Unlocking the Potential of Bioactive Compounds in Pancreatic Cancer Therapy: A Promising Frontier
Abstract
:1. Introduction
2. Bioactive Agents Against PDA
2.1. Olive Oil
2.2. Vitamin E Tocotrienols
2.3. Marigold Supercritical Fluid Extract
2.4. Polyunsaturate Fatty Acids
2.5. Citrus Fruits
2.6. Flavonoids
2.6.1. Broussoflavonol B
2.6.2. Isorhamnetin
2.6.3. Apiin, Rhoifolin and Vitexin
2.6.4. Hispidulin
2.6.5. Isoorientin
2.6.6. Naringenin
2.6.7. Kaempferol
2.6.8. Puerarin
2.6.9. Fisetin
2.6.10. Wogonin
2.6.11. Isoliquiritigenin
2.6.12. Luteolin
2.6.13. Anthocyanins
2.6.14. Xanthohumol, Resveratrol, Phenethyl Isothiocyanate, Indole-3-Carbinol
2.7. Chinese Herbs
2.7.1. Curcumin
2.7.2. Thymoquinone (From Nigella sativa Seeds)
2.7.3. Alpinumisoflavone
2.7.4. Piperlongumine
2.7.5. Honokiol
3. Active Clinical Trials with Bioactive Compounds for PDA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Z.; Xia, F.; Lin, R. Global Burden of Cancer and Associated Risk Factors in 204 Countries and Territories, 1980–2021: A Systematic Analysis for the GBD 2021. J. Hematol. Oncol. 2024, 17, 119. [Google Scholar] [CrossRef]
- Britten, O.; Tosi, S. The Role of Diet in Cancer: The Potential of Shaping Public Policy and Clinical Outcomes in the UK. Genes Nutr. 2024, 19, 15. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Griel, A.E.; Etherton, T.D. Bioactive Compounds in Foods: Their Role in the Prevention of Cardiovascular Disease and Cancer. Am. J. Med. 2002, 113, 71–88. [Google Scholar] [CrossRef]
- Delgado-Gonzalez, P.; Garza-Treviño, E.N.; de la Garza Kalife, D.A.; Quiroz Reyes, A.; Hernández-Tobías, E.A. Bioactive Compounds of Dietary Origin and Their Influence on Colorectal Cancer as Chemoprevention. Life 2023, 13, 1977. [Google Scholar] [CrossRef]
- Ağagündüz, D.; Şahin, T.Ö.; Yılmaz, B.; Ekenci, K.D.; Duyar Özer, Ş.; Capasso, R. Cruciferous Vegetables and Their Bioactive Metabolites: From Prevention to Novel Therapies of Colorectal Cancer. Evid. Based Complement. Altern. Med. 2022, 2022, 1534083. [Google Scholar] [CrossRef]
- Akhtar, M.F.; Saleem, A.; Rasul, A.; Faran Ashraf Baig, M.M.; Bin-Jumah, M.; Abdel Daim, M.M. Anticancer Natural Medicines: An Overview of Cell Signaling and Other Targets of Anticancer Phytochemicals. Eur. J. Pharmacol. 2020, 888, 173488. [Google Scholar] [CrossRef]
- Paul, J.K.; Azmal, M.; Haque, A.S.N.B.; Talukder, O.F.; Meem, M.; Ghosh, A. Phytochemical-Mediated Modulation of Signaling Pathways: A Promising Avenue for Drug Discovery. Adv. Redox Res. 2024, 13, 100113. [Google Scholar] [CrossRef]
- Sznarkowska, A.; Kostecka, A.; Meller, K.; Bielawski, K.P. Inhibition of Cancer Antioxidant Defense by Natural Compounds. Oncotarget 2016, 8, 15996–16016. [Google Scholar] [CrossRef]
- Mileo, A.M.; Miccadei, S. Polyphenols as Modulator of Oxidative Stress in Cancer Disease: New Therapeutic Strategies. Oxid. Med. Cell. Longev. 2016, 2016, 6475624. [Google Scholar] [CrossRef]
- Rizeq, B.; Gupta, I.; Ilesanmi, J.; AlSafran, M.; Rahman, M.M.; Ouhtit, A. The Power of Phytochemicals Combination in Cancer Chemoprevention. J. Cancer 2020, 11, 4521–4533. [Google Scholar] [CrossRef]
- Nisar, S.; Masoodi, T.; Prabhu, K.S.; Kuttikrishnan, S.; Zarif, L.; Khatoon, S.; Ali, S.; Uddin, S.; Akil, A.A.-S.; Singh, M.; et al. Natural Products as Chemo-Radiation Therapy Sensitizers in Cancers. Biomed. Pharmacother. 2022, 154, 113610. [Google Scholar] [CrossRef]
- Salami, C.; Mbakidi, J.-P.; Audonnet, S.; Brassart-Pasco, S.; Bouquillon, S. Extraction of Curcuminoids and Carvacrol with Biobased Ionic Liquids—Evaluation of Anti-Cancer Properties of Curcuminoid Extracts. Molecules 2025, 30, 1180. [Google Scholar] [CrossRef]
- Stoop, T.F.; Javed, A.A.; Oba, A.; Koerkamp, B.G.; Seufferlein, T.; Wilmink, J.W.; Besselink, M.G. Pancreatic Cancer. Lancet 2025, 405, 1182–1202. [Google Scholar] [CrossRef]
- Vincent, A.; Herman, J.; Schulick, R.; Hruban, R.H.; Goggins, M. Pancreatic Cancer. Lancet 2011, 378, 607–620. [Google Scholar] [CrossRef]
- Almanza-Aguilera, E.; Cano, A.; Gil-Lespinard, M.; Burguera, N.; Zamora-Ros, R.; Agudo, A.; Farràs, M. Mediterranean Diet and Olive Oil, Microbiota, and Obesity-Related Cancers. From Mechanisms to Prevention. Semin. Cancer Biol. 2023, 95, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Mentella, M.C.; Scaldaferri, F.; Ricci, C.; Gasbarrini, A.; Miggiano, G.A.D. Cancer and Mediterranean Diet: A Review. Nutrients 2019, 11, 2059. [Google Scholar] [CrossRef] [PubMed]
- Australian Olive Industry Research, Development and Extension Plan 2010–2015. Available online: https://agrifutures.com.au/product/australian-olive-industry-research-development-and-extension-plan-2010-2015/ (accessed on 13 April 2025).
- Serra-Majem, L.; Ngo de la Cruz, J.; Ribas, L.; Tur, J.A. Olive Oil and the Mediterranean Diet: Beyond the Rhetoric. Eur. J. Clin. Nutr. 2003, 57, S2–S7. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Lagiou, P.; Kuper, H.; Trichopoulos, D. Cancer and Mediterranean Dietary Traditions. Cancer Epidemiol. Biomark. Prev. 2000, 9, 869–873. [Google Scholar]
- Kapiszewska, M.; Sołtys, E.; Visioli, F.; Cierniak, A.; Zajac, G. The Protective Ability of the Mediterranean Plant Extracts against the Oxidative DNA Damage. The Role of the Radical Oxygen Species and the Polyphenol Content. J. Physiol. Pharmacol. 2005, 56 (Suppl. 1), 183–197. [Google Scholar]
- Schwingshackl, L.; Schwedhelm, C.; Galbete, C.; Hoffmann, G. Adherence to Mediterranean Diet and Risk of Cancer: An Updated Systematic Review and Meta-Analysis. Nutrients 2017, 9, 1063. [Google Scholar] [CrossRef]
- Luu, H.N.; Paragomi, P.; Jin, A.; Wang, R.; Neelakantan, N.; van Dam, R.M.; Brand, R.E.; Koh, W.-P.; Yuan, J.-M. Quality Diet Index and Risk of Pancreatic Cancer: Findings from the Singapore Chinese Health Study. Cancer Epidemiol. Biomark. Prev. 2021, 30, 2068–2078. [Google Scholar] [CrossRef]
- Markellos, C.; Ourailidou, M.-E.; Gavriatopoulou, M.; Halvatsiotis, P.; Sergentanis, T.N.; Psaltopoulou, T. Olive Oil Intake and Cancer Risk: A Systematic Review and Meta-Analysis. PLoS ONE 2022, 17, e0261649. [Google Scholar] [CrossRef]
- Soler, M.; Chatenoud, L.; La Vecchia, C.; Franceschi, S.; Negri, E. Diet, Alcohol, Coffee and Pancreatic Cancer: Final Results from an Italian Study. Eur. J. Cancer Prev. 1998, 7, 455. [Google Scholar] [CrossRef]
- Goren, L.; Zhang, G.; Kaushik, S.; Breslin, P.A.S.; Du, Y.-C.N.; Foster, D.A. (-)-Oleocanthal and (-)-Oleocanthal-Rich Olive Oils Induce Lysosomal Membrane Permeabilization in Cancer Cells. PLoS ONE 2019, 14, e0216024. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, C.D.; Vuong, Q.V.; Sadeqzadeh, E.; Stathopoulos, C.E.; Roach, P.D.; Scarlett, C.J. Phytochemical Properties and Anti-Proliferative Activity of Olea Europaea L. Leaf Extracts against Pancreatic Cancer Cells. Molecules 2015, 20, 12992–13004. [Google Scholar] [CrossRef]
