Fecal Calprotectin as a Prognostic Biomarker for Mortality and Renal Outcomes in Chronic Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Basal Characteristics of the Study Population
3.2. Renal Outcomes
3.3. Survival Outcomes
3.3.1. Sex-Specific Analysis
3.3.2. Age-Specific Analysis
3.3.3. Diabetes Status-Specific Analysis
3.3.4. Combined Effect of FC and CRP on Mortality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef] [PubMed]
- GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef]
- Francis, A.; Harhay, M.N.; Ong, A.C.M.; Tummalapalli, S.L.; Ortiz, A.; Fogo, A.B.; Fliser, D.; Roy-Chaudhury, P.; Fontana, M.; Nangaku, M.; et al. Chronic kidney disease and the global public health agenda: An international consensus. Nat. Rev. Nephrol. 2024, 20, 473–485. [Google Scholar] [CrossRef]
- Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan, C.W.; et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: Reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet 2018, 392, 2052–2090. [Google Scholar] [CrossRef]
- Wang, S.; Song, R.; Wang, Z.; Jing, Z.; Wang, S.; Ma, J. S100A8/A9 in Inflammation. Front. Immunol. 2018, 9, 1298. [Google Scholar] [CrossRef]
- Pruenster, M.; Vogl, T.; Roth, J.; Sperandio, M. S100A8/A9: From basic science to clinical application. Pharmacol. Ther. 2016, 167, 120–131. [Google Scholar] [CrossRef]
- Seibert, F.S.; Pagonas, N.; Arndt, R.; Heller, F.; Dragun, D.; Persson, P.; Schmidt-Ott, K.; Zidek, W.; Westhoff, T.H. Calprotectin and neutrophil gelatinase-associated lipocalin in the differentiation of pre-renal and intrinsic acute kidney injury. Acta Physiol. 2013, 207, 700–708. [Google Scholar] [CrossRef]
- Vakili, M.; Fahimi, D.; Esfahani, S.T.; Sharifzadeh, M.; Moghtaderi, M. Comparative Analysis between Urinary Calprotectin and Serum Creatinine for Early Detection of Intrinsic Acute Kidney Injury. Indian J. Nephrol. 2021, 31, 353–357. [Google Scholar] [CrossRef]
- Schrezenmeier, E.V.; Barasch, J.; Budde, K.; Westhoff, T.; Schmidt-Ott, K.M. Biomarkers in acute kidney injury—Pathophysiological basis and clinical performance. Acta Physiol. 2017, 219, 554–572. [Google Scholar] [CrossRef]
- Ebbing, J.; Mathia, S.; Seibert, F.S.; Pagonas, N.; Bauer, F.; Erber, B.; Günzel, K.; Kilic, E.; Kempkensteffen, C.; Miller, K.; et al. Urinary calprotectin: A new diagnostic marker in urothelial carcinoma of the bladder. World J. Urol. 2014, 32, 1485–1492. [Google Scholar] [CrossRef]
- Seibert, F.S.; Sitz, M.; Passfall, J.; Haesner, M.; Laschinski, P.; Buhl, M.; Bauer, F.; Babel, N.; Pagonas, N.; Westhoff, T.H. Prognostic Value of Urinary Calprotectin, NGAL and KIM-1 in Chronic Kidney Disease. Kidney Blood Press. Res. 2018, 43, 1255–1262. [Google Scholar] [CrossRef]
- Ebbing, J.; Seibert, F.S.; Pagonas, N.; Bauer, F.; Miller, K.; Kempkensteffen, C.; Günzel, K.; Bachmann, A.; Seifert, H.H.; Rentsch, C.A.; et al. Dynamics of Urinary Calprotectin after Renal Ischaemia. PLoS ONE 2016, 11, e0146395. [Google Scholar] [CrossRef]
