Observation of SAM-VI Riboswitch Dynamics Using Single-Molecule FRET
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of DNA Templates for PLOR Reaction
2.2. Preparation of Unlabeled riboSAM
2.3. Preparation of 37Cy3-74Cy5-riboSAM
2.4. smFRET Detections
2.5. Quantification and Statistical Analysis of smFRET Data
3. Results
3.1. Synthesis and Characterization of Site-Specific Cy3-Cy5-Labeled riboSAM
3.2. smFRET Detection Reveals Three Distinct States of riboSAM in the Absence of Mg2+ and SAM
3.3. Increasing Mg2+ Induces the Folding of riboSAM into Two Distinct holo-p States, First Dynamic, Then Static
3.4. SAM Locks the Mg2+-Induced Dynamic holo-p to Stable holo State by Conformational Selection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PLOR | position-selective labeling of RNA |
smFRET | single-molecule Förster resonance energy transfer |
RP-HPLC | reverse-phase high-performance liquid chromatography |
HMM | hidden Markov modeling |
TODP | transition occupancy density plot |
References
- Serganov, A.; Nudler, E. A decade of riboswitches. Cell 2013, 152, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Mandal, M.; Breaker, R.R. Gene regulation by riboswitches. Nat. Rev. Mol. Cell Biol. 2004, 5, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Micura, R.; Höbartner, C. Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes. Chem. Soc. Rev. 2020, 49, 7331–7353. [Google Scholar] [CrossRef] [PubMed]
- Garst, A.D.; Edwards, A.L.; Batey, R.T. Riboswitches: structures and mechanisms. Cold Spring Harb. Perspect. Biol. 2011, 3, a003533. [Google Scholar] [CrossRef]
- Roth, A.; Breaker, R.R. The structural and functional diversity of metabolite-binding riboswitches. Annu. Rev. Biochem. 2009, 78, 305–334. [Google Scholar] [CrossRef]
- McCown, P.J.; Corbino, K.A.; Stav, S.; Sherlock, M.E.; Breaker, R.R. Riboswitch diversity and distribution. RNA 2017, 23, 995–1011. [Google Scholar] [CrossRef]
- Atilho, R.M.; Perkins, K.R.; Breaker, R.R. Rare variants of the FMN riboswitch class in Clostridium difficile and other bacteria exhibit altered ligand specificity. RNA 2018, 25, 23–34. [Google Scholar] [CrossRef]
- Mitchell, C.; Polanco, J.A.; DeWald, L.; Kress, D.; Jaeger, L.; Grabow, W.W. Responsive Self-Assembly of tectoRNAs with Loop-Receptor interactions from the tetrahydrofolate (THF) riboswitch. Nucleic Acids Res. 2019, 47, 6439–6451. [Google Scholar] [CrossRef]
- Wu, L.; Chen, D.; Ding, J.; Liu, Y. A transient conformation facilitates ligand binding to the adenine riboswitch. iScience 2021, 24, 103512. [Google Scholar] [CrossRef]
- Serganov, A.; Huang, L.; Patel, D.J. Structural insights into amino acid binding and gene control by a lysine riboswitch. Nature 2008, 455, 1263–1267. [Google Scholar] [CrossRef]
- Suddala, K.C.; Price, I.R.; Dandpat, S.S.; Janeček, M.; Kührová, P.; Šponer, J.; Banáš, P.; Ke, A.; Walter, N.G. Local-to-Global signal transduction at the core of a Mn2+ sensing riboswitch. Nat. Commun. 2019, 10, 4304. [Google Scholar] [CrossRef] [PubMed]
- Winkler, W.C.; Nahvi, A.; Sudarsan, N.; Barrick, J.E.; Breaker, R.R. An mRNA structure that controls gene expression by binding S-Adenosylmethionine. Nat. Struct. Biol. 2003, 10, 701–707. [Google Scholar] [CrossRef]
- Fontecave, M.; Atta, M.; Mulliez, E. S-adenosylmethionine: nothing goes to waste. Trends Biochem. Sci. 2004, 29, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Struck, A.W.; Thompson, M.L.; Wong, L.S.; Micklefield, J. S-adenosyl-methionine-dependent methyltransferases: highly versatile enzymes in biocatalysis, biosynthesis and other biotechnological applications. Chembiochem 2012, 13, 2642–2655. [Google Scholar] [CrossRef] [PubMed]
