Distinct Clinical Phenotypes in KIF1A-Associated Neurological Disorders Result from Different Amino Acid Substitutions at the Same Residue in KIF1A
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plasmids and Constructs
2.2. E. coli-Based KIF1A Expression
2.3. Purification of E. coli-Expressed Constructs
2.4. Microtubule Polymerization
2.5. Microtubule-Binding and -Release (MTBR) Assay
2.6. Total Internal Reflection Fluorescence (TIRF) Assay
Flow Chamber Preparation
2.7. Sample Preparation
2.8. Data Acquisition
2.9. Data Analysis
3. Graphic Visualization
4. Clinical Studies
4.1. AlphaFold2 Prediction of KIF1A Variants
4.2. AlphaMissense Scores of KIF1A Variants
5. Results
5.1. KIF1A Mutants Exhibit Distinct Single-Molecule Motility Behaviors
5.2. R216 Mutants Impair KIF1A Motility
5.3. R254 Mutants Retain Motility Along Microtubules
5.4. R307 Mutants Demonstrate Only Brief Interactions or Diffusion on Microtubules
5.5. Heterodimeric KIF1A Mutants Retain Motility
5.6. Mutant KIF1A Motor Properties Correlate with Clinical Outcomes
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siddiqui, N.; Straube, A. The Kinesin-3 Family: Long-Distance Transporters. In The Kinesin Superfamily Handbook: Transporter, Creator, Destroyer; Friel, C.T., Ed.; Wellcome Trust-Funded Monographs and Book Chapters; Routledge: Abingdon, UK, 2020; pp. 41–54. [Google Scholar]
- Siddiqui, N.; Straube, A. Intracellular Cargo Transport by Kinesin-3 Motors. Biochemistry 2017, 82, 803–815. [Google Scholar] [CrossRef] [PubMed]
- Carabalona, A.; Hu, D.J.; Vallee, R.B. KIF1A inhibition immortalizes brain stem cells but blocks BDNF-mediated neuronal migration. Nat. Neurosci. 2016, 19, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.-W.; Lian, W.-N.; Kemal, S.; Kriegstein, A.R.; Vallee, R.B. Kinesin 3 and cytoplasmic dynein mediate interkinetic nuclear migration in neural stem cells. Nat. Neurosci. 2010, 13, 1463–1471. [Google Scholar] [CrossRef] [PubMed]
- Barkus, R.V.; Klyachko, O.; Horiuchi, D.; Dickson, B.J.; Saxton, W.M. Identification of an axonal kinesin-3 motor for fast anterograde vesicle transport that facilitates retrograde transport of neuropeptides. Mol. Biol. Cell 2008, 19, 274–283. [Google Scholar] [CrossRef]
- Hall, D.H.; Hedgecock, E.M. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 1991, 65, 837–847. [Google Scholar] [CrossRef]
- Lo, K.Y.; Kuzmin, A.; Unger, S.M.; Petersen, J.D.; Silverman, M.A. KIF1A is the primary anterograde motor protein required for the axonal transport of dense-core vesicles in cultured hippocampal neurons. Neurosci. Lett. 2011, 491, 168–173. [Google Scholar] [CrossRef]
- Okada, Y.; Yamazaki, H.; Sekine-Aizawa, Y.; Hirokawa, N. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 1995, 81, 769–780. [Google Scholar] [CrossRef]
- Yonekawa, Y.; Harada, A.; Okada, Y.; Funakoshi, T.; Kanai, Y.; Takei, Y.; Terada, S.; Noda, T.; Hirokawa, N. Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. J. Cell Biol. 1998, 141, 431–441. [Google Scholar] [CrossRef]
- Zahn, T.R.; Angleson, J.K.; MacMorris, M.A.; Domke, E.; Hutton, J.F.; Schwartz, C.; Hutton, J.C. Dense core vesicle dynamics in Caenorhabditis elegans neurons and the role of kinesin UNC-104. Traffic 2004, 5, 544–559. [Google Scholar] [CrossRef]
- Boyle, L.; Rao, L.; Kaur, S.; Fan, X.; Mebane, C.; Hamm, L.; Thornton, A.; Ahrendsen, J.T.; Anderson, M.P.; Christodoulou, J.; et al. Genotype and defects in microtubule-based motility correlate with clinical severity in KIF1A Associated Neurological Disorder. Hum. Genet. Genom. Adv. 2021, 2, 100026. [Google Scholar] [CrossRef]
