A Review of the Phytochemistry, Molecular Docking, Pharmacology, Toxicology, Ethnopharmacology, Botany, and Clinical Studies of Maytenus senegalensis (Lam.) Excell
Abstract
:1. Introduction
2. Materials and Methods
- Access to full-text English articles or articles in any other language that can be translated into English.
- All articles that contained the keywords were included, regardless of the publication date.
- Peer-reviewed publications were given preference.
- For this review, only publications from 1962 to 2024 were included.
- Out of the 140 published papers that were first examined, 67 studies are included in the study.
- Articles that were not published in English or could not be translated into English were excluded.
- Articles containing details about the plant, but beyond the purview of this review were excluded.
3. Results and Discussion
3.1. Botanical Characterization and Distribution
3.2. Ethnopharmacological Uses
3.3. Phytochemical Analysis
3.4. Isolated or Tentatively Identified Compounds
No | Secondary Metabolites | Plant Part | Detection/Isolation Method | References |
---|---|---|---|---|
1 | (−)-4′-Methylepigallocatechin | Stem bark | Isolation, NMR | [65] |
2 | (−)-4″-Methylepigallocatechin 5-O-β-glucopyranoside | Stem bark | Isolation, NMR | [65] |
3 | (−)-Epigallocatechin | Stem bark, leaves | Isolation, NMR | [16,65] |
4 | (+)-4″-Methylgallocatechin 3”-O-β-glucopyranoside | Stem bark | Isolation, NMR | [65] |
5 | Epicatechin (4β→8) epigallocatechin | Stem bark | Isolation, NMR | [65] |
6 | (−)-Epicatechin (4β→4) (−)-4 0-methylepigallocatechin | Stem bark | Isolation, NMR | [65] |
7 | Epicatechin (4β→8) epicatechin (procyanidin B-2) | Stem bark | Isolation, NMR | [65] |
8 | Phloroglucinol 1-O-β-D-glucopyranoside | Stem bark | Isolation, NMR | [65] |
9 | 3-Oxo-friedelan-20α-oic acid (maytenonic) | Roots, root bark | Isolation, NMR | [20,21] |
10 | Phenyldilactone, maysedilactone | Leaves | Isolation, NMR, HR-ESI-MS | [16] |
11 | 9,10-Dihydroxy-4,7-megastigmadien-3-one | Leaves | Isolation, NMR | [16] |
12 | (−) Epicathechin | Leaves, stem bark | Isolation, HPLC-ESI-MS, NMR | [16,22] |
13 | (+) Gallocathechin | Leaves | Isolation, NMR | [16] |
14 | Procyanidin B-2 | Leaves | Isolation, NMR | [16] |
15 | 2,3-Dihydrokaempferol 3-O-β-D-glucopyranoside | Leaves | Isolation, NMR | [16] |
16 | Quercetin 3-O-β-D-glucopyranoside | Leaves | Isolation, NMR | [16] |
17 | Kaempferol 3-O-β-D-xylopyranoside | Leaves | Isolation, NMR | [16] |
18 | Quercetin 3-O-β-D-xylopyranoside | Leaves | Isolation, NMR | [16] |
19 | 3,5-Dimethylgallate | Leaves | Isolation, NMR | [16,72] |
20 | Lupenone | Roots | Isolation, NMR, MS | [21] |
21 | β-Amyrin | Roots, leaves | Isolation, MS, GC-MS | [21,68,71] |
22 | β-Sitosterol | Roots, leaves | Isolation, NMR, MS | [21,67,72] |
23 | 3-Hydroxy-20(29)-lupen-28-ol | Leaves | GC-MS | [23] |
24 | 20α)-3-hydroxy-2-oxo-24-nor-friedela-1(10),3,5,7-tetraen-carboxylic acid-(29)-methylester (pristimerin) | Leaves, Root bark | GC-MS | [23,24,67] |
25 | 2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro- | Leaves | GC-MS | [23] |
26 | Phytol | Leaves, Root bark | GC-MS | [23,24] |
27 | n-Hexadecanoic acid | Leaves, root bark, whole plant | GC-MS | [23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56] |
28 | 9,12-Octadecadienoic acid, methyl ester | Leaves, root bark, whole plant | GC-MS | [23,24,25] |
29 | cis-Vaccenic acid | Leaves | GC-MS | [23] |
30 | 6-Methyl-cyclodec-5-enol | Leaves | GC-MS | [23] |
31 | 5,6,7,7a-Tetrahydro-2(4H)-benzofuranone (isomintlactone) | Root bark | GC–MS | [24] |
32 | 2H,6H-pyrano[3,2-b] xanthen-6-one (jacareubin) | Root bark | GC–MS | [24] |
33 | 5,7,3′-Trihydroxy-6,4′-dimethoxyisoflavone (iristectrorigenin) | Root bark | GC–MS | [24] |
34 | Dodecanoic acid, methyl ester | Root bark | GC–MS | [24] |
35 | 9-Octadecenoic acid (Z) | Root bark, whole plant | GC–MS | [24,25] |
36 | Cis-Quercetin-O-dirhamnoside | Stem bark | HPLC-ESI-MS | [22] |
37 | trans-Quercetin-O-dirhamnoside | Stem bark | HPLC-ESI-MS | [22] |
38 | Quercetin-O-pentoside | Stem bark | HPLC-ESI-MS | [22] |
39 | Quercetin-O-acetylhexoside | Stem bark | HPLC-ESI-MS | [22] |
40 | Quercetin-O-rhamnoside | Stem bark | HPLC-ESI-MS | [22] |
41 | Rutin | Stem bark | HPLC-ESI-MS | [22] |
42 | Kaempferol derivative | Stem bark | HPLC-ESI-MS | [22] |
43 | Kaempferol-O-rutinoside | Stem bark | HPLC-ESI-MS | [22] |
44 | Kaempferol-O-acetylhexoside | Stem bark | HPLC-ESI-MS | [22] |
