeptin in kidney disease. Endocrine 2023, 79, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Meijer, E.; Bakker, S.J.; van der Jagt, E.J.; Navis, G.; de Jong, P.E.; Struck, J.; Gansevoort, R.T. Copeptin, a Surrogate Marker of Vasopressin, Is Associated with Disease Severity in Autosomal Dominant Polycystic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Jarantow, S.W.; Pisors, E.D.; Chiu, M.L. Introduction to the Use of Linear and Nonlinear Regression Analysis in Quantitative Biological Assays. Curr. Protoc. 2023, 3, e801. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gazi, G.; Cruciat, R.C.; Leucuta, D.-C.; Al Srouji, N.; Popa, S.-L.; Ismaiel, M.; Dumitrascu, D.I.; Ismaiel, A. Copeptin as a Biomarker in Chronic Kidney Disease—A Systematic Review and Meta-Analysis. Biomolecules 2025, 15, 845. https://doi.org/10.3390/biom15060845
Gazi G, Cruciat RC, Leucuta D-C, Al Srouji N, Popa S-L, Ismaiel M, Dumitrascu DI, Ismaiel A. Copeptin as a Biomarker in Chronic Kidney Disease—A Systematic Review and Meta-Analysis. Biomolecules. 2025; 15(6):845. https://doi.org/10.3390/biom15060845
Chicago/Turabian StyleGazi, Gabi, Robert Cristian Cruciat, Daniel-Corneliu Leucuta, Nahlah Al Srouji, Stefan-Lucian Popa, Mohamed Ismaiel, Dinu Iuliu Dumitrascu, and Abdulrahman Ismaiel. 2025. "Copeptin as a Biomarker in Chronic Kidney Disease—A Systematic Review and Meta-Analysis" Biomolecules 15, no. 6: 845. https://doi.org/10.3390/biom15060845
APA StyleGazi, G., Cruciat, R. C., Leucuta, D.-C., Al Srouji, N., Popa, S.-L., Ismaiel, M., Dumitrascu, D. I., & Ismaiel, A. (2025). Copeptin as a Biomarker in Chronic Kidney Disease—A Systematic Review and Meta-Analysis. Biomolecules, 15(6), 845. https://doi.org/10.3390/biom15060845