- Sudnawa, K.K.; Li, W.; Calamia, S.; Kanner, C.H.; Bain, J.M.; Abdelhakim, A.H.; Geltzeiler, A.; Mebane, C.M.; Provenzano, F.A.; Sands, T.T.; et al. Heterogeneity of comprehensive clinical phenotype and longitudinal adaptive function and correlation with computational predictions of severity of missense genotypes in KIF1A-associated neurological disorder. Genet. Med. 2024, 26, 101169. [Google Scholar] [CrossRef] [PubMed]
- Gabrych, D.R.; Lau, V.Z.; Niwa, S.; Silverman, M.A. Going Too Far Is the Same as Falling Short(dagger): Kinesin-3 Family Members in Hereditary Spastic Paraplegia. Front. Cell. Neurosci. 2019, 13, 419. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, Y.; Yang, M.; Xu, X.; Lin, Z.; Ma, J.; Chen, H.; Hu, Y.; Ma, Y.; Wang, X.; et al. A Rare KIF1A Missense Mutation Enhances Synaptic Function and Increases Seizure Activity. Front. Genet. 2020, 11, 61. [Google Scholar] [CrossRef] [PubMed]
- John, A.; Ng-Cordell, E.; Hanna, N.; Brkic, D.; Baker, K. The neurodevelopmental spectrum of synaptic vesicle cycling disorders. J. Neurochem. 2020, 157, 208–228. [Google Scholar] [CrossRef] [PubMed]
- Nicita, F.; Ginevrino, M.; Travaglini, L.; D’Arrigo, S.; Zorzi, G.; Borgatti, R.; Terrone, G.; Catteruccia, M.; Vasco, G.; Brankovic, V.; et al. Heterozygous KIF1A variants underlie a wide spectrum of neurodevelopmental and neurodegenerative disorders. J. Med. Genet. 2020, 58, 475–483. [Google Scholar] [CrossRef]
- Van Beusichem, A.E.; Nicolai, J.; Verhoeven, J.; Speth, L.; Coenen, M.; Willemsen, M.A.; Kamsteeg, E.J.; Stumpel, C.; Vermeulen, R.J. Mobility Characteristics of Children with Spastic Paraplegia Due to a Mutation in the KIF1A Gene. Neuropediatrics 2020, 51, 146–153. [Google Scholar] [CrossRef]
- Riviere, J.B.; Ramalingam, S.; Lavastre, V.; Shekarabi, M.; Holbert, S.; Lafontaine, J.; Srour, M.; Merner, N.; Rochefort, D.; Hince, P.; et al. KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2. Am. J. Hum. Genet. 2011, 89, 219–230. [Google Scholar] [CrossRef]
- Erlich, Y.; Edvardson, S.; Hodges, E.; Zenvirt, S.; Thekkat, P.; Shaag, A.; Dor, T.; Hannon, G.J.; Elpeleg, O. Exome sequencing and disease-network analysis of a single family implicate a mutation in KIF1A in hereditary spastic paraparesis. Genome Res. 2011, 21, 658–664. [Google Scholar] [CrossRef]
- Hamdan, F.F.; Gauthier, J.; Araki, Y.; Lin, D.T.; Yoshizawa, Y.; Higashi, K.; Park, A.R.; Spiegelman, D.; Dobrzeniecka, S.; Piton, A.; et al. Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. Am. J. Hum. Genet. 2011, 88, 306–316. [Google Scholar] [CrossRef]
- Klebe, S.; Lossos, A.; Azzedine, H.; Mundwiller, E.; Sheffer, R.; Gaussen, M.; Marelli, C.; Nawara, M.; Carpentier, W.; Meyer, V.; et al. KIF1A missense mutations in SPG30, an autosomal recessive spastic paraplegia: Distinct phenotypes according to the nature of the mutations. Eur. J. Hum. Genet. 2012, 20, 645–649. [Google Scholar] [CrossRef]
- Okamoto, N.; Miya, F.; Tsunoda, T.; Yanagihara, K.; Kato, M.; Saitoh, S.; Yamasaki, M.; Kanemura, Y.; Kosaki, K. KIF1A mutation in a patient with progressive neurodegeneration. J. Hum. Genet. 2014, 59, 639–641. [Google Scholar] [CrossRef]
- Jamuar, S.S.; Walsh, C.A. Somatic mutations in cerebral cortical malformations. N. Engl. J. Med. 2014, 371, 2038. [Google Scholar] [CrossRef]