- Batey, R.T. Recognition of S-adenosylmethionine by riboswitches. Wiley Interdiscip. Rev. RNA 2011, 2, 299–311. [Google Scholar] [CrossRef]
- Price, I.R.; Grigg, J.C.; Ke, A. Common themes and differences in SAM recognition among SAM riboswitches. Biochim. Biophys. Acta. 2014, 1839, 931–938. [Google Scholar] [CrossRef]
- Zheng, L.; Song, Q.; Xu, X.; Shen, X.; Li, C.; Li, H.; Chen, H.; Ren, A. Structure-based insights into recognition and regulation of SAM-sensing riboswitches. Sci. China Life Sci. 2023, 66, 31–50. [Google Scholar] [CrossRef]
- Mirihana, A.G.; Sherlock, M.E.; Weinberg, Z.; Breaker, R.R. SAM-VI RNAs selectively bind S-adenosylmethionine and exhibit similarities to SAM-III riboswitches. RNA Biol. 2018, 15, 371–378. [Google Scholar] [CrossRef]
- Sun, A.; Gasser, C.; Li, F.; Chen, H.; Mair, S.; Krasheninina, O.; Micura, R.; Ren, A. SAM-VI riboswitch structure and signature for ligand discrimination. Nat. Commun. 2019, 10, 5728. [Google Scholar] [CrossRef]
- Xue, Y.; Li, J.; Chen, D.; Zhao, X.; Hong, L.; Liu, Y. Observation of structural switch in nascent SAM-VI riboswitch during transcription at single-nucleotide and single-molecule resolution. Nat. Commun. 2023, 14, 2320. [Google Scholar] [CrossRef]
- Xiao, W.; Liu, G.; Chen, T.; Zhang, Y.; Lu, C. Bifidobacterium bifidum SAM-VI riboswitch conformation change requires peripheral helix formation. Biomolecules 2024, 14, 742. [Google Scholar] [CrossRef]
- Grilley, D.; Soto, A.M.; Draper, D.E. Mg2+-RNA interaction free energies and their relationship to the folding of RNA tertiary structures. Proc. Natl. Acad. Sci. USA 2006, 103, 14003–14008. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.D.; Nienhaus, G.U.; Ha, T.; Orr, J.W.; Williamson, J.R.; Chu, S. Mg2+-Dependent conformational change of RNA studied by fluorescence correlation and FRET on immobilized single molecules. Proc. Natl. Acad. Sci. USA 2002, 99, 4284–4289. [Google Scholar] [CrossRef]
- Noeske, J.; Schwalbe, H.; Wöhnert, J. Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain. Nucleic Acids Res. 2007, 35, 5262–5273. [Google Scholar] [CrossRef] [PubMed]
- Woodson, S.A. Metal ions and RNA folding: a highly charged topic with a dynamic future. Curr. Opin. Chem. Biol. 2005, 9, 104–109. [Google Scholar] [CrossRef]
- Wu, M.; Tinoco, I.J. RNA folding causes secondary structure rearrangement. Proc. Natl. Acad. Sci. USA 1998, 95, 11555–11560. [Google Scholar] [CrossRef] [PubMed]
- McCluskey, K.; Boudreault, J.; St-Pierre, P.; Perez-Gonzalez, C.; Chauvier, A.; Rizzi, A.; Beauregard, P.B.; Lafontaine, D.A.; Penedo, J.C. Unprecedented tunability of riboswitch structure and regulatory function by sub-Millimolar variations in Physiological Mg2+. Nucleic Acids Res. 2019, 47, 6478–6487. [Google Scholar] [CrossRef]
- Yadav, R.; Widom, J.R.; Chauvier, A.; Walter, N.G. An anionic ligand snap-locks a long-range interaction in a magnesium-folded riboswitch. Nat. Commun. 2022, 13, 207. [Google Scholar] [CrossRef]
- Serganov, A.; Polonskaia, A.; Phan, A.T.; Breaker, R.R.; Patel, D.J. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature 2006, 441, 1167–1171. [Google Scholar] [CrossRef]
- Serganov, A.; Yuan, Y.R.; Pikovskaya, O.; Polonskaia, A.; Malinina, L.; Phan, A.T.; Hobartner, C.; Micura, R.; Breaker, R.R.; Patel, D.J. Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem. Biol. 2004, 11, 1729–1741. [Google Scholar] [CrossRef]
- Liu, Y.; Holmstrom, E.; Yu, P.; Tan, K.; Zuo, X.; Nesbitt, D.J.; Sousa, R.; Stagno, J.R.; Wang, Y.X. Incorporation of isotopic, fluorescent, and heavy-atom-modified nucleotides into RNAs by position-selective labeling of RNA. Nat. Protoc. 2018, 13, 987–1005. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Holmstrom, E.; Zhang, J.; Yu, P.; Wang, J.; Dyba, M.A.; Chen, D.; Ying, J.; Lockett, S.; Nesbitt, D.J.; et al. Synthesis and applications of RNAs with position-selective labelling and mosaic composition. Nature 2015, 522, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Preus, S.; Noer, S.L.; Hildebrandt, L.L.; Gudnason, D.; Birkedal, V. iSMS: single-molecule FRET microscopy software. Nat. Methods 2015, 12, 593–594. [Google Scholar] [CrossRef]