- Chen, J.J.; Fan, P.C.; Kou, G.; Chang, S.W.; Chen, Y.T.; Lee, C.C.; Chang, C.H. Meta-Analysis: Urinary Calprotectin for Discrimination of Intrinsic and Prerenal Acute Kidney Injury. J. Clin. Med. 2019, 8, 74. [Google Scholar] [CrossRef]
- Løfblad, L.; Hov, G.G.; Åsberg, A.; Videm, V. Calprotectin and CRP as biomarkers of cardiovascular disease risk in patients with chronic kidney disease: A follow-up study at 5 and 10 years. Scand. J. Clin. Lab. Investig. 2023, 83, 258–263. [Google Scholar] [CrossRef]
- Pedersen, L.; Nybo, M.; Poulsen, M.K.; Henriksen, J.E.; Dahl, J.; Rasmussen, L.M. Plasma calprotectin and its association with cardiovascular disease manifestations, obesity and the metabolic syndrome in type 2 diabetes mellitus patients. BMC Cardiovasc. Disord. 2014, 14, 196. [Google Scholar] [CrossRef] [PubMed]
- Amaya-Garrido, A.; Brunet, M.; Buffin-Meyer, B.; Piedrafita, A.; Grzesiak, L.; Agbegbo, E.; Del Bello, A.; Ferrandiz, I.; Ardeleanu, S.; Bermudez-Lopez, M.; et al. Calprotectin is a contributor to and potential therapeutic target for vascular calcification in chronic kidney disease. Sci. Transl. Med. 2023, 15, eabn5939. [Google Scholar] [CrossRef] [PubMed]
- Drueke, T.B.; Massy, Z.A. Calprotectin, a misnomer for another player in vascular calcification. Kidney Int. 2024, 105, 915–918. [Google Scholar] [CrossRef]
- Walsham, N.E.; Sherwood, R.A. Fecal calprotectin in inflammatory bowel disease. Clin. Exp. Gastroenterol. 2016, 9, 21–29. [Google Scholar] [CrossRef]
- Ayling, R.M.; Kok, K. Fecal Calprotectin. Adv. Clin. Chem. 2018, 87, 161–190. [Google Scholar] [CrossRef]
- Rukavina Mikusic, N.L.; Kouyoumdzian, N.M.; Choi, M.R. Gut microbiota and chronic kidney disease: Evidences and mechanisms that mediate a new communication in the gastrointestinal-renal axis. Pflugers Arch.-Eur. J. Physiol. 2020, 472, 303–320. [Google Scholar] [CrossRef]
- Mocanu, A.; Bogos, R.A.; Lazaruc, T.I.; Trandafir, L.M.; Lupu, V.V.; Ioniuc, I.; Alecsa, M.; Ivanov, A.; Lupu, A.; Starcea, I.M. Exploring a Complex Interplay: Kidney–Gut Axis in Pediatric Chronic KFsidney Disease. Nutrients 2023, 15, 3609. [Google Scholar] [CrossRef]
- Vanholder, R.; Schepers, E.; Pletinck, A.; Nagler, E.V.; Glorieux, G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: A systematic review. J. Am. Soc. Nephrol. 2014, 25, 1897–1907. [Google Scholar] [CrossRef]
- Gryp, T.; Vanholder, R.; Vaneechoutte, M.; Glorieux, G. p-Cresyl Sulfate. Toxins 2017, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Graboski, A.L.; Redinbo, M.R. Gut-Derived Protein-Bound Uremic Toxins. Toxins 2020, 12, 590. [Google Scholar] [CrossRef]
- Evenepoel, P.; Poesen, R.; Meijers, B. The gut-kidney axis. Pediatr. Nephrol. 2017, 32, 2005–2014. [Google Scholar] [CrossRef]
- Lehto, M.; Groop, P.H. The Gut-Kidney Axis: Putative Interconnections Between Gastrointestinal and Renal Disorders. Front. Endocrinol. 2018, 9, 553. [Google Scholar] [CrossRef] [PubMed]