- Goldsmith, C.D.; Bond, D.R.; Jankowski, H.; Weidenhofer, J.; Stathopoulos, C.E.; Roach, P.D.; Scarlett, C.J. The Olive Biophenols Oleuropein and Hydroxytyrosol Selectively Reduce Proliferation, Influence the Cell Cycle, and Induce Apoptosis in Pancreatic Cancer Cells. Int. J. Mol. Sci. 2018, 19, 1937. [Google Scholar] [CrossRef]
- Wang, B.; Yang, L.; Liu, T.; Xun, J.; Zhuo, Y.; Zhang, L.; Zhang, Q.; Wang, X. Hydroxytyrosol Inhibits MDSCs and Promotes M1 Macrophages in Mice with Orthotopic Pancreatic Tumor. Front. Pharmacol. 2021, 12, 759172. [Google Scholar] [CrossRef]
- Aggarwal, B.; Nesaretnam, K. Vitamin E Tocotrienols: Life beyond Tocopherols. Genes Nutr. 2012, 7, 1. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Sundaram, C.; Prasad, S.; Kannappan, R. Tocotrienols, the Vitamin E of the 21st Century: Its Potential against Cancer and Other Chronic Diseases. Biochem. Pharmacol. 2010, 80, 1613–1631. [Google Scholar] [CrossRef]
- Husain, K.; Francois, R.A.; Yamauchi, T.; Perez, M.; Sebti, S.M.; Malafa, M.P. Vitamin E δ-Tocotrienol Augments the Antitumor Activity of Gemcitabine and Suppresses Constitutive NF-κB Activation in Pancreatic Cancer. Mol. Cancer Ther. 2011, 10, 2363–2372. [Google Scholar] [CrossRef] [PubMed]
- Husain, K.; Francois, R.A.; Hutchinson, S.Z.; Neuger, A.M.; Lush, R.; Coppola, D.; Sebti, S.; Malafa, M.P. Vitamin E Delta-Tocotrienol Levels in Tumor and Pancreatic Tissue of Mice after Oral Administration. Pharmacology 2009, 83, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Husain, K.; Centeno, B.A.; Chen, D.-T.; Fulp, W.J.; Perez, M.; Zhang Lee, G.; Luetteke, N.; Hingorani, S.R.; Sebti, S.M.; Malafa, M.P. Prolonged Survival and Delayed Progression of Pancreatic Intraepithelial Neoplasia in LSL-KrasG12D/+;Pdx-1-Cre Mice by Vitamin E δ-Tocotrienol. Carcinogenesis 2013, 34, 858–863. [Google Scholar] [CrossRef] [PubMed]
- Gómez de Cedrón, M.; Mouhid, L.; García-Carrascosa, E.; Fornari, T.; Reglero, G.; Ramírez de Molina, A. Marigold Supercritical Extract as Potential Co-Adjuvant in Pancreatic Cancer: The Energetic Catastrophe Induced via BMP8B Ends Up with Autophagy-Induced Cell Death. Front. Bioeng. Biotechnol. 2019, 7, 455. [Google Scholar] [CrossRef]
- Martin, D.; Navarro Del Hierro, J.; Villanueva Bermejo, D.; Fernández-Ruiz, R.; Fornari, T.; Reglero, G. Bioaccessibility and Antioxidant Activity of Calendula Officinalis Supercritical Extract as Affected by in Vitro Codigestion with Olive Oil. J. Agric. Food Chem. 2016, 64, 8828–8837. [Google Scholar] [CrossRef]
- García-Risco, M.R.; Mouhid, L.; Salas-Pérez, L.; López-Padilla, A.; Santoyo, S.; Jaime, L.; Ramírez de Molina, A.; Reglero, G.; Fornari, T. Biological Activities of Asteraceae (Achillea Millefolium and Calendula Officinalis) and Lamiaceae (Melissa Officinalis and Origanum Majorana) Plant Extracts. Plant Foods Hum. Nutr. 2017, 72, 96–102. [Google Scholar] [CrossRef]
- Mouhid, L.; Gómez de Cedrón, M.; Vargas, T.; García-Carrascosa, E.; Herranz, N.; García-Risco, M.; Reglero, G.; Fornari, T.; Ramírez de Molina, A. Identification of Antitumoral Agents against Human Pancreatic Cancer Cells from Asteraceae and Lamiaceae Plant Extracts. BMC Complement. Altern. Med. 2018, 18, 254. [Google Scholar] [CrossRef]
- Mei, Z.; Dai, J.; Liu, G.; He, Z.; Gu, S. Roles of Aqueous Extract of Marigold on Arsenic-Induced Oxidative Damage in Pancreatic Islet β-Cells. J. Biosci. Med. 2024, 12, 19–34. [Google Scholar] [CrossRef]
- Mahjourian, M.; Anjom-Shoae, J.; Mohammadi, M.A.; Feinle-Bisset, C.; Sadeghi, O. Associations of Dietary Fat Types (MUFA, PUFA, SFA) and Sources (Animal, Plant) with Colorectal Cancer Risk: A Comprehensive Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Cancer Epidemiol. 2025, 95, 102768. [Google Scholar] [CrossRef]
- Žuža Praštalo, M.; Pokimica, B.; Arsić, A.; Ilich, J.Z.; Vučić, V. Current Evidence on the Impact of Diet, Food, and Supplement Intake on Breast Cancer Health Outcomes in Patients Undergoing Endocrine Therapy. Nutrients 2025, 17, 456. [Google Scholar] [CrossRef]
- Shrivastava, R.; Gupta, A.; Mehta, N.; Das, D.; Goyal, A. Dietary Patterns and Risk of Oral and Oropharyngeal Cancers: A Systematic Review and Meta-Analysis. Cancer Epidemiol. 2024, 93, 102650. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Yang, H.; Song, Y.; Zhang, F.; Wang, A. Modifiable Risk Factors for Breast Cancer: Insights From Systematic Reviews. Public Health Nurs. 2025, 42, 1060–1071. [Google Scholar] [CrossRef] [PubMed]
- Conigliaro, T.; Boyce, L.M.; Lopez, C.A.; Tonorezos, E.S. Food Intake During Cancer Therapy: A Systematic Review. Am. J. Clin. Oncol. 2020, 43, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Appel, M.J.; van Garderen-Hoetmer, A.; Woutersen, R.A. Effects of Dietary Linoleic Acid on Pancreatic Carcinogenesis in Rats and Hamsters. Cancer Res. 1994, 54, 2113–2120. [Google Scholar]
- Gregor, J.I.; Heukamp, I.; Kilian, M.; Kiewert, C.; Schimke, I.; Kristiansen, G.; Walz, M.K.; Jacobi, C.A.; Wenger, F.A. Does Enteral Nutrition of Dietary Polyunsaturated Fatty Acids Promote Oxidative Stress and Tumour Growth in Ductal Pancreatic Cancer?: Experimental Trial in Syrian Hamster. Prostaglandins Leukot. Essent. Fat. Acids 2006, 74, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Schønberg, S.A.; Rudra, P.K.; Nøding, R.; Skorpen, F.; Bjerve, K.S.; Krokan, H.E. Evidence That Changes in Se-Glutathione Peroxidase Levels Affect the Sensitivity of Human Tumour Cell Lines to n-3 Fatty Acids. Carcinogenesis 1997, 18, 1897–1904. [Google Scholar] [CrossRef]
- Devery, R.; Miller, A.; Stanton, C. Conjugated Linoleic Acid and Oxidative Behaviour in Cancer Cells. Biochem. Soc. Trans. 2001, 29, 341–344. [Google Scholar] [CrossRef]
- Maehle, L.; Lystad, E.; Eilertsen, E.; Einarsdottír, E.; Høstmark, A.T.; Haugen, A. Growth of Human Lung Adenocarcinoma in Nude Mice Is Influenced by Various Types of Dietary Fat and Vitamin E. Anticancer. Res. 1999, 19, 1649–1655. [Google Scholar]
- Roebuck, B.D. Dietary Fat and the Development of Pancreatic Cancer. Lipids 1992, 27, 804–806. [Google Scholar] [CrossRef]
- Wenger, F.A.; Jacobi, C.A.; Kilian, M.; Zieren, J.; Zieren, H.U.; Müller, J.M. Does Dietary Alpha-Linolenic Acid Promote Liver Metastases in Pancreatic Carcinoma Initiated by BOP in Syrian Hamster? Ann. Nutr. Metab. 1999, 43, 121–126. [Google Scholar] [CrossRef]
- American Institute for Cancer Research, World Cancer Research Fund (Ed.) Food, Nutrition, Physical Activity and the Prevention of Cancer: A Global Perspective: A Project of World Cancer Research Fund International; American Institute for Cancer Research: Washington, DC, USA, 2007; ISBN 978-0-9722522-2-5. [Google Scholar]