45 | Kaempferol-O-rhamnoside | Stem bark | HPLC-ESI-MS | [22] |
46 | Kaempferol-O-rhamnosylpentoside | Stem bark | HPLC-ESI-MS | [22] |
47 | Kaempferol-O-di-rhamnoside | Stem bark | HPLC-ESI-MS | [22] |
48 | Oxo-dihydroxy-octadecenoic acid | Stem bark | HPLC-ESI-MS | [22] |
49 | Trihydroxy-octadecenoic acid | Stem bark | HPLC-ESI-MS | [22] |
50 | Catechin | Stem bark | HPLC-ESI-MS | [22] |
51 | Naringenin-6,8-di-C-hexoside | Stem bark | HPLC-ESI-MS | [22] |
52 | Myricetin-O-rhamnoside | Stem bark | HPLC-ESI-MS | [22] |
53 | Phloretin-di-Chexoside | Stem bark | HPLC-ESI-MS | [22] |
54 | Ferulic acid derivative | Stem bark | HPLC-ESI-MS | [22] |
55 | (epi) gallocathechin-(epi) catechin-(epi) catechin | Stem bark | HPLC-ESI-MS | [22] |
56 | (epi) catechin-(epi) catechin | Stem bark | HPLC-ESI-MS | [22] |
57 | (epi)catechin-(epi) gallocathechin | Stem bark | HPLC-ESI-MS | [22] |
58 | (epi) catechin-(epi) catechin-(epi) catechin | Stem bark | HPLC-ESI-MS | [22] |
59 | Citric acid | Stem bark | HPLC-ESI-MS | [22] |
60 | Vanillic acid derivative | Stem bark | HPLC-ESI-MS | [22] |
61 | 12-Hydroxy-9- octadecenoic acid | Whole plant | GC–MS | [25] |
62 | Methyl-1-cyclopentene-1-carbxylate | Whole plant | GC–MS | [25] |
63 | 1, 1-Dimethoxyacetone and 13 hexyloxacyclotridec-10-en-2-on | Whole plant | GC–MS | [25] |
64 | L-Stachydrine | Roots | Isolation, MP, IR, NMR | [67] |
65 | Scopoletin | Roots | Isolation, MP, IR, NMR | [67] |
66 | Prenyletin (7-(3′-methyl-2′-butenyloxy)-6-methoxycoumarin) | Roots | Isolation, MP, IR, NMR | [67] |
67 | β-Carotene | Leaves | Isolation, FTIR, NMR, GC-MS | [68] |
68 | Tetratetracontane | Leaves | Isolation, FTIR, NMR, GC-MS | [68] |
69 | Terpineol | Leaves | Isolation, FTIR, NMR, GC-MS | [68] |
70 | 17-Octadecynoic acid | Leaves | GC-MS | [68] |
71 | 1-Iodo-2-methylundecane | Leaves | GC-MS | [68] |
72 | Disulfide, di-tert-dodecyl | Leaves | GC-MS | [68] |
73 | Dibutyl phthalate | Leaves | GC-MS | [68] |
74 | α-D-Glucopyranosiduronic ac-id,3-(5-ethylhexahydro-2,4,6-trioxo-5 pyrimidinyl)-1,1-dimethylpropyl 2,3,4-tris-0-(trimethylsilyl)-, methyl ester | Leaves | GC-MS | [68] |
75 | Hexadecaoic acid | Leaves | GC-MS | [68] |
76 | Picrotoxinin | Leaves | GC-MS | [68] |
77 | Curcumenol | Leaves | GC-MS | [68] |
78 | Carvacrol, TBDMS derivative | Leaves | GC-MS | [68] |
79 | Psi.,.psi.-carotene | Leaves | GC-MS | [68] |
80 | Astaxanthin | Leaves | GC-MS | [68] |
81 | Methyl glycocholate, 3 TMS derivative | Leaves | GC-MS | [68] |
82 | Pentadecane | Leaves | GC-MS | [68] |
83 | α-Amyrin | Leaves | Isolation, GC-MS, FTIR, NMR | [68] |
84 | Olean-12-en-3-ol, acetate (3β) | Leaves | GC-MS | [68] |
85 | 24-Noroleana-3,12-diene | Leaves | GC-MS | [68] |
86 | 24-Norursa-3, 12-diene | Leaves | GC-MS | [68] |
87 | L-α-Terpineol | Leaves | GC-MS | [68] |
88 | Maytansine | Seeds | HPLC-HRMS | [69] |
89 | Mayselignoside | Leaves | Isolation. LC-ESI-MS, NMR | [71] |
90 | Benzoyl R-(+)-malic acid | Leaves | Isolation, LC-ESI-MS, NMR | [71] |
91 | (+)-Lyoniresinol | Leaves | Isolation, NMR | [71] |
92 | (−)-Isolariciresinol | Leaves | Isolation, NMR | [71] |
93 | Dihydrodehydrodiconiferyl | Leaves | Isolation, NMR | [71] |
94 | (2S)-1-O-(4′Z,7′Z,10′Z-Octadecatrienoyl) glycerol | Leaves | Isolation, HR-ESI-MS, APCI-MS, NMR, IR, UV | [72] |
95 | (2R)-methyl [(6′-O-Galloyl)-β-D-glucopyranosyloxy] phe-nylacetate | Leaves | Isolation, HR-ESI-MS, NMR, IR, UV | [72] |
96 | (S)-6′-O-Galloylsambunigrin | Leaves | Isolation, NMR | [72] |
97 | (R)-6′-O-Galloylprunasin | Leaves | Isolation, NMR | [72] |
98 | 1-O-β-D-(6′-O-Galloyl)-glucopyranosyl-3-methoxy-5-hydroxybenzene | Leaves | Isolation, NMR | [72] |
99 | Quercetin | Leaves | Isolation, NMR | [72] |
100 | Kaempferol 3-O-α-L-arabinofuranoside | Leaves | Isolation, NMR | [72] |
101 | Quercetin 3-O-α-L-arabinofuranoside | Leaves | Isolation, NMR | [72] |
102 | Kaempferol 3-O-α-L-rhamnopyranoside | Leaves | Isolation, NMR | [72] |
103 | Quercetin 7-O-α-L-rhamnopyranoside | Leaves | Isolation, NMR | [72] |
104 | Quercetin 3-O-β-D-xylopyranoside | Leaves | Isolation, NMR | [72] |
105 | Quercetin-3-O-(6″-galloyl)-β-D-glucopyranoside | Leaves | Isolation, NMR | [72] |
106 | Epicatechin 3-O-gallate | Leaves | Isolation, NMR | [72] |
107 | Epigallocatechin-3-O-gallate | Leaves | Isolation, NMR | [72] |
108 | Hesperetin 3′-O-β-D-glucopyranoside Isomeric mixture | Leaves | Isolation, NMR | [72] |
109 | β-Sitosterol glucoside | Leaves | Isolation | [72] |