- Stubbs, J.R.; House, J.A.; Ocque, A.J.; Zhang, S.; Johnson, C.; Kimber, C.; Schmidt, K.; Gupta, A.; Wetmore, J.B.; Nolin, T.D.; et al. Serum Trimethylamine-N-Oxide is elevated in CKD and correlates with coronary atherosclerosis burden. J. Am. Soc. Nephrol. 2016, 27, 305–313. [Google Scholar] [CrossRef]
- Wu, I.W.; Gao, S.S.; Chou, H.C.; Yang, H.Y.; Chang, L.C.; Kuo, Y.L.; Dinh, M.C.V.; Chung, W.H.; Yang, C.W.; Lai, H.C.; et al. Integrative metagenomic and metabolomic analyses reveal severity-specific signatures of gut microbiota in chronic kidney disease. Theranostics 2020, 10, 5398–5411. [Google Scholar] [CrossRef]
- Ramezani, A.; Raj, D.S. The gut microbiome, kidney disease, and targeted interventions. J. Am. Soc. Nephrol. 2014, 25, 657–670. [Google Scholar] [CrossRef]
- Yang, J.; Lim, S.Y.; Ko, Y.S.; Lee, H.Y.; Oh, S.W.; Kim, M.G.; Cho, W.Y.; Jo, S.K. Intestinal barrier disruption and dysregulated mucosal immunity contribute to kidney fibrosis in chronic kidney disease. Nephrol. Dial. Transplant. 2019, 34, 419–428. [Google Scholar] [CrossRef]
- Andersen, K.; Kesper, M.S.; Marschner, J.A.; Konrad, L.; Ryu, M.; Kumar Vr, S.; Kulkarni, O.P.; Mulay, S.R.; Romoli, S.; Demleitner, J.; et al. Intestinal Dysbiosis, Barrier Dysfunction, and Bacterial Translocation Account for CKD-Related Systemic Inflammation. J. Am. Soc. Nephrol. 2017, 28, 76–83. [Google Scholar] [CrossRef]
- Lau, W.L.; Kalantar-Zadeh, K.; Vaziri, N.D. The Gut as a Source of Inflammation in Chronic Kidney Disease. Nephron 2015, 130, 92–98. [Google Scholar] [CrossRef]
- Vaziri, N.D.; Zhao, Y.Y.; Pahl, M.V. Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: The nature, mechanisms, consequences and potential treatment. Nephrol. Dial. Transplant. 2016, 31, 737–746. [Google Scholar] [CrossRef]
- Tang, W.H.; Wang, Z.; Kennedy, D.J.; Wu, Y.; Buffa, J.A.; Agatisa-Boyle, B.; Li, X.S.; Levison, B.S.; Hazen, S.L. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ. Res. 2015, 116, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.; Wang, Z.; Levison, B.S.; Koeth, R.A.; Britt, E.B.; Fu, X.; Wu, Y.; Hazen, S.L. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 2013, 368, 1575–1584. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.L.; Zhu, X.H.; Ran, L.; Lang, H.D.; Yi, L.; Mi, M.T. Trimethylamine-N-oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3–SOD2–mtROS signaling pathway. J. Am. Heart Assoc. 2017, 6, e006347. [Google Scholar] [CrossRef] [PubMed]
- Aquilani, R.; Bolasco, P.; Murtas, S.; Maestri, R.; Iadarola, P.; Testa, C.; Deiana, M.L.; Esposito, M.P.; Contu, R.; Cadeddu, M.; et al. Effects of a Metabolic Mixture on Gut Inflammation and Permeability in Elderly Patients with Chronic Kidney Disease: A Proof-of-Concept Study. Metabolites 2022, 12, 987. [Google Scholar] [CrossRef]