- Lee, J.R.; Srour, M.; Kim, D.; Hamdan, F.F.; Lim, S.H.; Brunel-Guitton, C.; Decarie, J.C.; Rossignol, E.; Mitchell, G.A.; Schreiber, A.; et al. De novo mutations in the motor domain of KIF1A cause cognitive impairment, spastic paraparesis, axonal neuropathy, and cerebellar atrophy. Hum. Mutat. 2015, 36, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Esmaeeli Nieh, S.; Madou, M.R.; Sirajuddin, M.; Fregeau, B.; McKnight, D.; Lexa, K.; Strober, J.; Spaeth, C.; Hallinan, B.E.; Smaoui, N.; et al. De novo mutations in KIF1A cause progressive encephalopathy and brain atrophy. Ann. Clin. Transl. Neurol. 2015, 2, 623–635. [Google Scholar] [CrossRef] [PubMed]
- Ylikallio, E.; Kim, D.; Isohanni, P.; Auranen, M.; Kim, E.; Lonnqvist, T.; Tyynismaa, H. Dominant transmission of de novo KIF1A motor domain variant underlying pure spastic paraplegia. Eur. J. Hum. Genet. 2015, 23, 1427–1430. [Google Scholar] [CrossRef]
- Citterio, A.; Arnoldi, A.; Panzeri, E.; Merlini, L.; D’Angelo, M.G.; Musumeci, O.; Toscano, A.; Bondi, A.; Martinuzzi, A.; Bresolin, N.; et al. Variants in KIF1A gene in dominant and sporadic forms of hereditary spastic paraparesis. J. Neurol. 2015, 262, 2684–2690. [Google Scholar] [CrossRef] [PubMed]
- Ohba, C.; Haginoya, K.; Osaka, H.; Kubota, K.; Ishiyama, A.; Hiraide, T.; Komaki, H.; Sasaki, M.; Miyatake, S.; Nakashima, M.; et al. De novo KIF1A mutations cause intellectual deficit, cerebellar atrophy, lower limb spasticity and visual disturbance. J. Hum. Genet. 2015, 60, 739–742. [Google Scholar] [CrossRef]
- Megahed, H.; Nicouleau, M.; Barcia, G.; Medina-Cano, D.; Siquier-Pernet, K.; Bole-Feysot, C.; Parisot, M.; Masson, C.; Nitschke, P.; Rio, M.; et al. Utility of whole exome sequencing for the early diagnosis of pediatric-onset cerebellar atrophy associated with developmental delay in an inbred population. Orphanet. J. Rare Dis. 2016, 11, 57. [Google Scholar] [CrossRef]
- Hotchkiss, L.; Donkervoort, S.; Leach, M.E.; Mohassel, P.; Bharucha-Goebel, D.X.; Bradley, N.; Nguyen, D.; Hu, Y.; Gurgel-Giannetti, J.; Bonnemann, C.G. Novel De Novo Mutations in KIF1A as a Cause of Hereditary Spastic Paraplegia With Progressive Central Nervous System Involvement. J. Child Neurol. 2016, 31, 1114–1119. [Google Scholar] [CrossRef]
- Iqbal, Z.; Rydning, S.L.; Wedding, I.M.; Koht, J.; Pihlstrom, L.; Rengmark, A.H.; Henriksen, S.P.; Tallaksen, C.M.; Toft, M. Targeted high throughput sequencing in hereditary ataxia and spastic paraplegia. PLoS ONE 2017, 12, e0174667. [Google Scholar] [CrossRef]
- Hasegawa, A.; Koike, R.; Koh, K.; Kawakami, A.; Hara, N.; Takiyama, Y.; Ikeuchi, T. Co-existence of spastic paraplegia-30 with novel KIF1A mutation and spinocerebellar ataxia 31 with intronic expansion of BEAN and TK2 in a family. J. Neurol. Sci. 2017, 372, 128–130. [Google Scholar] [CrossRef] [PubMed]
- Krenn, M.; Zulehner, G.; Hotzy, C.; Rath, J.; Stogmann, E.; Wagner, M.; Haack, T.B.; Strom, T.M.; Zimprich, A.; Zimprich, F. Hereditary spastic paraplegia caused by compound heterozygous mutations outside the motor domain of the KIF1A gene. Eur. J. Neurol. 2017, 24, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Cheon, C.K.; Lim, S.H.; Kim, Y.M.; Kim, D.; Lee, N.Y.; Yoon, T.S.; Kim, N.S.; Kim, E.; Lee, J.R. Autosomal dominant transmission of complicated hereditary spastic paraplegia due to a dominant negative mutation of KIF1A, SPG30 gene. Sci. Rep. 2017, 7, 12527. [Google Scholar] [CrossRef] [PubMed]