110 | (3R*,5S*,6R*,7E,9ξ)-7-Megastigmene-3,6,9-triol-3-O-β-D-(6′-O-galloyl)glucopyranoside | Leaves | Isolation, HR-ESI-MS, NMR | [73] |
111 | 1-O-β-D-(6′-O-galloyl)-glucopyranosyl-3-methoxy-5-hydroxybenzene | Leaves | Isolation, NMR | [73] |
112 | 2,6-Di-O-galloyl-β-D-glucose | Leaves | Isolation, HRMS-ESI, NMR | [73] |
113 | Phaeophytin A | Leaves | Isolation, NMR | [73] |
114 | Phaeophorbide-a | Leaves | Isolation, NMR | [73] |
115 | Chlorine e6 trimethyl ester | Leaves | Isolation, NMR | [73] |
116 | (4Z,7Z,10Z)-Octadecatrienoic acid | Leaves | Isolation, NMR | [73] |
117 | Procyanidin B5 3,3′-di-O-gallate | Leaves | Isolation, HRMS-ESI, NMR | [73] |
118 | Procyanidin B2 3,3′-di-O-gallate | Leaves | Isolation, NMR | [73] |
3.5. Molecular Docking of the Secondary Metabolites
3.6. Pharmacological Activities
3.6.1. Antimicrobial Activity
Antibacterial Activity
Antimycobacterial Activity
Antifungal Activity
3.6.2. Antiproliferative Activity
3.6.3. Anti-Inflammatory Activity
3.6.4. Antiparasitic Activity
3.6.5. Antioxidant Activity
3.6.6. Antidiabetic Activity
3.6.7. Antiviral Activity
3.6.8. Anti-Sickling Activity
3.6.9. Toxicology Studies on M. senegalensis and Isolated Compounds
3.6.10. Clinical Trials
Compounds | Pharmacological Activities | Bioassay Method | Results | References |
---|---|---|---|---|
Maytenoic acid (9) | Antibacterial Anti-inflammatory | Serial dilution In vivo study on mice | MIC = 195 µg/mL against S. aureus. Antiphlogistic effects effect (ID50 = 0.11 µmol/cm2) and oedema inhibition | [20,21] |
Pristimerin (24) | Antiproliferative Antiplasmodial | Cytotoxicity (human peripheral blood lymphocyte) In vitro test against P. falciparum (Dd2) | IC50 of 6.8 ± 0.8 μg/mL. They had an IC50 of 0.5 μg/mL. | [65] |
Maysedilactone (10) | Cytotoxicity | MTT (Mouse lymphoma cell line) | <10% inhibition at 10 µg/mL | [16] |
9,10-Dihydroxy-4,7-megastigmadien-3-one (11) | Cytotoxicity | MTT (Mouse lymphoma cell line) | <20% inhibition at 10 µg/mL | [16] |
(−) Epicathechin (12) | Cytotoxicity | MTT (Mouse lymphoma cell line) | <20% inhibition at 10 µg/mL | [16] |
(+) Gallocathechin (13) | Cytotoxicity | MTT (Mouse lymphoma cell line) | 30% inhibition at 10 µg/mL | [16] |
(−) Epigallocathechin (3) | Cytotoxicity Antiviral | MTT (Mouse lymphoma cell line). HIV-1 PR assay | 100% inhibition at 10 µg/mL. 43.6% ± 4.5 inhibition of Anti-HIV-1-protease. | [16,65] |
Procyanidin B-2 (14) | Cytotoxicity Antiviral | MTT (Mouse lymphoma cell line). HIV-1 PR assay | No inhibition of the lymphoma cells at the concentration tested. Had anti-HIV-1-protease activity of 59% ± 2.3 | [16,65] |
2,3-Dihydrokaempferol 3-O-β-D-glucopyranoside (15) | Cytotoxicity | MTT (Mouse lymphoma cell line) | No inhibition at the conc tested | [16] |
Quercetin 3-O-β-D-glucopyranoside (16) | Cytotoxicity | MTT (Mouse lymphoma cell line) | <30% inhibition at 10 µg/mL | [16] |
Kaempferol 3-O-β-D-xylopyranoside (17) | Cytotoxicity | MTT (Mouse lymphoma cell line) | <30% inhibition at 10 µg/mL | [16] |
Quercetin 3-O-β-D-xylopyranoside (18) | Cytotoxicity | MTT (Mouse lymphoma cell line) | <40% inhibition at 10 µg/mL | [16] |
3,5-Dimethylgallate (19) | Cytotoxicity Antimicrobial | MTT Serial dilution | <10% inhibition of Mouse lymphoma at 10 µg/mL. Had cell viability of >70% against MKN45 cells at 50 µM. No bacterial growth inhibition at 50 µM. | [16,72] |
Lupenone (20) | Anti-inflammatory | In vivo study on mice | Decreased oedema at 0.1 µmol/cm2 by 26% and 65% at 1 µmol/cm2 dose | [21] |
β-Amyrin (21) | Anti-inflammatory | In vivo study on mice | Reduced oedema by 19% to 62% at 26% and 65% at the doses tested. | [21] |
(−)-4′-Methylepigallocatechin (1) | Antiviral | HIV-1 PR assay | Had anti-HIV-1-protease activity with 34.6% ± 0.8 inhibition | [65] |
(−)-4″-Methylepigallocatechin 5-O-β-glucopyranoside (2) | Antiviral | HIV-1 PR assay | Had good anti-HIV-1-protease with 72.9% ± 4.5 inhibition | [65] |
(+)-4″-Methylgallocatechin 3″-O-β-glucopyranoside (4) | Antiviral | HIV-1 PR assay | Exhibited 68.2% ± 5.3 inhibitory activity against HIV-1-protease | [65] |
Epicatechin (4β→8) epigallocatechin (5) | Antiviral | HIV-1 PR assay | Had only 33.3% ± 5.9 inhibition | [65] |
(−)-Epicatechin (4β→4) (−)-4 0-methylepigallocatechin (6) | Antiviral | HIV-1 PR assay | Demonstrated anti-HIV-protease inhibition of 30.5% ± 13.5. | [65] |
Phloroglucinol 1-O-β-D-glucopyranoside (8) | Antiviral | HIV-1 PR assay | Had interesting anti-HIV-protease activity of 68.2% ± 4.2 | [65] |