- Fedulovs, A.; Tzivian, L.; Zalizko, P.; Ivanova, S.; Bumane, R.; Janeviča, J.; Krūzmane, L.; Krustins, E.; Sokolovska, J. Progression of Diabetic Kidney Disease and Gastrointestinal Symptoms in Patients with Type I Diabetes. Biomedicines 2023, 11, 2679. [Google Scholar] [CrossRef]
- Bolasco, P.; Aquilani, R.; Maestri, R.; Esposito, M.P.; Deiana, M.L.; Cadeddu, M.; Secci, R.; Casu, B.; Serra, A.; Iadarola, P.; et al. Observational pilot study: A comparison of amino acids and derangement of intestinal function between healthy ageing subjects and patients affected by chronic kidney disease stage CKD3b-4 in conservative management. Clin. Nutr. ESPEN 2023, 55, 10–19. [Google Scholar] [CrossRef]
- Ramezani, A.; Massy, Z.A.; Meijers, B.; Evenepoel, P.; Vanholder, R.; Raj, D.S. Role of the Gut Microbiome in Uremia: A Potential Therapeutic Target. Am. J. Kidney Dis. 2016, 67, 483–498. [Google Scholar] [CrossRef]
- Bourgonje, A.R.; Bourgonje, M.F.; la Bastide-van Gemert, S.; Nilsen, T.; Hidden, C.; Gansevoort, R.T.; Mulder, D.J.; Hillebrands, J.L.; Bakker, S.J.L.; Dullaart, R.P.F.; et al. A Prospective Study of the Association Between Plasma Calprotectin Levels and New-Onset CKD in the General Population. Kidney Int. Rep. 2024, 9, 1265–1275. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, F.V.S.; Kubes, P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood 2019, 133, 2178–2185. [Google Scholar] [CrossRef]
- Lee, S.A.; Noel, S.; Sadasivam, M.; Hamad, A.R.A.; Rabb, H. Role of Immune Cells in Acute Kidney Injury and Repair. Nephron 2017, 137, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Gryp, T.; De Paepe, K.; Vanholder, R.; Kerckhof, F.M.; Van Biesen, W.; Van de Wiele, T.; Verbeke, F.; Speeckaert, M.; Joossens, M.; Couttenye, M.M.; et al. Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease. Kidney Int. 2020, 97, 1230–1242. [Google Scholar] [CrossRef]
- Kanki, T.; Kuwabara, T.; Morinaga, J.; Fukami, H.; Umemoto, S.; Fujimoto, D.; Mizumoto, T.; Hayata, M.; Kakizoe, Y.; Izumi, Y.; et al. The predictive role of serum calprotectin on mortality in hemodialysis patients with high phosphoremia. BMC Nephrol. 2020, 21, 158. [Google Scholar] [CrossRef] [PubMed]
- Winther, S.A.; Mannerla, M.M.; Frimodt-Møller, M.; Persson, F.; Hansen, T.W.; Lehto, M.; Hörkkö, S.; Blaut, M.; Forsblom, C.; Groop, P.H.; et al. Faecal biomarkers in type 1 diabetes with and without diabetic nephropathy. Sci. Rep. 2021, 11, 15208. [Google Scholar] [CrossRef]
- Lassenius, M.I.; Fogarty, C.L.; Blaut, M.; Haimila, K.; Riittinen, L.; Paju, A.; Kirveskari, J.; Järvelä, J.; Ahola, A.J.; Gordin, D.; et al. Intestinal alkaline phosphatase at the crossroad of intestinal health and disease—A putative role in type 1 diabetes. J. Intern. Med. 2017, 281, 586–600. [Google Scholar] [CrossRef]
- Allawi, A.A.D. Malnutrition, inflammation and atherosclerosis (MIA syndrome) in patients with end stage renal disease on maintenance hemodialysis: A single centre experience. Diabetes Metab. Syndr. 2018, 12, 91–97. [Google Scholar] [CrossRef]