- Roda, R.H.; Schindler, A.B.; Blackstone, C. Multigeneration family with dominant SPG30 hereditary spastic paraplegia. Ann. Clin. Transl. Neurol. 2017, 4, 821–824. [Google Scholar] [CrossRef]
- Travaglini, L.; Aiello, C.; Stregapede, F.; D’Amico, A.; Alesi, V.; Ciolfi, A.; Bruselles, A.; Catteruccia, M.; Pizzi, S.; Zanni, G.; et al. The impact of next-generation sequencing on the diagnosis of pediatric-onset hereditary spastic paraplegias: New genotype-phenotype correlations for rare HSP-related genes. Neurogenetics 2018, 19, 111–121. [Google Scholar] [CrossRef]
- Demily, C.; Lesca, G.; Poisson, A.; Till, M.; Barcia, G.; Chatron, N.; Sanlaville, D.; Munnich, A. Additive Effect of Variably Penetrant 22q11.2 Duplication and Pathogenic Mutations in Autism Spectrum Disorder: To Which Extent Does the Tree Hide the Forest? J. Autism. Dev. Disord. 2018, 48, 2886–2889. [Google Scholar] [CrossRef]
- Dong, F.; Costigan, D.C.; Howitt, B.E. Targeted next-generation sequencing in the detection of mismatch repair deficiency in endometrial cancers. Mod. Pathol. 2019, 32, 252–257. [Google Scholar] [CrossRef]
- Samanta, D.; Gokden, M. PEHO syndrome: KIF1A mutation and decreased activity of mitochondrial respiratory chain complex. J. Clin. Neurosci. 2019, 61, 298–301. [Google Scholar] [CrossRef]
- Tomaselli, P.J.; Rossor, A.M.; Horga, A.; Laura, M.; Blake, J.C.; Houlden, H.; Reilly, M.M. A de novo dominant mutation in KIF1A associated with axonal neuropathy, spasticity and autism spectrum disorder. J. Peripher. Nerv. Syst. 2017, 22, 460–463. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Kuwahara, M.; Saigoh, K.; Ishiura, H.; Yamagishi, Y.; Hamano, Y.; Samukawa, M.; Suzuki, H.; Hirano, M.; Mitsui, Y.; et al. The novel de novo mutation of KIF1A gene as the cause for Spastic paraplegia 30 in a Japanese case. eNeurologicalSci 2019, 14, 34–37. [Google Scholar] [CrossRef]
- Volk, A.; Conboy, E.; Wical, B.; Patterson, M.; Kirmani, S. Whole-Exome Sequencing in the Clinic: Lessons from Six Consecutive Cases from the Clinician’s Perspective. Mol. Syndromol. 2015, 6, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Johnson, A.K.; Nelakuditi, V.; Guidugli, L.; Fischer, D.; Arndt, K.; Ma, L.; Sandford, E.; Shakkottai, V.; Boycott, K.; et al. Targeted exome analysis identifies the genetic basis of disease in over 50% of patients with a wide range of ataxia-related phenotypes. Genet. Med. 2019, 21, 195–206. [Google Scholar] [CrossRef]
- Muir, A.M.; Myers, C.T.; Nguyen, N.T.; Saykally, J.; Craiu, D.; De Jonghe, P.; Helbig, I.; Hoffman-Zacharska, D.; Guerrini, R.; Lehesjoki, A.E.; et al. Genetic heterogeneity in infantile spasms. Epilepsy Res. 2019, 156, 106181. [Google Scholar] [CrossRef]
- Kashimada, A.; Hasegawa, S.; Nomura, T.; Shiraku, H.; Moriyama, K.; Suzuki, T.; Nakajima, K.; Mizuno, T.; Imai, K.; Sugawara, Y.; et al. Genetic analysis of undiagnosed ataxia-telangiectasia-like disorders. Brain Dev. 2019, 41, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Pennings, M.; Schouten, M.I.; van Gaalen, J.; Meijer, R.P.P.; de Bot, S.T.; Kriek, M.; Saris, C.G.J.; van den Berg, L.H.; van Es, M.A.; Zuidgeest, D.M.H.; et al. KIF1A variants are a frequent cause of autosomal dominant hereditary spastic paraplegia. Eur. J. Hum. Genet. 2020, 28, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ma, Y.; Duan, R.; Liu, X.; Zhang, H.; Ma, J.; Liu, Y.; Sun, W.; Liu, Q. Generation of a human induced pluripotent stem cell line (SDUBMSi001-A) from a hereditary spastic paraplegia patient carrying kif1a c.773C>T missense mutation. Stem Cell Res. 2020, 43, 101727. [Google Scholar] [CrossRef]