(2S)-1-O-(4′Z,7′Z,10′Z-Octadecatrienoyl) glycerol (94) | Antimicrobial Antiproliferative | Serial dilution MTT | No bacterial growth inhibition at 50 µM. Decreased cell viability to 67% against MKN45 cells | [72] |
(2R)-Methyl [(6′-O-galloyl)-β-D-glucopyranosyloxy] phenylacetate (95) | Antimicrobial Antiproliferative | Serial dilution MTT | No bacterial growth inhibition at 50 µM. Had cell viability of >70% against MKN45 cells. | [72] |
(S)-6′-O-Galloylsambunigrin (96) | Antimicrobial Antiproliferative | Serial dilution MTT | No bacterial growth inhibition at 50 µM. Had cell viability of >70% against MKN45 cells. | [72] |
(R)-6′-O-Galloylprunasin (97) | Antimicrobial Antiproliferative | Serial dilution MTT | No bacterial growth inhibition at 50 µM. Had cell viability of >70% against MKN45 cells | [72] |
1-O-β-D-(6′-O-Galloyl)-glucopyranosyl-3-methoxy-5-hydroxybenzene (98) | Antimicrobial Antiproliferative | Serial dilution MTT | No bacterial growth inhibition at 50 µM. Cell viability of >70% against MKN45 cells. | [72] |
Quercetin (99) | Antimicrobial Antiproliferative | Serial dilution MTT | No bacterial growth inhibition at 50 µM. Had relatively weak to moderate decrease in viability against DLD1, MCF7 and MKN45 cancer cell lines. | [72] |
Kaempferol 3-O-α-L-arabinofuranoside (100) | Antimicrobial Antiproliferative | Serial dilution MTT | No bacterial growth inhibition at 50 µM. Had decrease of cell viability to 68% against MKN45 cells | [72] |
Quercetin 3-O-α-L-arabinofuranoside (101) | Antimicrobial Antiproliferative | Serial dilution MTT | No bacterial growth inhibition at 50 µM. Relatively weak to moderate decrease in cell viability against DLD1, MCF7, and MKN45 cancer cell lines. | [72] |
Kaempferol 3-O-α-L-rhamnopyranoside (102) | Antimicrobial Antiproliferative | Serial dilution MTT | No bacterial growth inhibition at 50 µM. Had 68.4% cell viability against MCF-7 cells at 50 µΜ. | [72] |
Quercetin 7-O-α-L-rhamnopyranoside (103) | Antimicrobial Antiproliferative | Serial dilution MTT | No bacterial growth inhibition at 50 µM. Had cell viability of >70% against MKN45 cells | [72] |
Quercetin 3-O-β-D-xylopyranoside (104) | Antimicrobial Antiproliferative | Serial dilution MTT | No bacterial growth inhibition at 50 µM. Cell viability of >70% against MKN45 cells | [72] |
Quercetin-3-O-(6″-galloyl)-β-D-glucopyranoside (105) | Antimicrobial Antiproliferative | Serial dilution MTT | No bacterial growth inhibition at 50 µM. Cell viability of >70% against MKN45 cells at 50 µM. | [72] |
Epicatechin 3-O-gallate (106) | Antimicrobial Antiproliferative | Serial dilution MTT | No bacterial growth inhibition at 50 µM. Had cell viability of >70% against MKN45 cells at 50 µM. | [72] |
Epigallocatechin-3-O-gallate (107) | Antimicrobial Antiproliferative | Serial dilution MTT | No bacterial growth inhibition at 50 µM. Cell viability of >70% against MKN45 cells at 50 µM. | [72] |
1:1 isomeric mixture of hesperetin 3′-O-β-D-Glucopyranoside (108) | Antimicrobial Antiproliferative | Serial dilution MTT | No bacterial growth inhibition at 50 µM. Decrease of cell viability to 69.6% against DLD1, 65.6% against MCF7, and 55.7% against MKN45 cancer cells. | [72] |
β-Sitosterol (22) | Antimicrobial Antiproliferative | Serial dilution MTT | No bacterial growth inhibition at 50 µM. Weak to moderate decrease in viability against DLD1, MCF7, and MKN45 cancer cell lines. | [72] |
β-Sitosterol glucoside (109) | Antimicrobial Antiproliferative | Serial dilution MTT | No bacterial growth inhibition at 50 µM. Decrease of cell viability by 59.0% against MKN45 and >70% cell viability against DLD1 and MCF-7 cells. | [72] |
(3R*,5S*,6R*,7E,9ξ)-7-Megastigmene-3,6,9-triol-3-O-β-D-(6′-O-galloyl)glucopyranoside (110) | Antimicrobial | Serial dilution | MIC of 64 µg/mL against P. aeruginosa and C. neoformans. | [73] |
1-O-β-D-(6′-O-Galloyl)-glucopyranosyl-3-methoxy-5-hydroxybenzene (111) | Antimicrobial | Serial dilution | MIC value of 16 µg/mL against S. aureus | [73] |
2,6-di-O-Galloyl-β-D-glucose (112) | Antimicrobial Antioxidant | Serial dilution DPPH and FRAP | MIC = 32 µg/mL against P. aeruginosa and C. neoformans. EC50 value of 14.25 ± 1.15 µg/mL on DPPH and had the lowest ferric iron reducing power. | [73] |
Phaeophytin A (113) | Antimicrobial | Serial dilution | MIC value of 16 µg/mL against all tested bacteria and fungi, except against Shigella flexneri with MIC value of 32 µg/ml | [73] |