- Camilleri, M. Leaky Gut: Mechanisms, Measurement and Clinical Implications in Humans. Gut 2019, 68, 1516–1526. [Google Scholar] [CrossRef] [PubMed]
- Georgopoulou, G.A.; Argyri, A.A.; Kalachanis, K.; Passadaki, T.; Spyropoulou, D.; Sklavou, C.; Koukoulis, G.; Stratigis, S.; Psimenou, E.; Kalogeropoulou, C.; et al. Altered Expression of Intestinal Tight Junctions in Patients with Chronic Kidney Disease: A Pathogenetic Mechanism of Intestinal Hyperpermeability. Biomedicines 2024, 12, 368. [Google Scholar] [CrossRef] [PubMed]
- Akchurin, O.M.; Kaskel, F. Update on Inflammation in Chronic Kidney Disease. Blood Purif. 2015, 39, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, N.D. Gut Microbial Translocation in the Pathogenesis of Systemic Inflammation in Patients with End-Stage Renal Disease. Dig. Dis. Sci. 2014, 59, 2020–2022. [Google Scholar] [CrossRef]
- Tsuji, K.; Kitamura, S.; Kaimori, J.-Y. The Gut-Kidney Axis in Chronic Kidney Diseases. Diagnostics 2024, 15, 21. [Google Scholar] [CrossRef]
- Lundgren, D.; Eklöf, V.; Palmqvist, R.; Hultdin, J.; Karling, P. Proton pump inhibitor use is associated with elevated faecal calprotectin levels. A cross-sectional study on subjects referred for colonoscopy. Scand. J. Gastroenterol. 2019, 54, 152–157. [Google Scholar] [CrossRef]
- Lim, Y.J.; Sidor, N.A.; Derosa, S.; Li, W.; Singh, A.; Lee, J. Uremic Toxins in the Progression of Chronic Kidney Disease and Cardiovascular Disease: Mechanisms and Therapeutic Targets. Toxins 2021, 13, 142. [Google Scholar] [CrossRef]
- Lano, G.; Burtey, S.; Sallée, M. Indoxyl Sulfate, a Uremic Endotheliotoxin. Toxins 2020, 12, 229. [Google Scholar] [CrossRef]
- Cheng, T.-H.; Chou, C.-T.; Chen, H.-Y.; Chen, J.-R.; Lee, T.-H. Indoxyl Sulfate, a Tubular Toxin, Contributes to the Development of Chronic Kidney Disease. Toxins 2020, 12, 684. [Google Scholar] [CrossRef]
- Chen, J.-H.; Chiang, C.-K. Uremic Toxins and Protein-Bound Therapeutics in AKI and CKD: Up-to-Date Evidence. Toxins 2022, 14, 8. [Google Scholar] [CrossRef]
- Voroneanu, L.; Burlacu, A.; Brinza, C.; Covic, A.; Balan, G.G.; Nistor, I.; Popa, C.; Hogas, S.; Covic, A. Gut Microbiota in Chronic Kidney Disease: From Composition to Modulation towards Better Outcomes—A Systematic Review. J. Clin. Med. 2023, 12, 1948. [Google Scholar] [CrossRef] [PubMed]
- Velasquez, M.T.; Centron, P.; Barrows, I.; Dwivedi, R.; Raj, D.S. Gut Microbiota and Cardiovascular Uremic Toxicities. Toxins 2018, 10, 287. [Google Scholar] [CrossRef] [PubMed]
- Miao, H.; Liu, F.; Wang, Y.N.; Yu, X.Y.; Zhuang, S.; Guo, Y.; Vaziri, N.D.; Ma, S.X.; Su, W.; Shang, Y.Q.; et al. Targeting Lactobacillus johnsonii to reverse chronic kidney disease. Signal Transduct. Target. Ther. 2024, 9, 195. [Google Scholar] [CrossRef] [PubMed]