- Wu, G.A.; Terol, J.; Ibanez, V.; López-García, A.; Pérez-Román, E.; Borredá, C.; Domingo, C.; Tadeo, F.R.; Carbonell-Caballero, J.; Alonso, R.; et al. Genomics of the Origin and Evolution of Citrus. Nature 2018, 554, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhao, C.; Shi, H.; Liao, Y.; Xu, F.; Du, H.; Xiao, H.; Zheng, J. Nutrients and Bioactives in Citrus Fruits: Different Citrus Varieties, Fruit Parts, and Growth Stages. Crit. Rev. Food Sci. Nutr. 2023, 63, 2018–2041. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, S.; Yang, W.; Huang, Q.; Ho, C.-T. The Biological Fate and Bioefficacy of Citrus Flavonoids: Bioavailability, Biotransformation, and Delivery Systems. Food Funct. 2021, 12, 3307–3323. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-C.; Chuang, Y.-C.; Ku, Y.-H. Quantitation of Bioactive Compounds in Citrus Fruits Cultivated in Taiwan. Food Chem. 2007, 102, 1163–1171. [Google Scholar] [CrossRef]
- Buer, C.S.; Imin, N.; Djordjevic, M.A. Flavonoids: New Roles for Old Molecules. J. Integr. Plant Biol. 2010, 52, 98–111. [Google Scholar] [CrossRef]
- Stewart, I.; Wheaton, T.A. Conversion of β-Citraurin to Reticulataxanthin and β-Apo-8′-Carotenal to Citranaxanthin during the Isolation of Carotenoids from Citrus. Phytochemistry 1973, 12, 2947–2951. [Google Scholar] [CrossRef]
- Manners, G.D. Citrus Limonoids: Analysis, Bioactivity, and Biomedical Prospects. J. Agric. Food Chem. 2007, 55, 8285–8294. [Google Scholar] [CrossRef]
- Polesel, J.; Talamini, R.; Negri, E.; Bosetti, C.; Boz, G.; Lucenteforte, E.; Franceschi, S.; Serraino, D.; La Vecchia, C. Dietary Habits and Risk of Pancreatic Cancer: An Italian Case-Control Study. Cancer Causes Control 2010, 21, 493–500. [Google Scholar] [CrossRef]
- Larsson, S.C.; Håkansson, N.; Näslund, I.; Bergkvist, L.; Wolk, A. Fruit and Vegetable Consumption in Relation to Pancreatic Cancer Risk: A Prospective Study. Cancer Epidemiol. Biomark. Prev. 2006, 15, 301–305. [Google Scholar] [CrossRef]
- Chan, J.M.; Wang, F.; Holly, E.A. Vegetable and Fruit Intake and Pancreatic Cancer in a Population-Based Case-Control Study in the San Francisco Bay Area. Cancer Epidemiol. Biomark. Prev. 2005, 14, 2093–2097. [Google Scholar] [CrossRef]
- Olsen, G.W.; Mandel, J.S.; Gibson, R.W.; Wattenberg, L.W.; Schuman, L.M. Nutrients and Pancreatic Cancer: A Population-Based Case-Control Study. Cancer Causes Control 1991, 2, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Silverman, D.T.; Swanson, C.A.; Gridley, G.; Wacholder, S.; Greenberg, R.S.; Brown, L.M.; Hayes, R.B.; Swanson, G.M.; Schoenberg, J.B.; Pottern, L.M.; et al. Dietary and Nutritional Factors and Pancreatic Cancer: A Case-Control Study Based on Direct Interviews. J. Natl. Cancer Inst. 1998, 90, 1710–1719. [Google Scholar] [CrossRef] [PubMed]
- Nöthlings, U.; Murphy, S.P.; Wilkens, L.R.; Henderson, B.E.; Kolonel, L.N. Dietary Glycemic Load, Added Sugars, and Carbohydrates as Risk Factors for Pancreatic Cancer: The Multiethnic Cohort Study. Am. J. Clin. Nutr. 2007, 86, 1495–1501. [Google Scholar] [CrossRef]
- Coughlin, S.S.; Calle, E.E.; Patel, A.V.; Thun, M.J. Predictors of Pancreatic Cancer Mortality among a Large Cohort of United States Adults. Cancer Causes Control 2000, 11, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Bueno de Mesquita, H.B.; Maisonneuve, P.; Runia, S.; Moerman, C.J. Intake of Foods and Nutrients and Cancer of the Exocrine Pancreas: A Population-Based Case-Control Study in The Netherlands. Int. J. Cancer 1991, 48, 540–549. [Google Scholar] [CrossRef]
- Stolzenberg-Solomon, R.Z.; Pietinen, P.; Taylor, P.R.; Virtamo, J.; Albanes, D. Prospective Study of Diet and Pancreatic Cancer in Male Smokers. Am. J. Epidemiol. 2002, 155, 783–792. [Google Scholar] [CrossRef]
- Ji, B.T.; Chow, W.H.; Gridley, G.; Mclaughlin, J.K.; Dai, Q.; Wacholder, S.; Hatch, M.C.; Gao, Y.T.; Fraumeni, J.F. Dietary Factors and the Risk of Pancreatic Cancer: A Case-Control Study in Shanghai China. Cancer Epidemiol. Biomark. Prev. 1995, 4, 885–893. [Google Scholar]
- Lin, Y.; Kikuchi, S.; Tamakoshi, A.; Yagyu, K.; Obata, Y.; Inaba, Y.; Kurosawa, M.; Kawamura, T.; Motohashi, Y.; Ishibashi, T. Dietary Habits and Pancreatic Cancer Risk in a Cohort of Middle-Aged and Elderly Japanese. Nutr. Cancer 2006, 56, 40–49. [Google Scholar] [CrossRef]
- Sergeev, I.N.; Ho, C.-T.; Li, S.; Colby, J.; Dushenkov, S. Apoptosis-Inducing Activity of Hydroxylated Polymethoxyflavones and Polymethoxyflavones from Orange Peel in Human Breast Cancer Cells. Mol. Nutr. Food Res. 2007, 51, 1478–1484. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Mandadi, K.K.; Poulose, S.M.; Jadegoud, Y.; Nagana Gowda, G.A.; Patil, B.S. Novel Triterpenoid from Citrus Aurantium L. Possesses Chemopreventive Properties against Human Colon Cancer Cells. Bioorg. Med. Chem. 2008, 16, 5939–5951. [Google Scholar] [CrossRef]
- Tang, M.; Ogawa, K.; Asamoto, M.; Hokaiwado, N.; Seeni, A.; Suzuki, S.; Takahashi, S.; Tanaka, T.; Ichikawa, K.; Shirai, T. Protective Effects of Citrus Nobiletin and Auraptene in Transgenic Rats Developing Adenocarcinoma of the Prostate (TRAP) and Human Prostate Carcinoma Cells. Cancer Sci. 2007, 98, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Hung, J.-Y.; Hsu, Y.-L.; Ko, Y.-C.; Tsai, Y.-M.; Yang, C.-J.; Huang, M.-S.; Kuo, P.-L. Didymin, a Dietary Flavonoid Glycoside from Citrus Fruits, Induces Fas-Mediated Apoptotic Pathway in Human Non-Small-Cell Lung Cancer Cells in Vitro and in Vivo. Lung Cancer 2010, 68, 366–374. [Google Scholar] [CrossRef]
- Patil, J.R.; Chidambara Murthy, K.N.; Jayaprakasha, G.K.; Chetti, M.B.; Patil, B.S. Bioactive Compounds from Mexican Lime (Citrus aurantifolia) Juice Induce Apoptosis in Human Pancreatic Cells. J. Agric. Food Chem. 2009, 57, 10933–10942. [Google Scholar] [CrossRef]
- Patil, J.R.; Jayaprakasha, G.K.; Murthy, K.N.C.; Chetti, M.B.; Patil, B.S. Characterization of Citrus aurantifolia Bioactive Compounds and Their Inhibition of Human Pancreatic Cancer Cells through Apoptosis. Microchem. J. 2010, 94, 108–117. [Google Scholar] [CrossRef]
- Murthy, K.N.C.; Jayaprakasha, G.K.; Safe, S.; Patil, B.S. Citrus Limonoids Induce Apoptosis and Inhibit the Proliferation of Pancreatic Cancer Cells. Food Funct. 2021, 12, 1111–1120. [Google Scholar] [CrossRef]
- Modanwal, S.; Maurya, A.K.; Mulpuru, V.; Mishra, N. Exploring Flavonoid Derivatives as Potential Pancreatic Lipase Inhibitors for Obesity Management: An in Silico and in Vitro Study. Mol. Divers. 2024; Epub ahead of print. [Google Scholar]
- Bondonno, N.P.; Dalgaard, F.; Kyrø, C.; Murray, K.; Bondonno, C.P.; Lewis, J.R.; Croft, K.D.; Gislason, G.; Scalbert, A.; Cassidy, A.; et al. Flavonoid Intake Is Associated with Lower Mortality in the Danish Diet Cancer and Health Cohort. Nat. Commun. 2019, 10, 3651. [Google Scholar] [CrossRef] [PubMed]
- Modanwal, S.; Maurya, A.K.; Mishra, S.K.; Mishra, N. Development of QSAR Model Using Machine Learning and Molecular Docking Study of Polyphenol Derivatives against Obesity as Pancreatic Lipase Inhibitor. J. Biomol. Struct. Dyn. 2023, 41, 6569–6580. [Google Scholar] [CrossRef]
- Chun, O.K.; Chung, S.J.; Song, W.O. Estimated Dietary Flavonoid Intake and Major Food Sources of U.S. Adults. J. Nutr. 2007, 137, 1244–1252. [Google Scholar] [CrossRef]