- van de Warrenburg, B.P.; Schouten, M.I.; de Bot, S.T.; Vermeer, S.; Meijer, R.; Pennings, M.; Gilissen, C.; Willemsen, M.A.; Scheffer, H.; Kamsteeg, E.J. Clinical exome sequencing for cerebellar ataxia and spastic paraplegia uncovers novel gene-disease associations and unanticipated rare disorders. Eur. J. Hum. Genet. 2016, 24, 1460–1466. [Google Scholar] [CrossRef] [PubMed]
- Raffa, L.; Matton, M.P.; Michaud, J.; Rossignol, E.; Decarie, J.C.; Ospina, L.H. Optic nerve hypoplasia in a patient with a de novo KIF1A heterozygous mutation. Can. J. Ophthalmol. 2017, 52, e169–e171. [Google Scholar] [CrossRef]
- Hosokawa, S.; Kubo, Y.; Arakawa, R.; Takashima, H.; Saito, K. Analysis of spinal muscular atrophy-like patients by targeted resequencing. Brain Dev. 2020, 42, 148–156. [Google Scholar] [CrossRef]
- Spagnoli, C.; Rizzi, S.; Salerno, G.G.; Frattini, D.; Fusco, C. Long-term follow-up until early adulthood in autosomal dominant, complex SPG30 with a novel KIF1A variant: A case report. Ital. J. Pediatr. 2019, 45, 155. [Google Scholar] [CrossRef]
- Kurihara, M.; Ishiura, H.; Bannai, T.; Mitsui, J.; Yoshimura, J.; Morishita, S.; Hayashi, T.; Shimizu, J.; Toda, T.; Tsuji, S. A Novel de novo KIF1A Mutation in a Patient with Autism, Hyperactivity, Epilepsy, Sensory Disturbance, and Spastic Paraplegia. Intern. Med. 2020, 59, 839–842. [Google Scholar] [CrossRef]
- Nemani, T.; Steel, D.; Kaliakatsos, M.; DeVile, C.; Ververi, A.; Scott, R.; Getov, S.; Sudhakar, S.; Male, A.; Mankad, K.; et al. KIF1A-related disorders in children: A wide spectrum of central and peripheral nervous system involvement. J. Peripher. Nerv. Syst. 2020, 25, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Langlois, S.; Tarailo-Graovac, M.; Sayson, B.; Drogemoller, B.; Swenerton, A.; Ross, C.J.; Wasserman, W.W.; van Karnebeek, C.D. De novo dominant variants affecting the motor domain of KIF1A are a cause of PEHO syndrome. Eur. J. Hum. Genet. 2016, 24, 949–953. [Google Scholar] [CrossRef]
- Yildiz, A. Mechanism and regulation of kinesin motors. Nat. Rev. Mol. Cell Biol. 2025, 26, 86–103. [Google Scholar] [CrossRef] [PubMed]
- Miki, H.; Okada, Y.; Hirokawa, N. Analysis of the kinesin superfamily: Insights into structure and function. Trends Cell Biol. 2005, 15, 467–476. [Google Scholar] [CrossRef]
- Cao, L.; Cantos-Fernandes, S.; Gigant, B. The structural switch of nucleotide-free kinesin. Sci. Rep. 2017, 7, 42558. [Google Scholar] [CrossRef] [PubMed]
- Kull, F.J.; Endow, S.A. Kinesin: Switch I & II and the motor mechanism. J. Cell Sci. 2002, 115 Pt 1, 15–23. [Google Scholar] [CrossRef]
- Hackney, D.D. The rate-limiting step in microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains occurs while bound to the microtubule. J. Biol. Chem. 1994, 269, 16508–16511. [Google Scholar] [CrossRef]
- Atherton, J.; Farabella, I.; Yu, I.M.; Rosenfeld, S.S.; Houdusse, A.; Topf, M.; Moores, C.A. Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins. Elife 2014, 3, e03680. [Google Scholar] [CrossRef]
- Chiba, K.; Kita, T.; Anazawa, Y.; Niwa, S. Insight into the regulation of axonal transport from the study of KIF1A-associated neurological disorder. J. Cell Sci. 2023, 136, jcs260742. [Google Scholar] [CrossRef]
- Wang, W.; Ren, J.; Song, W.; Zhang, Y.; Feng, W. The architecture of kinesin-3 KLP-6 reveals a multilevel-lockdown mechanism for autoinhibition. Nat. Commun. 2022, 13, 4281. [Google Scholar] [CrossRef] [PubMed]