- Miao, H.; Wang, Y.N.; Yu, X.Y.; Zou, L.; Guo, Y.; Su, W.; Liu, F.; Cao, G.; Zhao, Y.Y. Lactobacillus species ameliorate membranous nephropathy through inhibiting the aryl hydrocarbon receptor pathway via tryptophan-produced indole metabolites. Br. J. Pharmacol. 2024, 181, 162–179. [Google Scholar] [CrossRef]
- Yan, Z.; Shao, T. Chronic Inflammation in Chronic Kidney Disease. Nephron 2024, 148, 143–151. [Google Scholar] [CrossRef]
Total (n = 260) | FC < Median (n = 130) | Median ≤ FC (n = 130) | p-Value | |
---|---|---|---|---|
Fecal calprotectin, µg/g | 136.22 ± 112.84 | 38.86 ± 12.55 | 233.58 ± 79.4 | <0.0001 * |
Age, year | 68.41 ± 17.03 | 64.02 ± 18.15 | 72.8 ± 14.63 | <0.0001 * |
Female, n (%) | 130 (50) | 64 (49.23) | 66 (50.77) | 0.8041 |
Comorbidity | ||||
DM, n (%) | 127 (48.85) | 55 (42.31) | 72 (55.38) | 0.0349 * |
HTN, n (%) | 184 (70.77) | 93 (71.54) | 91 (70) | 0.7851 |
Malignancy, n (%) | 37 (14.23) | 16 (12.31) | 21 (16.15) | 0.3748 |
Glomerular disease, n (%) | 42 (16.15) | 30 (23.08) | 12 (9.23) | 0.0024 * |
Heart failure, n (%) | 38 (14.62) | 10 (7.69) | 28 (21.54) | 0.0016 * |
CAD, n (%) | 20 (7.69) | 6 (4.62) | 14 (10.77) | 0.0626 |
Chronic liver disease, n (%) | 13 (5) | 6 (4.62) | 7 (5.38) | 0.776 |
History of AKI, n (%) | 68 (26.15) | 24 (18.46) | 44 (33.85) | 0.0048 * |
Medications | ||||
Polystyrene sulfonate, n (%) | 65 (25) | 34 (26.15) | 31 (23.85) | 0.6674 |
AST-120, n (%) | 6 (2.31) | 3 (2.31) | 3 (2.31) | 1.0000 |
Ferrous sulfate, n (%) | 47 (18.08) | 20 (15.38) | 27 (20.77) | 0.2593 |
Laboratory data | ||||
Positive stool OB, n (%) | 27 (10.38) | 2 (1.54) | 25 (19.23) | <0.0001 * |
BUN, mg/dL | 42.1 ± 31.98 | 40.14 ± 31.59 | 44.06 ± 32.37 | 0.3236 |
Creatinine, mg/dL | 2.87 ± 3.09 | 3.07 ± 3.23 | 2.67 ± 2.94 | 0.3058 |
eGFR, mL/min/1.73 m2 | 50.88 ± 44.43 | 50.48 ± 43.25 | 51.28 ± 45.74 | 0.8846 |
Hb, g/dL | 10.77 ± 2.29 | 11.15 ± 2.32 | 10.39 ± 2.2 | 0.0073 * |
Hematocrit, % | 31.46 ± 6.55 | 32.61 ± 6.6 | 30.3 ± 6.32 | 0.0043 * |
Total protein, g/dL | 6.21 ± 0.93 | 6.41 ± 0.92 | 6 ± 0.91 | 0.0003 * |
Albumin, g/dL | 3.37 ± 0.72 | 3.55 ± 0.69 | 3.19 ± 0.7 | <0.0001 * |
Sodium, mmol/L | 136.37 ± 6.87 | 136.47 ± 5.68 | 136.28 ± 7.9 | 0.8218 |
Potassium, mmol/L | 4.2 ± 0.84 | 4.31 ± 0.89 | 4.09 ± 0.79 | 0.032 * |
Hs-CRP, mg/L | 6.77 (1.32, 46.57) | 2.61 (0.67, 13.24) | 18.6 (3.33, 86.61) | 0.0032 * |
Urine volume (UV), mL | 1538.1 ± 902.53 | 1632.95 ± 982.19 | 1443.26 ± 807.83 | 0.0902 |
Total protein (urine), mg/dL | 65 (23, 189.15) | 75.75 (27.2, 208.7) | 54.95 (22.4, 168.5) | 0.9179 |
24 h Urine protein, mg/day | 774.36 (251.73, 2257.33) | 870.39 (243.91, 2534) | 592.33 (254.14, 1751.2) | 0.5134 |
OR | 95% CI | p-Value | |
---|---|---|---|
Fecal calprotectin group (≥median) | 1.289 | 0.455–3.650 | 0.6323 |
Hemoglobin | 6.034 | 1.719–21.183 | 0.0050 * |
Hematocrit | 0.611 | 0.401–0.930 | 0.0217 * |
Urea nitrogen | 1.034 | 1.009–1.060 | 0.0076 * |
Creatinine | 0.211 | 0.121–0.368 | <0.0001 * |
Total protein | 2.393 | 1.312–4.366 | 0.0045 * |
Hs-CRP | 1.475 | 1.123–1.936 | 0.0052 * |
Urine volume | 1.001 | 1.000–1.001 | 0.0248 * |