- Ramos, S. Cancer Chemoprevention and Chemotherapy: Dietary Polyphenols and Signalling Pathways. Mol. Nutr. Food Res. 2008, 52, 507–526. [Google Scholar] [CrossRef]
- Redondo-Blanco, S.; Fernández, J.; Gutiérrez-Del-Río, I.; Villar, C.J.; Lombó, F. New Insights toward Colorectal Cancer Chemotherapy Using Natural Bioactive Compounds. Front. Pharmacol. 2017, 8, 109. [Google Scholar] [CrossRef]
- Zhao, T.-T.; Xu, Y.-Q.; Hu, H.-M.; Gong, H.-B.; Zhu, H.-L. Isoliquiritigenin (ISL) and Its Formulations: Potential Antitumor Agents. Curr. Med. Chem. 2019, 26, 6786–6796. [Google Scholar] [CrossRef] [PubMed]
- Perrott, K.M.; Wiley, C.D.; Desprez, P.-Y.; Campisi, J. Apigenin Suppresses the Senescence-Associated Secretory Phenotype and Paracrine Effects on Breast Cancer Cells. Geroscience 2017, 39, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Xavier, C.P.R.; Lima, C.F.; Rohde, M.; Pereira-Wilson, C. Quercetin Enhances 5-Fluorouracil-Induced Apoptosis in MSI Colorectal Cancer Cells through P53 Modulation. Cancer Chemother. Pharmacol. 2011, 68, 1449–1457. [Google Scholar] [CrossRef]
- George, V.C.; Dellaire, G.; Rupasinghe, H.P.V. Plant Flavonoids in Cancer Chemoprevention: Role in Genome Stability. J. Nutr. Biochem. 2017, 45, 1–14. [Google Scholar] [CrossRef]
- Ujiki, M.B.; Ding, X.-Z.; Salabat, M.R.; Bentrem, D.J.; Golkar, L.; Milam, B.; Talamonti, M.S.; Bell, R.H.; Iwamura, T.; Adrian, T.E. Apigenin Inhibits Pancreatic Cancer Cell Proliferation through G2/M Cell Cycle Arrest. Mol. Cancer 2006, 5, 76. [Google Scholar] [CrossRef] [PubMed]
- Mouria, M.; Gukovskaya, A.S.; Jung, Y.; Buechler, P.; Hines, O.J.; Reber, H.A.; Pandol, S.J. Food-Derived Polyphenols Inhibit Pancreatic Cancer Growth through Mitochondrial Cytochrome C Release and Apoptosis. Int. J. Cancer 2002, 98, 761–769. [Google Scholar] [CrossRef]
- Arts, I.C.W.; Jacobs, D.R.; Gross, M.; Harnack, L.J.; Folsom, A.R. Dietary Catechins and Cancer Incidence among Postmenopausal Women: The Iowa Women’s Health Study (United States). Cancer Causes Control 2002, 13, 373–382. [Google Scholar] [CrossRef]
- Nöthlings, U.; Murphy, S.P.; Wilkens, L.R.; Henderson, B.E.; Kolonel, L.N. Flavonols and Pancreatic Cancer Risk: The Multiethnic Cohort Study. Am. J. Epidemiol. 2007, 166, 924–931. [Google Scholar] [CrossRef]
- Bobe, G.; Weinstein, S.J.; Albanes, D.; Hirvonen, T.; Ashby, J.; Taylor, P.R.; Virtamo, J.; Stolzenberg-Solomon, R.Z. Flavonoid Intake and Risk of Pancreatic Cancer in Male Smokers (Finland). Cancer Epidemiol. Biomark. Prev. 2008, 17, 553–562. [Google Scholar] [CrossRef]
- Choe, H.; Wang, Z.; Huang, J.; Yang, Y.; Zhao, Z.; Jo, H.; Pak, H.; Ali, T.; Ding, K.; Ma, J.; et al. Broussoflavonol B Induces S-Phase Arrest and Apoptosis in Pancreatic Cancer Cells by Modulating the Cell Cycle Checkpoint through Inhibition of the AURKA/PLK1 Pathway. Cancer Cell Int. 2025, 25, 100. [Google Scholar] [CrossRef]
- Ganbold, M.; Louphrasitthiphol, P.; Miyamoto, T.; Miyazaki, Y.; Oda, T.; Tominaga, K.; Isoda, H. Isorhamnetin Exerts Anti-Proliferative Effect on Cancer-Associated Fibroblasts by Inducing Cell Cycle Arrest. Biomed. Pharmacother. 2025, 185, 117954. [Google Scholar] [CrossRef]
- Kim, J.-E.; Lee, D.-E.; Lee, K.W.; Son, J.E.; Seo, S.K.; Li, J.; Jung, S.K.; Heo, Y.-S.; Mottamal, M.; Bode, A.M.; et al. Isorhamnetin Suppresses Skin Cancer through Direct Inhibition of MEK1 and PI3-K. Cancer Prev. Res. 2011, 4, 582–591. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yang, X.; Chen, C.; Cai, S.; Hu, J. Isorhamnetin Suppresses Colon Cancer Cell Growth through the PI3K-Akt-mTOR Pathway. Mol. Med. Rep. 2014, 9, 935–940. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-L.; Quan, Q.; Ji, R.; Guo, X.-Y.; Zhang, J.-M.; Li, X.; Liu, Y.-G. Isorhamnetin Suppresses PANC-1 Pancreatic Cancer Cell Proliferation through S Phase Arrest. Biomed. Pharmacother. 2018, 108, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Huang, L.; Meng, L.; Sun, H.; Zhang, W.; Xu, Y. Isorhamnetin Inhibits Cell Proliferation and Induces Apoptosis in Breast Cancer via Akt and Mitogen-activated Protein Kinase Kinase Signaling Pathways. Mol. Med. Rep. 2015, 12, 6745–6751. [Google Scholar] [CrossRef]
- Chung, K.H.; Cho, I.R.; Paik, W.H.; Kim, Y.-T.; Lee, S.H.; Ryu, J.K. Enhanced Anti-Tumor Effect of Flavopiridol in Combination with Gemcitabine in Pancreatic Cancer. Anticancer. Res. 2024, 44, 1097–1108. [Google Scholar] [CrossRef]
- Allemailem, K.S.; Almatroudi, A.; Alharbi, H.O.A.; AlSuhaymi, N.; Alsugoor, M.H.; Aldakheel, F.M.; Khan, A.A.; Rahmani, A.H. Apigenin: A Bioflavonoid with a Promising Role in Disease Prevention and Treatment. Biomedicines 2024, 12, 1353. [Google Scholar] [CrossRef]
- Kılıç, C.S.; Kışla, M.M.; Amasya, G.; Şengel-Türk, C.T.; Alagöz, Z.A.; Özkan, A.M.G.; Ateş, İ.; Gümüşok, S.; Herrera-Bravo, J.; Sharifi-Rad, J.; et al. Rhoifolin: A Promising Flavonoid with Potent Cytotoxic and Anticancer Properties: Molecular Mechanisms and Therapeutic Potential. EXCLI J. 2025, 24, 289–320. [Google Scholar] [CrossRef]
- Babaei, F.; Moafizad, A.; Darvishvand, Z.; Mirzababaei, M.; Hosseinzadeh, H.; Nassiri-Asl, M. Review of the Effects of Vitexin in Oxidative Stress-Related Diseases. Food Sci. Nutr. 2020, 8, 2569–2580. [Google Scholar] [CrossRef]
- Zheng, B.; Zheng, Y.; Zhang, N.; Zhang, Y.; Zheng, B. Rhoifolin from Plumula Nelumbinis Exhibits Anti-Cancer Effects in Pancreatic Cancer via AKT/JNK Signaling Pathways. Sci. Rep. 2022, 12, 5654. [Google Scholar] [CrossRef]
- Cui, B.; Lee, Y.H.; Chai, H.; Tucker, J.C.; Fairchild, C.R.; Raventos-Suarez, C.; Long, B.; Lane, K.E.; Menendez, A.T.; Beecher, C.W.; et al. Cytotoxic Sesquiterpenoids from Ratibida Columnifera. J. Nat. Prod. 1999, 62, 1545–1550. [Google Scholar] [CrossRef] [PubMed]
- Flamini, G.; Antognoli, E.; Morelli, I. Two Flavonoids and Other Compounds from the Aerial Parts of Centaurea bracteata from Italy. Phytochemistry 2001, 57, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Fullas, F.; Hussain, R.A.; Chai, H.B.; Pezzuto, J.M.; Soejarto, D.D.; Kinghorn, A.D. Cytotoxic Constituents of Baccharis Gaudichaudiana. J. Nat. Prod. 1994, 57, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Kavvadias, D.; Monschein, V.; Sand, P.; Riederer, P.; Schreier, P. Constituents of Sage (Salvia Officinalis) with in Vitro Affinity to Human Brain Benzodiazepine Receptor. Planta Med. 2003, 69, 113–117. [Google Scholar] [CrossRef]
- Chao, S.-W.; Su, M.-Y.; Chiou, L.-C.; Chen, L.-C.; Chang, C.-I.; Huang, W.-J. Total Synthesis of Hispidulin and the Structural Basis for Its Inhibition of Proto-Oncogene Kinase Pim-1. J. Nat. Prod. 2015, 78, 1969–1976. [Google Scholar] [CrossRef]
- Gao, H.; Xie, J.; Peng, J.; Han, Y.; Jiang, Q.; Han, M.; Wang, C. Hispidulin Inhibits Proliferation and Enhances Chemosensitivity of Gallbladder Cancer Cells by Targeting HIF-1α. Exp. Cell Res. 2015, 332, 236–246. [Google Scholar] [CrossRef]