Phaeophorbide-a (114) | Antimicrobial Antioxidant | Serial dilution DPPH and FRAP | MIC values ranging from 16 µg/mL to 32 µg/mL against all tested bacteria and fungi. Had EC50 value of 7.58 ± 0.43 µg/mL on DPPH and high ferric iron reducing activity. | [73] |
Chlorine e6 trimethyl ester (115) | Antimicrobial Antioxidant | Serial dilution DPPH and FRAP | MIC values ranging from 32 µg/mL to 64 µg/mL against all tested bacteria and fungi.Had EC50 value of 7.99 ± 0.11 µg/mL and high ferric iron reducing activity. | [73] |
(4Z,7Z,10Z)-Octadecatrienoic acid (116) | Antimicrobial Antioxidant | Serial dilution DPPH and FRAP | Weak antimicrobial activity against all bacteria and fungi. No antioxidant activity. | [73] |
Procyanidin B2 3,3′-di-O-gallate (118) | Antimicrobial | Serial dilution | MIC of value of 16 µg/mL against S. aureus aeruginosa and C. neoformans. | [73] |
4. Discussions and Future Perspectives
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burkill, H.M. The Useful Plants of West Tropical Africa, 2nd ed.; Families, A.D., Ed.; Royal Botanic Gardens, Kew: London, UK, 1985; Volume 1. [Google Scholar]
- Miller, J.S. Zulu Medicinal Plants: An Inventory by A. Hutchings with A; Scott, H., Lewis, G., Cunningham, A.B., Eds.; University of Natal Press: Pietermaritzburg, South Africa, 1996. [Google Scholar]
- Birhanu, Z. Traditional Use of Medicinal Plants by the Ethnic Groups of Gondar Zuria District, North-Western Ethiopia. J. Nat. Remedies 2013, 13, 46–53. [Google Scholar]
- Robson, N.; Halle, N.; Mathew, N.; Blakelock, R. Celastraceae. In Flora of Tropical East Africa; Polhill, R., Ed.; Balkema: Rotterdam, The Netherlands, 1994. [Google Scholar]
- Watt, J.M.; Breyer-Brandwijk, M.G. Medicinal and Poisonous Plants of Southern and Eastern Africa: Being an Account of Their Medicinal Uses, Chemical Composition, Pharmacological Effects and Toxicology in Man and Animal; E. & S. Livingstone Ltd.: Edinburgh, UK, 1962. [Google Scholar]
- Kokwaro, J.O. Medicinal Plants of East Africa; Kenya Literature Bureau: Nairobi, Kenya, 1993; Volume 39. [Google Scholar]
- Gachathi, M. Kikuyu Botanics Dictionary: A Guide to Plant Names Uses and Culture Values, 2nd ed.; Tropical Botany Press: Nairobi, Kenya, 2007. [Google Scholar]
- Roodt, V. Trees & Shrubs of the Okavango Delta: Medicinal Uses and Nutritional Value; Shell Oil Botswana (Pty) Ltd.: Gaborone, Botswana, 1998. [Google Scholar]
- El Tahir, A.; Satti, G.M.H.; Khalid, S.A. Antiplasmodial Activity of Selected Sudanese Medicinal Plants with Emphasis on Maytenus Senegalensis (Lam.) Exell. J. Ethnopharmacol. 1999, 64, 227–233. [Google Scholar] [CrossRef]
- Hussein, G.; Miyashiro, H.; Nakamura, N.; Hattori, M.; Kawahata, T.; Otake, T.; Kakiuchi, N.; Shimotohno, K. Inhibitory Effects of Sudanese Plant Extracts on HIV-1 Replication and HIV-1 Protease. Phytother. Res. 1999, 13, 31–36. [Google Scholar] [CrossRef]
- van Wyk, B.; van Wyk, P.; van Wyk, B.E. Photographic Guide to Trees of Southern Africa; Briza Publications: Gauteng, South Africa, 2002. [Google Scholar]
- Frida, L.; Rakotonirina, S.; Rakotonirina, A.; Savineau, J.P. In Vivo and In Vitro Effects of Bidens Pilosa L. (Asteraceae) Leaf Aqueous and Ethanol Extracts on Primed-Oestrogenized Rat Uterine Muscle. Afr. J. Tradit. Complement. Altern. Med. 2008, 5, 79–91. [Google Scholar] [CrossRef]
- Da Silva, G.; Taniça, M.; Rocha, J.; Serrano, R.; Gomes, E.T.; Sepodes, B.; Silva, O. In Vivo Anti-Inflammatory Effect and Toxicological Screening of Maytenus Heterophylla and Maytenus Senegalensis Extracts. Hum. Exp. Toxicol. 2011, 30, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Haule, E.E.; Moshi, M.J.; Nondo, R.S.; Mwangomo, D.T.; Mahunnah, R. La A Study of Antimicrobial Activity, Acute Toxicity and Cytoprotective Effect of a Polyherbal Extract in a Rat Ethanol-HCl Gastric Ulcer Model. BMC Res. Notes 2012, 5, 546. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.S.; McGaw, L.J.; Eloff, J.N. Evaluation of Pharmacological Activities, Cytotoxicity and Phenolic Composition of Four Maytenus Species Used in Southern African Traditional Medicine to Treat Intestinal Infections and Diarrhoeal Diseases. BMC Complement. Altern. Med. 2013, 13, 100. [Google Scholar] [CrossRef] [PubMed]
- Okoye, F.B.C.; Debbab, A.; Wray, V.; Esimone, C.O.; Osadebe, P.O.; Proksch, P. A Phenyldilactone, Bisnorsesquiterpene, and Cytotoxic Phenolics from Maytenus Senegalensis Leaves. Tetrahedron Lett. 2014, 55, 3756–3760. [Google Scholar] [CrossRef]
- Abebe, W. An Overview of Ethiopian Traditional Medicinal Plants Used for Cancer Treatment. Eur. J. Med. Plants 2016, 14, 1–16. [Google Scholar] [CrossRef]