OR | 95% CI | p-Value | |
---|---|---|---|
Fecal calprotectin group (≥median) | 2.763 | 1.139–6.699 | 0.0245 * |
History of AKI | 0.295 | 0.131–0.666 | 0.0033 * |
Hs-CRP | 0.605 | 0.483–0.757 | <0.0001 * |
HR | 95% CI | p-Value | |
---|---|---|---|
Fecal calprotectin group (≥median) | 1.658 | 1.034–2.658 | 0.0357 * |
Age | 1.061 | 1.034–1.088 | <0.0001 * |
Albumin | 0.304 | 0.182–0.507 | <0.0001 * |
Malignancy | 1.872 | 1.113–3.147 | 0.0179 * |
Total protein | 1.592 | 1.148–2.208 | 0.0052 * |
CAD | 3.506 | 1.739–7.071 | 0.0004 * |
BUN | 1.018 | 1.007–1.029 | 0.0012 * |
Creatinine | 0.8 | 0.669–0.956 | 0.0141 * |
History of AKI | 0.55 | 0.327–0.924 | 0.0241 * |
Hs-CRP | 1.131 | 0.979–1.305 | 0.0926 |
Subgroup | HR | 95% CI | p-Value | Incidence Rates ** |
---|---|---|---|---|
Sex | ||||
Male (n = 130) | 2.16 | 1.046–4.463 | 0.0375 * | 47.62 vs. 17.87 |
Female (n = 130) | 1.301 | 0.667–2.538 | 0.4403 | 49.11 vs. 19.10 |
Age | ||||
<75 years (n = 139) | 0.828 | 0.224–3.066 | 0.7772 | 5.61 vs. 14.45 |
≥75 years (n = 121) | 2.122 | 1.209–3.725 | 0.0088 * | 92.83 vs. 49.16 |
Diabetes status | ||||
Non-DM (n = 133) | 2.487 | 1.141–5.421 | 0.0219 * | 46.80 vs. 12.30 |
DM (n = 127) | 1.194 | 0.603–2.362 | 0.611 | 49.66 vs. 27.33 |
Variable | HR | 95% CI | p-Value |
---|---|---|---|
FC and CRP | <0.0001 * | ||
Low FC and low CRP | 1.000 (reference) | - | - |
Medium FC and low CRP | 1.528 | 0.491–4.750 | |
High FC and low CRP | 2.147 | 0.588–7.838 | |
Low FC and high CRP | 0.383 | 0.079–1.860 | |
Medium FC and high CRP | 2.584 | 0.876–7.626 | |
High FC and high CRP | 3.504 | 1.163–10.554 | |
Other variables | |||
Age | 1.076 | 1.050–1.103 | <0.0001 * |
Albumin | 0.382 | 0.234–0.623 | 0.0001 * |
Polystyrene sulfonate | 1.670 | 1.044–2.670 | 0.0323 * |
Urine volume | 1.000 | 0.999–1.000 | 0.0123 * |
24 h urine protein | 1.280 | 0.920–1.781 | 0.1432 |
History of AKI | 0.792 | 0.492–1.274 | 0.3360 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.Y.; Han, K.; Kwon, H.-S.; Koh, E.S.; Chung, S. Fecal Calprotectin as a Prognostic Biomarker for Mortality and Renal Outcomes in Chronic Kidney Disease. Biomolecules 2025, 15, 557. https://doi.org/10.3390/biom15040557
Lee SY, Han K, Kwon H-S, Koh ES, Chung S. Fecal Calprotectin as a Prognostic Biomarker for Mortality and Renal Outcomes in Chronic Kidney Disease. Biomolecules. 2025; 15(4):557. https://doi.org/10.3390/biom15040557
Chicago/Turabian StyleLee, So Young, Kyungdo Han, Hyuk-Sang Kwon, Eun Sil Koh, and Sungjin Chung. 2025. "Fecal Calprotectin as a Prognostic Biomarker for Mortality and Renal Outcomes in Chronic Kidney Disease" Biomolecules 15, no. 4: 557. https://doi.org/10.3390/biom15040557
APA StyleLee, S. Y., Han, K., Kwon, H.-S., Koh, E. S., & Chung, S. (2025). Fecal Calprotectin as a Prognostic Biomarker for Mortality and Renal Outcomes in Chronic Kidney Disease. Biomolecules, 15(4), 557. https://doi.org/10.3390/biom15040557