- Gao, H.; Jiang, Q.; Han, Y.; Peng, J.; Wang, C. Hispidulin Potentiates the Antitumor Effect of Sunitinib against Human Renal Cell Carcinoma in Laboratory Models. Cell Biochem. Biophys. 2015, 71, 757–764. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, W.; He, X.; Fei, Z. Hispidulin Enhances the Anti-Tumor Effects of Temozolomide in Glioblastoma by Activating AMPK. Cell Biochem. Biophys. 2015, 71, 701–706. [Google Scholar] [CrossRef]
- Yang, J.-M.; Hung, C.-M.; Fu, C.-N.; Lee, J.-C.; Huang, C.-H.; Yang, M.-H.; Lin, C.-L.; Kao, J.-Y.; Way, T.-D. Hispidulin Sensitizes Human Ovarian Cancer Cells to TRAIL-Induced Apoptosis by AMPK Activation Leading to Mcl-1 Block in Translation. J. Agric. Food Chem. 2010, 58, 10020–10026. [Google Scholar] [CrossRef]
- Liu, K.; Zhao, F.; Yan, J.; Xia, Z.; Jiang, D.; Ma, P. Hispidulin: A Promising Flavonoid with Diverse Anti-Cancer Properties. Life Sci. 2020, 259, 118395. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.; Tan, X.; Liu, J.; Zhi, Y.; Yi, L.; Bai, S.; Du, Q.; Li, Q.X.; Dong, Y. Isoorientin Inhibits Inflammation in Macrophages and Endotoxemia Mice by Regulating Glycogen Synthase Kinase 3β. Mediat. Inflamm. 2020, 2020, 8704146. [Google Scholar] [CrossRef] [PubMed]
- Tunalier, Z.; Koşar, M.; Küpeli, E.; Çaliş, İ.; Başer, K.H.C. Antioxidant, Anti-Inflammatory, Anti-Nociceptive Activities and Composition of Lythrum salicaria L. Extracts. J. Ethnopharmacol. 2007, 110, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Küpeli, E.; Aslan, M.; Gürbüz, İ.; Yesilada, E. Evaluation of in Vivo Biological Activity Profile of Isoorientin. Z. für Naturforschung C 2004, 59, 787–790. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, J.; Xiao, H.; Xiao, C.; Wang, Y.; Liu, X. Isoorientin Induces Apoptosis through Mitochondrial Dysfunction and Inhibition of PI3K/Akt Signaling Pathway in HepG2 Cancer Cells. Toxicol. Appl. Pharmacol. 2012, 265, 83–92. [Google Scholar] [CrossRef]
- Ye, T.; Su, J.; Huang, C.; Yu, D.; Dai, S.; Huang, X.; Chen, B.; Zhou, M. Isoorientin Induces Apoptosis, Decreases Invasiveness, and Downregulates VEGF Secretion by Activating AMPK Signaling in Pancreatic Cancer Cells. OTT 2016, 9, 7481–7492. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.; Kim, S.; Chun, K.S. Structure of (R,S)-Hesperetin Monohydrate. Acta Crystallogr. Sect. C 1987, 43, 1946–1949. [Google Scholar] [CrossRef]
- Esaki, S.; Nishiyama, K.; Sugiyama, N.; Nakajima, R.; Takao, Y.; Kamiya, S. Preparation and Taste of Certain Glycosides of Flavanones and of Dihydrochalcones. Biosci. Biotechnol. Biochem. 1994, 58, 1479–1485. [Google Scholar] [CrossRef]
- Shin, J.H.; Shin, S.H. A Comprehensive Review of Naringenin, a Promising Phytochemical with Therapeutic Potential. J. Microbiol. Biotechnol. 2024, 34, 2425–2438. [Google Scholar] [CrossRef]
- Lou, C.; Zhang, F.; Yang, M.; Zhao, J.; Zeng, W.; Fang, X.; Zhang, Y.; Zhang, C.; Liang, W. Naringenin Decreases Invasiveness and Metastasis by Inhibiting TGF-β-Induced Epithelial to Mesenchymal Transition in Pancreatic Cancer Cells. PLoS ONE 2012, 7, e50956. [Google Scholar] [CrossRef]
- Park, H.J.; Choi, Y.J.; Lee, J.H.; Nam, M.J. Naringenin Causes ASK1-Induced Apoptosis via Reactive Oxygen Species in Human Pancreatic Cancer Cells. Food Chem. Toxicol. 2017, 99, 1–8. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, Y.; Chen, M.; Chen, F.; Liu, B.; Shen, C. Kaempferol Potentiates the Sensitivity of Pancreatic Cancer Cells to Erlotinib via Inhibition of the PI3K/AKT Signaling Pathway and Epidermal Growth Factor Receptor. Inflammopharmacology 2021, 29, 1587–1601. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Xiao, Y.; Guo, H.; Guo, Y.; Huang, Y.; Shan, Y.; Bai, Y.; Lin, X.; Lu, H. The Isoflavone Puerarin Exerts Anti-Tumor Activity in Pancreatic Ductal Adenocarcinoma by Suppressing mTOR-Mediated Glucose Metabolism. Aging 2021, 13, 25089–25105. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, B.; Khan, S.; Liu, Y.; Xue, M.; Nabi, G.; Kumar, S.; Alshwmi, M.; Qarluq, A.W. Molecular Mechanisms of Anticancer Activities of Puerarin. CMAR 2020, 12, 79–90. [Google Scholar] [CrossRef]
- Arai, Y.; Watanabe, S.; Kimira, M.; Shimoi, K.; Mochizuki, R.; Kinae, N. Dietary Intakes of Flavonols, Flavones and Isoflavones by Japanese Women and the Inverse Correlation between Quercetin Intake and Plasma LDL Cholesterol Concentration. J. Nutr. 2000, 130, 2243–2250. [Google Scholar] [CrossRef]
- Ravichandran, N.; Suresh, G.; Ramesh, B.; Vijaiyan Siva, G. Fisetin, a Novel Flavonol Attenuates Benzo(a)Pyrene-Induced Lung Carcinogenesis in Swiss Albino Mice. Food Chem. Toxicol. 2011, 49, 1141–1147. [Google Scholar] [CrossRef]
- Murtaza, I.; Adhami, V.M.; Hafeez, B.B.; Saleem, M.; Mukhtar, H. Fisetin, a Natural Flavonoid, Targets Chemoresistant Human Pancreatic Cancer AsPC-1 Cells through DR3-Mediated Inhibition of NF-κB. Int. J. Cancer 2009, 125, 2465–2473. [Google Scholar] [CrossRef]
- Banik, K.; Khatoon, E.; Harsha, C.; Rana, V.; Parama, D.; Thakur, K.K.; Bishayee, A.; Kunnumakkara, A.B. Wogonin and Its Analogs for the Prevention and Treatment of Cancer: A Systematic Review. Phytother. Res. 2022, 36, 1854–1883. [Google Scholar] [CrossRef] [PubMed]
- Huynh, D.L.; Ngau, T.H.; Nguyen, N.H.; Tran, G.-B.; Nguyen, C.T. Potential Therapeutic and Pharmacological Effects of Wogonin: An Updated Review. Mol. Biol. Rep. 2020, 47, 9779–9789. [Google Scholar] [CrossRef]
- Huynh, D.L.; Sharma, N.; Kumar Singh, A.; Singh Sodhi, S.; Zhang, J.-J.; Mongre, R.K.; Ghosh, M.; Kim, N.; Ho Park, Y.; Kee Jeong, D. Anti-Tumor Activity of Wogonin, an Extract from Scutellaria Baicalensis, through Regulating Different Signaling Pathways. Chin. J. Nat. Med. 2017, 15, 15–40. [Google Scholar] [CrossRef]
- Wu, K.; Teng, M.; Zhou, W.; Lu, F.; Zhou, Y.; Zeng, J.; Yang, J.; Liu, X.; Zhang, Y.; Ding, Y.; et al. Wogonin Induces Cell Cycle Arrest and Apoptosis of Hepatocellular Carcinoma Cells by Activating Hippo Signaling. Anticancer Agents Med. Chem. 2022, 22, 1551–1560. [Google Scholar] [CrossRef]
- Xing, F.; Sun, C.; Luo, N.; He, Y.; Chen, M.; Ding, S.; Liu, C.; Feng, L.; Cheng, Z. Wogonin Increases Cisplatin Sensitivity in Ovarian Cancer Cells Through Inhibition of the Phosphatidylinositol 3-Kinase (PI3K)/Akt Pathway. Med. Sci. Monit. 2019, 25, 6007–6014. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Liu, M.; Liu, Q.; Xiao, G.G. Wogonin Increases Gemcitabine Sensitivity in Pancreatic Cancer by Inhibiting Akt Pathway. Front. Pharmacol. 2022, 13, 1068855. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Pan, X.; Ma, X.; Zhang, Y.; Gao, Y.; Guo, Y.; Zhou, Y. FV-429 Suppresses Cancer Cell Migration and Invasion by EMT via the Hippo/YAP1 Pathway in Pancreatic Cancer Cells. Anti-Cancer Drugs, 2025; Epub ahead of print. [Google Scholar]