- Owoyemi, O.; Oladunmoye, M.K.; Owoyemi, O.O.; Oladunmoye, M.K. Phytochemical Screening and Antibacterial Activities of Bidens Pilosa L. and Tridax Procumbens L. on Skin Pathogens. Int. J. Mod. Biol. Med. 2017, 8, 24–46. [Google Scholar]
- Kpoyizoun, P.K.; Metowogo, K.; Kantati, Y.T.; Missebukpo, A.; Dare, T.; Lawson-Evi, P.; Eklu-Gadegbeku, K.; Aklikokou, K.A.; Egu, E.U. Antiinflammatory and Antioxidant Evaluation of Maytenus Senegalensis Hydroalcoholic Roots Extract Fractions in Allergic Asthma. J. Phytopharm. 2020, 9, 252–257. [Google Scholar] [CrossRef]
- Lindsey, K.L.; Budesinsky, M.; Kohout, L.; van Staden, J. Antibacterial activity of maytenonic acid isolated from the root-bark of Maytenus senegalensis. S. Afr. J. Bot. 2006, 72, 473–477. [Google Scholar] [CrossRef]
- Sosa, S.; Morelli, C.F.; Tubaro, A.; Cairoli, P.; Speranza, G.; Manitto, P. Anti-Inflammatory Activity of Maytenus Senegalensis Root Extracts and of Maytenoic Acid. Phytomedicine 2007, 14, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Zangueu, C.B.; Olounlade, A.P.; Ossokomack, M.; Djouatsa, Y.N.N.; Alowanou, G.G.; Azebaze, A.G.B.; Llorent-Martínez, E.J.; de Córdova, M.L.F.; Dongmo, A.B.; Hounzangbe-Adote, M.S. In Vitro Effects of Aqueous Extract from Maytenus Senegalensis (Lam.) Exell Stem Bark on Egg Hatching, Larval Migration and Adult Worms of Haemonchus Contortus. BMC Vet. Res. 2018, 14, 147. [Google Scholar] [CrossRef] [PubMed]
- Jigam, A.A.; Musa, R.; Abdullahi, A.; Lawal, B. Characterization of Anti-Plasmodial, Analgesic and Anti-Inflammatory Fraction of Maytenus Senegalensis (Lam.) Exell Leaf Extract in Mice. Clin. Phytosci. 2020, 6, 56. [Google Scholar] [CrossRef]
- Ndako, M.; Jigam, A.A.; Kabiru, A.Y.; Umar, S.I.; Lawal, B. Polar Extracts from Gymnosporia Senegalensis (Syn. Maytenus Senegalensis) Root Bark, Its Effects on Nociception, Edema, and Malarial Infection. Phytomed. Plus 2021, 1, 100113. [Google Scholar] [CrossRef]
- Channi, M.B.; Biradar, P.M. Larvicidal Efficacy of Some Plant Extracts on Culex Quinquefasciatus with Characterization of Their Bioactive Compounds. Int. J. Mosq. Res. 2023, 10, 37–42. [Google Scholar] [CrossRef]
- Orabi, K.Y.; Al-Qasoumi, S.I.; El-Olemy, M.M.; Mossa, J.S.; Muhammad, I. Dihydroagarofuran Alkaloid and Triterpenes from Maytenus Heterophylla and Maytenus Arbutifolia. Phytochemistry 2001, 58, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Sumbul, S.; Ahmad, M.A.; Asif, M.; Akhtar, M. Role of Phenolic Compounds in Peptic Ulcer: An Overview. J. Pharm. Bioallied. Sci. 2011, 3, 361–367. [Google Scholar] [PubMed]
- Umar, S.I.; Ndako, M.; Jigam, A.A.; Adefolalu, S.F.; Ibikunle, G.F.; Lawal, B. Anti-Plasmodial, Anti-Inflammatory, Anti-Nociceptive and Safety Profile of Maytenus Senegalensis Root Bark Extract on Hepato-Renal Integrity in Experimental Animals. Comp. Clin. Path. 2019, 28, 1571–1579. [Google Scholar] [CrossRef]
- Gessler, M.C.; Nkunya, M.H.H.; Mwasumbi, L.B.; Heinrich, M.; Tanner, M. Screening Tanzanian Medicinal Plants for Antimalarial Activity. Acta Trop. 1994, 56, 65–77. [Google Scholar] [CrossRef]
- Gessler, M.C.; Tanner, M.; Chollet, J.; Nkunya, M.H.H.; Heinrich, M. Tanzanian Medicinal Plants Used Traditionally for the Treatment of Malaria: In Vivo Antimalarial and in Vitro Cytotoxic Activities. Phytother. Res. 1995, 9, 504–508. [Google Scholar] [CrossRef]
- El Tahir, A.; Satti, G.; Khalid, S. A Novel Antiplasmodial Activity of Pristemerin Isolated from Maytenus Senegalensis (Lam). Excell. J. Saudi Chem. Soc. 2001, 5, 157–164. [Google Scholar]
- Malebo, H.M.; Wiketye, V.; Katani, S.J.; Kitufe, N.A.; Nyigo, V.A.; Imeda, C.P.; Ogondiek, J.W.; Sunguruma, R.; Mhame, P.P.; Massaga, J.J.; et al. In Vivo Antiplasmodial and Toxicological Effect of Maytenus Senegalensis Traditionally Used in the Treatment of Malaria in Tanzania. Malar. J. 2015, 14, 79. [Google Scholar] [CrossRef] [PubMed]
- Kassimu, K.; Milando, F.; Omolo, J.; Mdemu, A.; Nyaulingo, G.; Mbarak, H.; Mohamed, L.; Rashid, R.; Ahmed, S.; Rashid, M.; et al. Safety and Tolerability of an Antimalarial Herbal Remedy in Healthy Volunteers: An Open-Label, Single-Arm, Dose-Escalation Study on Maytenus Senegalensis in Tanzania. Trop. Med. Infect. Dis. 2022, 7, 396. [Google Scholar] [CrossRef] [PubMed]
- Kassimu, K.R.; Ali, A.M.; Omolo, J.J.; Mdemu, A.; Machumi, F.; Ngasala, B. The Effect of an Anti-Malarial Herbal Remedy, Maytenus Senegalensis, on Electrocardiograms of Healthy Tanzanian Volunteers. Malar. J. 2024, 23, 103. [Google Scholar] [CrossRef] [PubMed]