- Thomsen, J.; Sletfjerding, M.B.; Jensen, S.B.; Stella, S.; Paul, B.; Malle, M.G.; Montoya, G.; Petersen, T.C.; Hatzakis, N.S. DeepFRET, a software for rapid and automated single-molecule FRET data classification using deep learning. eLife 2020, 9, e60404. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Hohng, S.; Ha, T. A practical guide to single-molecule FRET. Nat. Methods 2008, 5, 507–516. [Google Scholar] [CrossRef]
- Chauvier, A.; Ajmera, P.; Yadav, R.; Walter, N.G. Dynamic competition between a ligand and transcription factor NusA governs riboswitch-mediated transcription regulation. Proc. Natl. Acad. Sci. USA 2021, 118, e2109026118. [Google Scholar] [CrossRef]
- Bronson, J.E.; Fei, J.; Hofman, J.M.; Gonzalez, R.L.J.; Wiggins, C.H. Learning rates and states from biophysical time series: A Bayesian approach to model selection and single-molecule FRET data. Biophys. J. 2009, 97, 3196–3205. [Google Scholar] [CrossRef]
- Blanco, M.; Walter, N.G. Analysis of complex single-molecule FRET time trajectories. Methods Enzymol. 2010, 472, 153–178. [Google Scholar]
- Weikl, T.R.; Paul, F. Conformational selection in protein binding and function. Protein Sci. 2014, 23, 1508–1518. [Google Scholar] [CrossRef]
- Haller, A.; Soulière, M.F.; Micura, R. The dynamic nature of RNA as key to understanding riboswitch mechanisms. Acc. Chem. Res. 2011, 44, 1339–1348. [Google Scholar] [CrossRef]
- Blount, K.F.; Wang, J.X.; Lim, J.; Sudarsan, N.; Breaker, R.R. Antibacterial lysine analogs that target lysine riboswitches. Nat. Chem. Biol. 2007, 3, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Giarimoglou, N.; Kouvela, A.; Patsi, I.; Zhang, J.; Stamatopoulou, V.; Stathopoulos, C. Lineage-specific insertions in T-box riboswitches modulate antibiotic binding and action. Nucleic Acids Res. 2022, 50, 5834–5849. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Jaffrey, S.R. A fluorogenic RNA-based sensor activated by metabolite-Induced RNA dimerization. Cell Chem. Biol. 2019, 26, 1725–1731. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Mo, L.; Litke, J.L.; Dey, S.K.; Suter, S.R.; Jaffrey, S.R. Imaging intracellular S-adenosyl methionine dynamics in live mammalian cells with a genetically encoded red fluorescent RNA-based sensor. J. Am. Chem. Soc. 2020, 142, 14117–14124. [Google Scholar] [CrossRef]
- Nomura, Y.; Kim, N.; Zhu, B.; Hamzah, M.; Zhang, H.; Yokobayashi, Y. Optimization of exon-skipping riboswitches and their applications to control mammalian cell fate. ACS Synth. Biol. 2024, 13, 3246–3255. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Y.; Sun, Y.; Xia, Y.; Liu, X.; Dai, H. Observation of SAM-VI Riboswitch Dynamics Using Single-Molecule FRET. Biomolecules 2025, 15, 841. https://doi.org/10.3390/biom15060841
Xue Y, Sun Y, Xia Y, Liu X, Dai H. Observation of SAM-VI Riboswitch Dynamics Using Single-Molecule FRET. Biomolecules. 2025; 15(6):841. https://doi.org/10.3390/biom15060841
Chicago/Turabian StyleXue, Yanyan, Yi Sun, Yichun Xia, Xiuming Liu, and Hua Dai. 2025. "Observation of SAM-VI Riboswitch Dynamics Using Single-Molecule FRET" Biomolecules 15, no. 6: 841. https://doi.org/10.3390/biom15060841
APA StyleXue, Y., Sun, Y., Xia, Y., Liu, X., & Dai, H. (2025). Observation of SAM-VI Riboswitch Dynamics Using Single-Molecule FRET. Biomolecules, 15(6), 841. https://doi.org/10.3390/biom15060841