- Zhang, Z.; Chen, W.; Zhang, S.; Bai, J.; Liu, B.; Yung, K.K.-L.; Ko, J.K.-S. Isoliquiritigenin Inhibits Pancreatic Cancer Progression through Blockade of P38 MAPK-Regulated Autophagy. Phytomedicine 2022, 106, 154406. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Du, Q.; Peng, C.; Wang, N.; Tang, H.; Xie, X.; Shen, J.; Chen, J. A Review: The Pharmacology of Isoliquiritigenin. Phytother. Res. 2015, 29, 969–977. [Google Scholar] [CrossRef]
- Kato, H.; Sato, M.; Naiki-Ito, A.; Inaguma, S.; Sano, M.; Komura, M.; Nagayasu, Y.; Xiaochen, K.; Kato, A.; Matsuo, Y.; et al. The Role of DPYD and the Effects of DPYD Suppressor Luteolin Combined with 5-FU in Pancreatic Cancer. Cancer Med. 2024, 13, e70124. [Google Scholar] [CrossRef]
- Johnson, J.L.; Dia, V.P.; Wallig, M.; Gonzalez de Mejia, E. Luteolin and Gemcitabine Protect Against Pancreatic Cancer in an Orthotopic Mouse Model. Pancreas 2015, 44, 144–151. [Google Scholar] [CrossRef]
- Jiang, Z.-Q.; Li, M.-H.; Qin, Y.-M.; Jiang, H.-Y.; Zhang, X.; Wu, M.-H. Luteolin Inhibits Tumorigenesis and Induces Apoptosis of Non-Small Cell Lung Cancer Cells via Regulation of MicroRNA-34a-5p. Int. J. Mol. Sci. 2018, 19, 447. [Google Scholar] [CrossRef]
- Pandurangan, A.K.; Esa, N.M. Luteolin, a Bioflavonoid Inhibits Colorectal Cancer through Modulation of Multiple Signaling Pathways: A Review. Asian Pac. J. Cancer Prev. 2014, 15, 5501–5508. [Google Scholar] [CrossRef]
- Sagawa, H.; Naiki-Ito, A.; Kato, H.; Naiki, T.; Yamashita, Y.; Suzuki, S.; Sato, S.; Shiomi, K.; Kato, A.; Kuno, T.; et al. Connexin 32 and Luteolin Play Protective Roles in Non-Alcoholic Steatohepatitis Development and Its Related Hepatocarcinogenesis in Rats. Carcinogenesis 2015, 36, 1539–1549. [Google Scholar] [CrossRef]
- Naiki-Ito, A.; Naiki, T.; Kato, H.; Iida, K.; Etani, T.; Nagayasu, Y.; Suzuki, S.; Yamashita, Y.; Inaguma, S.; Onishi, M.; et al. Recruitment of miR-8080 by Luteolin Inhibits Androgen Receptor Splice Variant 7 Expression in Castration-Resistant Prostate Cancer. Carcinogenesis 2020, 41, 1145–1157. [Google Scholar] [CrossRef]
- Oumeddour, D.Z.; Al-Dalali, S.; Zhao, L.; Zhao, L.; Wang, C. Recent Advances on Cyanidin-3-O-Glucoside in Preventing Obesity-Related Metabolic Disorders: A Comprehensive Review. Biochem. Biophys. Res. Commun. 2024, 729, 150344. [Google Scholar] [CrossRef] [PubMed]
- Czank, C.; Cassidy, A.; Zhang, Q.; Morrison, D.J.; Preston, T.; Kroon, P.A.; Botting, N.P.; Kay, C.D. Human Metabolism and Elimination of the Anthocyanin, Cyanidin-3-Glucoside: A (13)C-Tracer Study. Am. J. Clin. Nutr. 2013, 97, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Li, Y.; Hou, D.-X.; Wu, S. The Effects and Mechanisms of Cyanidin-3-Glucoside and Its Phenolic Metabolites in Maintaining Intestinal Integrity. Antioxidants 2019, 8, 479. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, N.-D.; Zhang, T.; Li, Y.-N.; Xue, H.; Cao, J.-L.; Hou, W.-S.; Liu, J.; Wang, Y.; Jin, C.-H. Cyanidin-3-O-Glucoside Induces the Apoptosis of Human Gastric Cancer MKN-45 Cells through ROS-Mediated Signaling Pathways. Molecules 2023, 28, 652. [Google Scholar] [CrossRef]
- Kuntz, S.; Kunz, C.; Rudloff, S. Inhibition of Pancreatic Cancer Cell Migration by Plasma Anthocyanins Isolated from Healthy Volunteers Receiving an Anthocyanin-Rich Berry Juice. Eur. J. Nutr. 2017, 56, 203–214. [Google Scholar] [CrossRef]
- Mostafa, H.; Behrendt, I.; Meroño, T.; González-Domínguez, R.; Fasshauer, M.; Rudloff, S.; Andres-Lacueva, C.; Kuntz, S. Plasma Anthocyanins and Their Metabolites Reduce in Vitro Migration of Pancreatic Cancer Cells, PANC-1, in a FAK- and NF-kB Dependent Manner: Results from the ATTACH-Study a Randomized, Controlled, Crossover Trial in Healthy Subjects. Biomed. Pharmacother. 2023, 158, 114076. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.-W.; Gong, C.-C.; Song, H.-F.; Cui, Y.-Y. Effects of Anthocyanins on the Prevention and Treatment of Cancer. Br. J. Pharmacol. 2017, 174, 1226–1243. [Google Scholar] [CrossRef]
- Posadino, A.M.; Giordo, R.; Ramli, I.; Zayed, H.; Nasrallah, G.K.; Wehbe, Z.; Eid, A.H.; Gürer, E.S.; Kennedy, J.F.; Aldahish, A.A.; et al. An Updated Overview of Cyanidins for Chemoprevention and Cancer Therapy. Biomed. Pharmacother. 2023, 163, 114783. [Google Scholar] [CrossRef]
- Piekara, J.; Piasecka-Kwiatkowska, D. Antioxidant Potential of Xanthohumol in Disease Prevention: Evidence from Human and Animal Studies. Antioxidants 2024, 13, 1559. [Google Scholar] [CrossRef]
- Tuli, H.S.; Aggarwal, V.; Parashar, G.; Aggarwal, D.; Parashar, N.C.; Tuorkey, M.J.; Varol, M.; Sak, K.; Kumar, M.; Buttar, H.S. Xanthohumol: A Metabolite with Promising Anti-Neoplastic Potential. Anticancer. Agents Med. Chem. 2022, 22, 418–432. [Google Scholar] [CrossRef]
- Krajka-Kuźniak, V.; Szaefer, H.; Stefański, T.; Sobiak, S.; Cichocki, M.; Baer-Dubowska, W. The Effect of Resveratrol and Its Methylthio-Derivatives on the Nrf2-ARE Pathway in Mouse Epidermis and HaCaT Keratinocytes. Cell. Mol. Biol. Lett. 2014, 19, 500–516. [Google Scholar] [CrossRef]
- Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The Therapeutic Potential of Resveratrol: A Review of Clinical Trials. npj Precis. Onc. 2017, 1, 35. [Google Scholar] [CrossRef] [PubMed]
- Sukocheva, O.A. Resveratrol and Pancreatic Cancers: Questions and Future Perspectives. World J. Gastrointest. Oncol. 2025, 17, 100342. [Google Scholar] [CrossRef]
- Krajka-Kuźniak, V.; Paluszczak, J.; Szaefer, H.; Baer-Dubowska, W. The Activation of the Nrf2/ARE Pathway in HepG2 Hepatoma Cells by Phytochemicals and Subsequent Modulation of Phase II and Antioxidant Enzyme Expression. J. Physiol. Biochem. 2015, 71, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Coscueta, E.R.; Sousa, A.S.; Reis, C.A.; Pintado, M.M. Phenylethyl Isothiocyanate: A Bioactive Agent for Gastrointestinal Health. Molecules 2022, 27, 794. [Google Scholar] [CrossRef] [PubMed]
- M Ezzat, S.; M Merghany, R.; M Abdel Baki, P.; Ali Abdelrahim, N.; M Osman, S.; A Salem, M.; Peña-Corona, S.I.; Cortés, H.; Kiyekbayeva, L.; Leyva-Gómez, G.; et al. Nutritional Sources and Anticancer Potential of Phenethyl Isothiocyanate: Molecular Mechanisms and Therapeutic Insights. Mol. Nutr. Food Res. 2024, 68, e2400063. [Google Scholar] [CrossRef]
- Stan, S.D.; Singh, S.V.; Whitcomb, D.C.; Brand, R.E. Phenethyl Isothiocyanate Inhibits Proliferation and Induces Apoptosis in Pancreatic Cancer Cells in Vitro and in a MIAPaca2 Xenograft Animal Model. Nutr. Cancer 2014, 66, 747–755. [Google Scholar] [CrossRef]
- Cykowiak, M.; Krajka-Kuźniak, V.; Baer-Dubowska, W. Combinations of Phytochemicals More Efficiently than Single Components Activate Nrf2 and Induce the Expression of Antioxidant Enzymes in Pancreatic Cancer Cells. Nutr. Cancer 2022, 74, 996–1011. [Google Scholar] [CrossRef]
- Wan, Q.; Ren, Q.; Qiao, S.; Lyu, A.; He, X.; Li, F. Therapeutic Potential of Flavonoids from Traditional Chinese Medicine in Pancreatic Cancer Treatment. Front. Nutr. 2024, 11, 1477140. [Google Scholar] [CrossRef]