- Neuwinger, H. African Ethnobotany: Poisons and Drugs: Chemistry, Pharmacology, Toxicology; Chapman & Hall: London, UK, 1996. [Google Scholar]
- Arbonnier, M. Trees, Shrubs and Lianas of West African Dry Zones; Editions Quae: Versailles, France, 2004. [Google Scholar]
- Boon, R. Pooley’s Trees of Eastern South Africa, a Complete Guide; Flora & Fauna Publications Trust: Durban, South Africa, 2010. [Google Scholar]
- Van Wyk, B.; Palgrav, K.C.; Van Wyk, P. Field Guide to Trees of Southern Africa. Int. J. Plant Biol. 2012, 3, br1. [Google Scholar] [CrossRef]
- Clark, H.; Charters, M. The Illustrated Dictionary of Southern African Plant Names; Moll, E., Ed.; Jacana Media: Johannesburg, South Africa, 2016. [Google Scholar]
- von Sengbusch, V.; Dippold, M. Entwicklungspotential Afrikanischer Heilpflanzen: Kamerun, Tschad, Gabun; IFB: Möckmühl, Germany, 1980. [Google Scholar]
- Chhabra, S.C.; Mahunnah, R.L.A.; Mshiu, E.N. Plants Used in Traditional Medicine in Eastern Tanzania. V. Angiosperms (Passifloraceae to Sapindaceae). J. Ethnopharmacol. 1991, 33, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Chinemana, F.; Drummond, R.B.; Mavi, S.; De Zoysa, I. Indigenous Plant Remedies in Zimbabwe. J. Ethnopharmacol. 1985, 14, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Haerdi, F.; Kerharo, J.; Adam, J.G. Afrikanische Heilpflanzen/Plantes Medicinales Africaines; Verlag für Recht und Gesellschaft: Basel, Switzerland, 1964. [Google Scholar]
- Heinrich, M. African Traditional Medicine. In A Dictionary of Plant Use and Application; Neuwinger, H.D., Ed.; Medpharm Scientific: Stuttgart, Germany, 2000; p. 589. ISBN 3-887-63086-6. DM 198 (ca. 100) (hardcover). [Google Scholar]
- Okatch, H.; Ngwenya, B.; Raletamo, K.M.; Andrae-Marobela, K. Determination of Potentially Toxic Heavy Metals in Traditionally Used Medicinal Plants for HIV/AIDS Opportunistic Infections in Ngamiland District in Northern Botswana. Anal. Chim. Acta 2012, 730, 42–48. [Google Scholar] [CrossRef]
- Sparg, S.G.; Van Staden, J.; Jäger, A.K. Efficiency of Traditionally Used South African Plants against Schistosomiasis. J. Ethnopharmacol. 2000, 73, 209–214. [Google Scholar] [CrossRef]
- Gelfland, M.; Mavi, S.; Drummond, R.B.; Ndemera, B. The Traditional Medical Practitioner in Zimbabwe: His Principles of Practice and Pharmacopoeia; Mambo Press: Gweru, Zimbabwe, 1985; pp. 1–411. [Google Scholar]
- Chinsembu, K.C. Ethnobotanical Study of Plants Used in the Management of HIV/AIDS-Related Diseases in Livingstone, Southern Province, Zambia. Evid.-Based Complement. Altern. Med. 2016, 2016, 4238625. [Google Scholar] [CrossRef]
- Matu, E.N.; Van Staden, J. Antibacterial and Anti-Inflammatory Activities of Some Plants Used for Medicinal Purposes in Kenya. J. Ethnopharmacol. 2003, 87, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Muthaura, C.N.; Rukunga, G.M.; Chhabra, S.C.; Mungai, G.M.; Njagi, E.N.M. Traditional Antimalarial Phytotherapy Remedies Used by the Kwale Community of the Kenyan Coast. J. Ethnopharmacol. 2007, 114, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Mugisha, M.K.; Asiimwe, S.; Namutebi, A.; Borg-Karlson, A.K.; Kakudidi, E.K. Ethnobotanical Study of Indigenous Knowledge on Medicinal and Nutritious Plants Used to Manage Opportunistic Infections Associated with HIV/AIDS in Western Uganda. J. Ethnopharmacol. 2014, 155, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Obakiro, S.B.; Kiyimba, K.; Lukwago, T.W.; Lulenzi, J.; Owor, R.O.; Andima, M.; Hokello, J.F.; Kawuma, C.; Nantale, G.; Kibuule, D.; et al. Ethnobotanical Study of Plants Used in Management of Diabetes Mellitus in Eastern Uganda. Phytomed. Plus 2023, 3, 100486. [Google Scholar] [CrossRef]
- Bekele, G.; Reddy, P.R. Ethnobotanical Study of Medicinal Plants Used to Treat Human Ailments by Guji Oromo Tribes in Abaya District, Borana, Oromia, Ethiopia. Univers. J. Plant Sci. 2015, 3, 1–8. [Google Scholar] [CrossRef]
- Tewelde, F.; Mesfin, N. Ethnobotanical Use and Conservation of Plants Biodiversity by the Local Community of Welkait Wereda, Western Tigray, Ethiopia. Adv. Life Sci. Technol. 2020, 83, 1–13. [Google Scholar] [CrossRef]
- Koukoura, K.K.; Pissang, P.; Hoekou, Y.P.; Maman, I.; Sadji, A.; Effoe, S.; Agban, A.; Tchacondo; Karou, D.S.; Batawila, K. Ethnobotanical Survey of Medicinal Plants Used for The Treatment of Childhood Infections in the Central Region of Togo. Afr. J. Biomed. Res. 2022, 25, 363–371. [Google Scholar]