- Hummel, J.J.A.; Hoogenraad, C.C. Specific KIF1A-adaptor interactions control selective cargo recognition. J. Cell Biol. 2021, 220, e202105011. [Google Scholar] [CrossRef] [PubMed]
- Klopfenstein, D.R.; Tomishige, M.; Stuurman, N.; Vale, R.D. Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 2002, 109, 347–358. [Google Scholar] [CrossRef]
- Soppina, V.; Norris, S.R.; Dizaji, A.S.; Kortus, M.; Veatch, S.; Peckham, M.; Verhey, K.J. Dimerization of mammalian kinesin-3 motors results in superprocessive motion. Proc. Natl. Acad. Sci. USA 2014, 111, 5562–5567. [Google Scholar] [CrossRef]
- Benoit, M.; Rao, L.; Asenjo, A.B.; Gennerich, A.; Sosa, H. Cryo-EM unveils kinesin KIF1A’s processivity mechanism and the impact of its pathogenic variant P305L. Nat. Commun. 2024, 15, 5530. [Google Scholar] [CrossRef]
- Lam, A.J.; Rao, L.; Anazawa, Y.; Okada, K.; Chiba, K.; Dacy, M.; Niwa, S.; Gennerich, A.; Nowakowski, D.W.; McKenney, R.J. A highly conserved 310 helix within the kinesin motor domain is critical for kinesin function and human health. Sci. Adv. 2021, 7, eabf1002. [Google Scholar] [CrossRef] [PubMed]
- Budaitis, B.G.; Jariwala, S.; Rao, L.; Yue, Y.; Sept, D.; Verhey, K.J.; Gennerich, A. Pathogenic mutations in the kinesin-3 motor KIF1A diminish force generation and movement through allosteric mechanisms. J. Cell Biol. 2021, 220, e202004227. [Google Scholar] [CrossRef]
- Chiba, K.; Takahashi, H.; Chen, M.; Obinata, H.; Arai, S.; Hashimoto, K.; Oda, T.; McKenney, R.J.; Niwa, S. Disease-associated mutations hyperactivate KIF1A motility and anterograde axonal transport of synaptic vesicle precursors. Proc. Natl. Acad. Sci. USA 2019, 116, 18429–18434. [Google Scholar] [CrossRef]
- Ziegler, A.; Carroll, J.; Bain, J.M.; Sands, T.T.; Fee, R.J.; Uher, D.; Kanner, C.H.; Montes, J.; Glass, S.; Douville, J.; et al. Antisense oligonucleotide therapy in an individual with KIF1A-associated neurological disorder. Nat. Med. 2024, 30, 2782–2786. [Google Scholar] [CrossRef]
- Abdelhakim, A.H.; Brodie, S.E.; Chung, W.K. Ophthalmic Findings in the KIF1A-Associated Neurologic Disorder (KAND). Am. J. Ophthalmol. 2024, 268, 247–257. [Google Scholar] [CrossRef]
- Kaur, S.; Van Bergen, N.J.; Verhey, K.J.; Nowell, C.J.; Budaitis, B.; Yue, Y.; Ellaway, C.; Brunetti-Pierri, N.; Cappuccio, G.; Bruno, I.; et al. Expansion of the phenotypic spectrum of de novo missense variants in kinesin family member 1A (KIF1A). Hum. Mutat. 2020, 41, 1761–1774. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Meng, E.C.; Goddard, T.D.; Pettersen, E.F.; Couch, G.S.; Pearson, Z.J.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Tools for structure building and analysis. Protein Sci. 2023, 32, e4792. [Google Scholar] [CrossRef]
- Mirdita, M.; Schutze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making protein folding accessible to all. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Novati, G.; Pan, J.; Bycroft, C.; Zemgulyte, A.; Applebaum, T.; Pritzel, A.; Wong, L.H.; Zielinski, M.; Sargeant, T.; et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 2023, 381, eadg7492. [Google Scholar] [CrossRef]