- Coppinger, C.; Pomales, B.; Movahed, M.R.; Marefat, M.; Hashemzadeh, M. Berberine: A Multi-Target Natural PCSK9 Inhibitor with the Potential to Treat Diabetes, Alzheimer’s, Cancer and Cardiovascular Disease. Curr. Rev. Clin. Exp. Pharmacol. 2024, 19, 312–326. [Google Scholar] [CrossRef]
- Vlavcheski, F.; O’Neill, E.J.; Gagacev, F.; Tsiani, E. Effects of Berberine against Pancreatitis and Pancreatic Cancer. Molecules 2022, 27, 8630. [Google Scholar] [CrossRef] [PubMed]
- Davoodvandi, A.; Sadeghi, S.; Alavi, S.M.A.; Alavi, S.S.; Jafari, A.; Khan, H.; Aschner, M.; Mirzaei, H.; Sharifi, M.; Asemi, Z. The Therapeutic Effects of Berberine for Gastrointestinal Cancers. Asia Pac. J. Clin. Oncol. 2024, 20, 152–167. [Google Scholar] [CrossRef]
- Yang, J.; Xu, T.; Wang, H.; Wang, L.; Cheng, Y. Mechanisms of Berberine in Anti-Pancreatic Ductal Adenocarcinoma Revealed by Integrated Multi-Omics Profiling. Sci. Rep. 2024, 14, 22929. [Google Scholar] [CrossRef]
- Schwarz, R.E.; Donohue, C.A.; Sadava, D.; Kane, S.E. Pancreatic Cancer in Vitro Toxicity Mediated by Chinese Herbs SPES and PC-SPES: Implications for Monotherapy and Combination Treatment. Cancer Lett. 2003, 189, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Kunnumakkara, A.B.; Guha, S.; Krishnan, S.; Diagaradjane, P.; Gelovani, J.; Aggarwal, B.B. Curcumin Potentiates Antitumor Activity of Gemcitabine in an Orthotopic Model of Pancreatic Cancer through Suppression of Proliferation, Angiogenesis, and Inhibition of Nuclear Factor-kappaB-Regulated Gene Products. Cancer Res. 2007, 67, 3853–3861. [Google Scholar] [CrossRef] [PubMed]
- Chehl, N.; Chipitsyna, G.; Gong, Q.; Yeo, C.J.; Arafat, H.A. Anti-Inflammatory Effects of the Nigella Sativa Seed Extract, Thymoquinone, in Pancreatic Cancer Cells. HPB 2009, 11, 373–381. [Google Scholar] [CrossRef]
- El-Far, A.H. Thymoquinone Anticancer Discovery: Possible Mechanisms. Curr. Drug Discov. Technol. 2015, 12, 80–89. [Google Scholar] [CrossRef]
- Woo, C.C.; Kumar, A.P.; Sethi, G.; Tan, K.H.B. Thymoquinone: Potential Cure for Inflammatory Disorders and Cancer. Biochem. Pharmacol. 2012, 83, 443–451. [Google Scholar] [CrossRef]
- Banerjee, S.; Azmi, A.S.; Padhye, S.; Singh, M.W.; Baruah, J.B.; Philip, P.A.; Sarkar, F.H.; Mohammad, R.M. Structure-Activity Studies on Therapeutic Potential of Thymoquinone Analogs in Pancreatic Cancer. Pharm. Res. 2010, 27, 1146–1158. [Google Scholar] [CrossRef]
- Mu, G.-G.; Zhang, L.-L.; Li, H.-Y.; Liao, Y.; Yu, H.-G. Thymoquinone Pretreatment Overcomes the Insensitivity and Potentiates the Antitumor Effect of Gemcitabine Through Abrogation of Notch1, PI3K/Akt/mTOR Regulated Signaling Pathways in Pancreatic Cancer. Dig. Dis. Sci. 2015, 60, 1067–1080. [Google Scholar] [CrossRef]
- Yusufi, M.; Banerjee, S.; Mohammad, M.; Khatal, S.; Venkateswara Swamy, K.; Khan, E.M.; Aboukameel, A.; Sarkar, F.H.; Padhye, S. Synthesis, Characterization and Anti-Tumor Activity of Novel Thymoquinone Analogs against Pancreatic Cancer. Bioorg. Med. Chem. Lett. 2013, 23, 3101–3104. [Google Scholar] [CrossRef]
- Azimi, H.; Khakshur, A.A.; Abdollahi, M.; Rahimi, R. Potential New Pharmacological Agents Derived From Medicinal Plants for the Treatment of Pancreatic Cancer. Pancreas 2015, 44, 11–15. [Google Scholar] [CrossRef]
- Lee, W.; Song, G.; Bae, H. In Vitro and in Silico Study of the Synergistic Anticancer Effect of Alpinumisoflavone with Gemcitabine on Pancreatic Ductal Adenocarcinoma through Suppression of Ribonucleotide Reductase Subunit-M1. Eur. J. Pharm. Sci. 2025, 204, 106969. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, H.; Sun, M.; He, T.; Liu, Y.; Yang, X.; Shi, X.; Liu, X. Alpinumisoflavone Suppresses Hepatocellular Carcinoma Cell Growth and Metastasis via NLRP3 Inflammasome-Mediated Pyroptosis. Pharmacol. Rep. 2020, 72, 1370–1382. [Google Scholar] [CrossRef]
- Han, Y.; Yang, X.; Zhao, N.; Peng, J.; Gao, H.; Qiu, X. Alpinumisoflavone Induces Apoptosis in Esophageal Squamous Cell Carcinoma by Modulating miR-370/PIM1 Signaling. Am. J. Cancer Res. 2016, 6, 2755–2771. [Google Scholar] [PubMed]
- Namkoong, S.; Kim, T.-J.; Jang, I.-S.; Kang, K.-W.; Oh, W.-K.; Park, J. Alpinumisoflavone Induces Apoptosis and Suppresses Extracellular Signal-Regulated Kinases/Mitogen Activated Protein Kinase and Nuclear Factor-κB Pathways in Lung Tumor Cells. Biol. Pharm. Bull. 2011, 34, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Jiang, Y.; Chu, L.; Wu, T.; You, J. Alpinumisoflavone Suppresses Tumour Growth and Metastasis of Clear-Cell Renal Cell Carcinoma. Am. J. Cancer Res. 2017, 7, 999–1015. [Google Scholar]
- Zhang, B.-X.; Hou, Z.-L.; Yan, W.; Zhao, Q.-L.; Zhan, K.-T. Multi-Dimensional Flexible Reduced Graphene Oxide/Polymer Sponges for Multiple Forms of Strain Sensors. Carbon. 2017, 125, 199–206. [Google Scholar] [CrossRef]
- Alos, H.C.; Billones, J.B.; Castillo, A.L.; Vasquez, R.D. Alpinumisoflavone against Cancer Pro-Angiogenic Targets: In Silico, In Vitro, and In Ovo Evaluation. DARU J. Pharm. Sci. 2022, 30, 273–288. [Google Scholar] [CrossRef]
- Hong, T.; Ham, J.; Song, G.; Lim, W. Alpinumisoflavone Disrupts Endoplasmic Reticulum and Mitochondria Leading to Apoptosis in Human Ovarian Cancer. Pharmaceutics 2022, 14, 564. [Google Scholar] [CrossRef]
- Dhillon, H.; Chikara, S.; Reindl, K.M. Piperlongumine Induces Pancreatic Cancer Cell Death by Enhancing Reactive Oxygen Species and DNA Damage. Toxicol. Rep. 2014, 1, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, Y.; Kasukabe, T.; Kumakura, S. Piperlongumine Rapidly Induces the Death of Human Pancreatic Cancer Cells Mainly through the Induction of Ferroptosis. Int. J. Oncol. 2018, 52, 1011–1022. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Zhou, Y.; Jiang, H.; Pan, S.; Sun, B. Piperlongumine Suppresses Growth and Sensitizes Pancreatic Tumors to Gemcitabine in a Xenograft Mouse Model by Modulating the NF-Kappa B Pathway. Cancer Prev. Res. 2016, 9, 234–244. [Google Scholar] [CrossRef]
- Dhillon, H.; Mamidi, S.; McClean, P.; Reindl, K.M. Transcriptome Analysis of Piperlongumine-Treated Human Pancreatic Cancer Cells Reveals Involvement of Oxidative Stress and Endoplasmic Reticulum Stress Pathways. J. Med. Food 2016, 19, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Bhardwaj, A.; Srivastava, S.K.; Singh, S.; McClellan, S.; Wang, B.; Singh, A.P. Honokiol Arrests Cell Cycle, Induces Apoptosis, and Potentiates the Cytotoxic Effect of Gemcitabine in Human Pancreatic Cancer Cells. PLoS ONE 2011, 6, e21573. [Google Scholar] [CrossRef]
- Averett, C.; Bhardwaj, A.; Arora, S.; Srivastava, S.K.; Khan, M.A.; Ahmad, A.; Singh, S.; Carter, J.E.; Khushman, M.; Singh, A.P. Honokiol Suppresses Pancreatic Tumor Growth, Metastasis and Desmoplasia by Interfering with Tumor-Stromal Cross-Talk. Carcinogenesis 2016, 37, 1052–1061. [Google Scholar] [CrossRef]
- Qin, T.; Li, J.; Xiao, Y.; Wang, X.; Gong, M.; Wang, Q.; Zhu, Z.; Zhang, S.; Zhang, W.; Cao, F.; et al. Honokiol Suppresses Perineural Invasion of Pancreatic Cancer by Inhibiting SMAD2/3 Signaling. Front. Oncol. 2021, 11, 728583. [Google Scholar] [CrossRef] [PubMed]