- Kull, F.J.; Endow, S.A. Force generation by kinesin and myosin cytoskeletal motor proteins. J. Cell Sci. 2013, 126, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Nitta, R.; Kikkawa, M.; Okada, Y.; Hirokawa, N. KIF1A alternately uses two loops to bind microtubules. Science 2004, 305, 678–683. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, C.; Russell, R.W.; Quinn, C.M.; Li, M.; Williams, J.C.; Gronenborn, A.M.; Polenova, T. Magic-angle-spinning NMR structure of the kinesin-1 motor domain assembled with microtubules reveals the elusive neck linker orientation. Nat. Commun. 2022, 13, 6795. [Google Scholar] [CrossRef]
- Atherton, J.; Chegkazi, M.S.; Peirano, E.; Pozzer, L.S.; Foran, T.; Steiner, R. Microtubule association induces a Mg-free apo-like ADP pre-release conformation in kinesin-1 that is unaffected by its autoinhibitory tail. bioRxiv 2024. [Google Scholar] [CrossRef]
- Ranaivoson, F.M.; Crozet, V.; Benoit, M.; Abdalla Mohammed Khalid, A.; Kikuti, C.; Sirkia, H.; El Marjou, A.; Miserey-Lenkei, S.; Asenjo, A.B.; Sosa, H.; et al. Nucleotide-free structures of KIF20A illuminate atypical mechanochemistry in this kinesin-6. Open Biol. 2023, 13, 230122. [Google Scholar] [CrossRef]
- Sindelar, C.V. A seesaw model for intermolecular gating in the kinesin motor protein. Biophys. Rev. 2011, 3, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Myung, Y.; Rodrigues, C.H.M.; Ascher, D.B. DDMut-PPI: Predicting effects of mutations on protein-protein interactions using graph-based deep learning. Nucleic Acids Res. 2024, 52, W207–W214. [Google Scholar] [CrossRef]
- Li, M.; Zheng, W. Probing the structural and energetic basis of kinesin-microtubule binding using computational alanine-scanning mutagenesis. Biochemistry 2011, 50, 8645–8655. [Google Scholar] [CrossRef] [PubMed]
- Scarabelli, G.; Soppina, V.; Yao, X.Q.; Atherton, J.; Moores, C.A.; Verhey, K.J.; Grant, B.J. Mapping the Processivity Determinants of the Kinesin-3 Motor Domain. Biophys. J. 2015, 109, 1537–1540. [Google Scholar] [CrossRef] [PubMed]
- Anazawa, Y.; Kita, T.; Iguchi, R.; Hayashi, K.; Niwa, S. De novo mutations in KIF1A-associated neuronal disorder (KAND) dominant-negatively inhibit motor activity and axonal transport of synaptic vesicle precursors. Proc. Natl. Acad. Sci. USA 2022, 119, e2113795119. [Google Scholar] [CrossRef]
- Minoura, I.; Takazaki, H.; Ayukawa, R.; Saruta, C.; Hachikubo, Y.; Uchimura, S.; Hida, T.; Kamiguchi, H.; Shimogori, T.; Muto, E. Reversal of axonal growth defects in an extraocular fibrosis model by engineering the kinesin-microtubule interface. Nat. Commun. 2016, 7, 10058. [Google Scholar] [CrossRef]
- Woehlke, G.; Ruby, A.K.; Hart, C.L.; Ly, B.; Hom-Booher, N.; Vale, R.D. Microtubule Interaction Site of the Kinesin Motor. Cell 1997, 90, 207–216. [Google Scholar] [CrossRef]
- Zaniewski, T.M.; Hancock, W.O. Positive charge in the K-loop of the kinesin-3 motor KIF1A regulates superprocessivity by enhancing microtubule affinity in the one-head-bound state. J. Biol. Chem. 2022, 299, 102818. [Google Scholar] [CrossRef]
- Moll, J.R.; Ruvinov, S.B.; Pastan, I.; Vinson, C. Designed heterodimerizing leucine zippers with a ranger of pIs and stabilities up to 10(-15) M. Protein Sci. 2001, 10, 649–655. [Google Scholar] [CrossRef]
- Madeira, F.; Madhusoodanan, N.; Lee, J.; Eusebi, A.; Niewielska, A.; Tivey, A.R.; Lopez, R.; Butcher, S. The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res. 2024, 52, W521–W525. [Google Scholar] [CrossRef]
Velocity (µm/s) | Processivity (µm) | Dwell Time (s) | |
---|---|---|---|
Homodimers | |||
WT | 2.34 [2.23, 2.36] | 14.5 [13.3, 15.6] | 6.4 [5.9, 6.8] |
R216C | - | - | 0.97 [0.89, 1.04] |
R216H | 0.096 [0.091, 0.107] | 0.46 [0.44, 0.49] | 4.7 [4.5, 5.2] |