- Lavu, H.; McCall, N.S.; Winter, J.M.; Burkhart, R.A.; Pucci, M.; Leiby, B.E.; Yeo, T.P.; Cannaday, S.; Yeo, C.J. Enhancing Patient Outcomes While Containing Costs after Complex Abdominal Operation: A Randomized Controlled Trial of the Whipple Accelerated Recovery Pathway. J. Am. Coll. Surg. 2019, 228, 415–424. [Google Scholar] [CrossRef]
- O’Neill, L.; Murphy, F.; Reidy, D.; Poisson, C.; Hussey, J.; Guinan, E. Development and Initial Implementation of a Clinical Monitoring Strategy in a Non-Regulated Trial: A Research Note from the ReStOre II Trial. HRB Open Res. 2023, 6, 46. [Google Scholar] [CrossRef]
- Rosebrock, K.; Sinn, M.; Uzunoglu, F.G.; Bokemeyer, C.; Jensen, W.; Salchow, J. Effects of Exercise Training on Patient-Specific Outcomes in Pancreatic Cancer Patients: A Scoping Review. Cancers 2023, 15, 5899. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, M.; Christie, A.; Campbell, A. Case Report of Exercise to Attenuate Side Effects of Treatment for Pancreatic Cancer. Case Rep. Oncol. 2019, 12, 845–854. [Google Scholar] [CrossRef]
- Mehra, K.; Berkowitz, A.; Sanft, T. Diet, Physical Activity, and Body Weight in Cancer Survivorship. Med. Clin. North Am. 2017, 101, 1151–1165. [Google Scholar] [CrossRef]
- Zoi, V.; Galani, V.; Lianos, G.D.; Voulgaris, S.; Kyritsis, A.P.; Alexiou, G.A. The Role of Curcumin in Cancer Treatment. Biomedicines 2021, 9, 1086. [Google Scholar] [CrossRef]
- Lotfi, N.; Yousefi, Z.; Golabi, M.; Khalilian, P.; Ghezelbash, B.; Montazeri, M.; Shams, M.H.; Baghbadorani, P.Z.; Eskandari, N. The Potential Anti-Cancer Effects of Quercetin on Blood, Prostate and Lung Cancers: An Update. Front. Immunol. 2023, 14, 1077531. [Google Scholar] [CrossRef]
- Pistollato, F.; Giampieri, F.; Battino, M. The Use of Plant-Derived Bioactive Compounds to Target Cancer Stem Cells and Modulate Tumor Microenvironment. Food Chem. Toxicol. 2015, 75, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Fan, W.; Zhao, Y.; Liu, M.; Hu, L.; Zhang, W. Progress in the Regulation of Immune Cells in the Tumor Microenvironment by Bioactive Compounds of Traditional Chinese Medicine. Molecules 2024, 29, 2374. [Google Scholar] [CrossRef]
- Bazana, M.T.; Codevilla, C.F.; de Menezes, C.R. Nanoencapsulation of Bioactive Compounds: Challenges and Perspectives. Curr. Opin. Food Sci. 2019, 26, 47–56. [Google Scholar] [CrossRef]
- Guía-García, J.L.; Charles-Rodríguez, A.V.; Reyes-Valdés, M.H.; Ramírez-Godina, F.; Robledo-Olivo, A.; García-Osuna, H.T.; Cerqueira, M.A.; Flores-López, M.L. Micro and Nanoencapsulation of Bioactive Compounds for Agri-Food Applications: A Review. Ind. Crops Prod. 2022, 186, 115198. [Google Scholar] [CrossRef]
- Chowdhury, S.; Kar, K.; Mazumder, R. Exploration of Different Strategies of Nanoencapsulation of Bioactive Compounds and Their Ensuing Approaches. Future J. Pharm. Sci. 2024, 10, 72. [Google Scholar] [CrossRef]
- Usman, I.; Hussain, M.; Imran, A.; Afzaal, M.; Saeed, F.; Javed, M.; Afzal, A.; Ashfaq, I.; Al Jbawi, E.; Saewan, S.A. Traditional and Innovative Approaches for the Extraction of Bioactive Compounds. Int. J. Food Prop. 2022, 25, 1215–1233. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Corradetti, B.; Vaiasicca, S.; Mantovani, M.; Virgili, E.; Bonucci, M.; Hammarberg Ferri, I. Bioactive Immunomodulatory Compounds: A Novel Combinatorial Strategy for Integrated Medicine in Oncology? BAIC Exposure in Cancer Cells. Integr. Cancer Ther. 2019, 18, 1534735419866908. [Google Scholar] [CrossRef] [PubMed]
NCT | Therapy | Sponsor |
---|---|---|
NCT02681601 | Omega rich fish oil supplement | Jonsson Comprehensive Cancer Center |
NCT02517268 | Liquid or solid post operative diet | Sidney Kimmel Cancer Center at Thomas Jefferson University [191] |
NCT03187028 | Diet alone vs. diet+exercise | University of Alabama at Birmingham |
NCT06833658 | Aromatherapy with essential oil intervention | Peking University First Hospital |
NCT06852014 | Peptamen 1.6 supplement | Fundación Pública Andaluza para la Investigación de Málaga en Biomedicina y Salud |
NCT03244683 | Oral Nutritional Supplementation combined with resistance training | Ohio State University |
NCT02940067 | Components of the mediterranean diet and exercise training | Royal Surrey County Hospital NHS Foundation Trust |
NCT04306874 | High-protein nutritional supplementation | Thomas Jefferson University |
NCT03167814 | No long-chain triglycerides | Helsinki University Central Hospital |
NCT06069297 | Exercise training, nutritional therapy and anxiety reducing techniques | IRCCS San Raffaele |
NCT | Therapy | Sponsor |
---|---|---|
NCT06090916 | Conventional vs. Dietary and physical activity using MyFitnessPal smartphone app | Jonsson Comprehensive Cancer Center |
NCT06050395 | Anti-inflammatory and pro-inflammatory dietary patterns | H. Lee Moffitt Cancer Center and Research Institute |
NCT06595160 | Plant-based diet | Emory University |
NCT06149546 | High protein, high energy diet, Fish oil supplement, Pancreatic Enzymes | Cancer Trials Ireland |
NCT05420259 | Exercise and Dietary Intervention | Hospital Beatriz Ângelo |
NCT04837118 | Dietary intervention | M.D. Anderson Cancer Center |
NCT04188990 | Dietary advice, Oral Nutritional Supplementation, Enteral Feeding or Parenteral Nutrition | Hospital Galdakao-Usansolo |
NCT02336087 | Curcumin, vitamin D, vitamin K2, vitamin K1, B-6, high selenium broccoli sprouts, epigallocatechin gallate, L-carnitine, garlic extract, genistein, zinc amino chelate, mixed toxopherols, ascorbic acid, D-limonene | City of Hope Medical Center |
NCT03958019 | Supervised and self-managed exercise, dietary counseling, and education sessions | University of Dublin, Trinity College [192] |
NCT06412510 | 30 gm protein supplement (high calorie, high protein supplement or low fat/low sugar, high protein supplement) and exercise intervention | Case Comprehensive Cancer Center |
NCT02607826 | Short-term Starvation | University Hospital Tuebingen |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brugiapaglia, S.; Spagnolo, F.; Curcio, C. Unlocking the Potential of Bioactive Compounds in Pancreatic Cancer Therapy: A Promising Frontier. Biomolecules 2025, 15, 725. https://doi.org/10.3390/biom15050725
Brugiapaglia S, Spagnolo F, Curcio C. Unlocking the Potential of Bioactive Compounds in Pancreatic Cancer Therapy: A Promising Frontier. Biomolecules. 2025; 15(5):725. https://doi.org/10.3390/biom15050725
Chicago/Turabian StyleBrugiapaglia, Silvia, Ferdinando Spagnolo, and Claudia Curcio. 2025. "Unlocking the Potential of Bioactive Compounds in Pancreatic Cancer Therapy: A Promising Frontier" Biomolecules 15, no. 5: 725. https://doi.org/10.3390/biom15050725
APA StyleBrugiapaglia, S., Spagnolo, F., & Curcio, C. (2025). Unlocking the Potential of Bioactive Compounds in Pancreatic Cancer Therapy: A Promising Frontier. Biomolecules, 15(5), 725. https://doi.org/10.3390/biom15050725