R254Q | 1.43 [1.40, 1.47] | 2.3 [2.0, 2.5] | 1.6 [1.5, 1.8] |
R254P | 0.80 [0.78, 0.81] | 1.7 [1.4, 1.8] | 2.1 [1.9, 2.3] |
R254W | 1.09 [1.05, 1.14] | 1.2 [1.1, 1.4] | 1.2 [1.0, 1.2] |
R307Q | - | - | <0.2 |
R307P | - | - | <0.2 |
R307G | - | - | <0.2 |
Heterodimers | |||
WT/WT | 2.29 [2.24, 2.34] | 11.1 [10.1, 12.6] | 5.0 [4.6, 5.6] |
R216C/WT | 1.13 [1.12, 1.15] | 3.1 [2.8, 3.6] | 2.7 [2.5, 3.1] |
R216H/WT | 0.82 [0.80, 0.83] | 3.0 [2.7, 3.4] | 4.0 [3.4, 4.3] |
R307Q/WT | 0.80 [0.75, 0.80] | 1.4 [1.4, 1.6] | 1.9 [1.8, 2.0] |
R307P/WT | 0.87 [0.83, 0.90] | 2.7 [2.4, 3.0] | 3.3 [2.9, 3.8] |
Variable | N | Mean ± SD | Beta (SE) | P |
---|---|---|---|---|
Homodimers | ||||
Diffusion | ||||
No | 28 | 65.14 ± 11.07 | Reference | |
Yes | 18 | 51.22 ± 19.12 | −13.92 (4.44) | 0.003 |
Velocity | 46 | 14.18 (3.80) | 0.001 | |
Processivity | 46 | 11.80 (2.82) | <0.001 | |
Dwell time | 46 | 3.40 (1.74) | 0.058 | |
R216C/H | ||||
Diffusion | ||||
No | 0 | - | Reference | |
Yes | 9 | 63.56 ± 12.40 | - | - |
Velocity | 9 | −31.67 (92.97) | 0.743 | |
Processivity | 9 | −6.88 (20.21) | 0.743 | |
Dwell time | 9 | −0.85 (2.49) | 0.743 | |
R254 P/Q/W | ||||
Diffusion | ||||
No | 28 | 65.14 ± 11.07 | Reference | |
Yes | 0 | - | - | - |
Velocity | 28 | 33.19 (11.79) | 0.009 | |
Processivity | 28 | 10.87 (4.55) | 0.025 | |
Dwell time | 28 | 5.07 (8.11) | 0.537 | |
R307 G/P/Q | ||||
Diffusion | ||||
No | 0 | - | Reference | |
Yes | 9 | 38.89 ± 16.75 | - | - |
Velocity | 9 | - | - | |
Processivity | 9 | - | - | |
Dwell time | 9 | - | - | |
Heterodimers | ||||
Velocity | 17 | 46.80 (39.08) | 0.250 | |
Processivity | 17 | 10.67 (5.88) | 0.090 | |
Dwell time | 17 | 6.83 (5.21) | 0.210 | |
R216C/H | ||||
Velocity | 9 | 10.22 (29.99) | 0.743 | |
Processivity | 9 | 31.67 (92.97) | 0.743 | |
Dwell time | 9 | −2.44 (7.15) | 0.743 | |
R307 P/Q | ||||
Velocity | 8 | −321.43 (164.51) | 0.099 | |
Processivity | 8 | −17.31 (8.86) | 0.099 | |
Dwell time | 8 | −16.07 (8.23) | 0.099 |
Protein Notation | N | Mean ± SD |
---|---|---|
R216 | 9 | 63.56 ± 12.40 |
R216C | 3 | 65.67 ± 5.13 |
R216H | 6 | 62.50 ± 15.22 |
R254 | 28 | 65.14 ± 11.07 |
R254P | 2 | 58.00 ± 2.83 |
R254Q | 5 | 76.40 ± 14.60 |
R254W | 21 | 63.14 ± 9.02 |
R307 | 9 | 36.88 ± 16.70 |
R307G | 1 | 55.00 |
R307P | 2 | 20.00 |
R307Q | 6 | 42.50 ± 15.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, L.; Li, W.; Shen, Y.; Chung, W.K.; Gennerich, A. Distinct Clinical Phenotypes in KIF1A-Associated Neurological Disorders Result from Different Amino Acid Substitutions at the Same Residue in KIF1A. Biomolecules 2025, 15, 656. https://doi.org/10.3390/biom15050656
Rao L, Li W, Shen Y, Chung WK, Gennerich A. Distinct Clinical Phenotypes in KIF1A-Associated Neurological Disorders Result from Different Amino Acid Substitutions at the Same Residue in KIF1A. Biomolecules. 2025; 15(5):656. https://doi.org/10.3390/biom15050656
Chicago/Turabian StyleRao, Lu, Wenxing Li, Yufeng Shen, Wendy K. Chung, and Arne Gennerich. 2025. "Distinct Clinical Phenotypes in KIF1A-Associated Neurological Disorders Result from Different Amino Acid Substitutions at the Same Residue in KIF1A" Biomolecules 15, no. 5: 656. https://doi.org/10.3390/biom15050656
APA StyleRao, L., Li, W., Shen, Y., Chung, W. K., & Gennerich, A. (2025). Distinct Clinical Phenotypes in KIF1A-Associated Neurological Disorders Result from Different Amino Acid Substitutions at the Same Residue in KIF1A. Biomolecules, 15(5), 656. https://doi.org/10.3390/biom15050656