- Tapsoba, H.; Deschamps, J.P. Use of Medicinal Plants for the Treatment of Oral Diseases in Burkina Faso. J. Ethnopharmacol. 2006, 104, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Ouédraogo, L.; Endl, J.; Sombié, P.A.E.D.; Schaefer, H.; Kiendrebeogo, M. Ethnobotanical Use and Conservation Assessment of Medicinal Plants Sold in Markets of Burkina Faso. Ethnobot. Res. Appl. 2020, 20, 1–25. [Google Scholar] [CrossRef]
- Shomkegh, S.; Mbakwe, R.; Dagba, B. Utilization of Wild Plants for Medicinal Purposes in Selected Tiv Communities of Benue State, Nigeria: An Ethnobotanical Approach. Eur. J. Med. Plants 2016, 14, 1–14. [Google Scholar] [CrossRef]
- Vidyasagar, G.M.; Prashantkumar, P. Traditional Herbal Remedies for Gynecological Disorders in Women of Bidar District, Karnataka, India. Fitoterapia 2007, 78, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Lall, N.; Meyer, J.J.M. In Vitro Inhibition of Drug-Resistant and Drug-Sensitive Strains of Mycobacterium Tuberculosis by Ethnobotanically Selected South African Plants. J. Ethnopharmacol. 1999, 66, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Tor-Anyiin, T.A.; Anyam, J.V. Phytochemical Evaluation and Antibacterial Activity: A Comparison of Various Extracts from Some Nigerian Trees. Peak J. Med. Plant Res. 2013, 1, 13–18. [Google Scholar]
- Kpoyizoun, K.; Metowogo, K.; Missebukpo, A.; Eklu-Gadegbeku, K.; Aklikokou, K.; Gbeassor, M. Effect of Maytenus Senegalensis Roots on OVA-Induced Airway Inflammation in a Mouse Asthma Model. Afr. J. Pharm. Pharmacol. 2019, 13, 49–56. [Google Scholar] [CrossRef]
- Sanda, K.A.; Sandabe, U.K.; Bulama, I.; Babakura, M.; Madziga, H.; Chiroma, M.; William, A.; Hussaini, I.M. Phytochemistry and Effects of Ethanol Leaf Extract of Meytenus Senengalensis (Lam) on Castor-Oil Induced Diarrhoea in Albino Rats. Sahel J. Vet. Sci. 2020, 17, 1–6. [Google Scholar] [CrossRef]
- Jain, D.; Meena, M.; Janmeda, P.; Seth, C.S.; Arora, J. Analysis of Quantitative Phytochemical Content and Antioxidant Activity of Leaf, Stem, and Bark of Gymnosporia senegalensis (Lam.) Loes. Plants 2024, 13, 1425. [Google Scholar] [CrossRef]
- Hussein, G.; Nakamura, N.; Meselhy, M.R.; Hattori, M. Phenolics from Maytenus Senegalensis. Phytochemistry 1999, 50, 689–694. [Google Scholar] [CrossRef]
- Khalid, S.A.; Friedrichsen, G.M.; Christensen, S.B.; El Tahir, A.; Satti, G.M. Isolation and Characterization of Pristimerin as the Antiplasmodial and Antileishmanial Agent of Maytenus Senegalensis (Lam.) Exell. Arkivoc 2007, 2007, 129–134. [Google Scholar] [CrossRef]
- Pistelli, L.; Venturi, R.; Marsili, A.; Morelli, I. Alkaloids and Coumarins from Gymnosporia Senegalensis Var. Spinosa (Celastraceae). Biochem. Syst. Ecol. 1998, 26, 677–679. [Google Scholar] [CrossRef]
- Jain, D.; Meena, M.; Singh, D.; Janmeda, P. Structural Characterisation of Bioactive Compounds of Gymnosporia Senegalensis (Lam.) Loes. Using Advanced Analytical Technique like FT-IR, GC-MS and 1H-NMR Spectroscopy. Nat. Prod. Res. 2023, 14, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Eckelmann, D.; Kusari, S.; Spiteller, M. Spatial Profiling of Maytansine during the Germination Process of Maytenus Senegalensis Seeds. Fitoterapia 2017, 119, 51. [Google Scholar] [CrossRef] [PubMed]
- Kupchan, S.M.; Komoda, Y.; Court, W.A.; Thomas, G.J.; Smith, R.M.; Karim, A.; Gilmore, C.J.; Haitiwanger, R.C.; Bryan, R.F. Maytansine, a Novel Antileukemic Ansa Macrolide from Maytenus Ovatus. J. Am. Chem. Soc. 1972, 94, 1354–1356. [Google Scholar] [CrossRef] [PubMed]
- Okoye, F.B.C.; Agbo, M.O.; Nworu, C.S.; Nwodo, N.J.; Esimone, C.O.; Osadebe, P.O.; Proksch, P. New Neolignan Glycoside and an Unusual Benzoyl Malic Acid Derivative from Maytenus Senegalensis Leaves. Nat. Prod. Res. 2015, 29, 109–115. [Google Scholar] [CrossRef]
- Tatsimo, J.S.N.; Toume, K.; Nagata, T.; Havyarimana, L.; Fujii, T.; Komatsu, K. Monoglycerol Ester, Galloylglucoside and Phenolic Derivatives from Gymnosporia Senegalensis Leaves. Biochem. Syst. Ecol. 2019, 83, 33–38. [Google Scholar] [CrossRef]
- Tatsimo, N.S.J.; Tamokou, J.; Toume, K.; Havyarimana, L.; Ekom, S.; Komatsu, K. A New Megastigmane, Known Porphyrinic and Galloylated Bioactive Derivatives from the Leaves of Gymnosporia Senegalensis. J. Chem. Res. 2022, 46, 17475198211072498. [Google Scholar] [CrossRef]
- Masoko, P. Ethnobotanical Study of Some Selected Medicinal Plants Used by Traditional Healers in Limpopo Province (South Africa). Am. J. Res. Commun. 2013, 1, 8–23. [Google Scholar]
- Mmushi, T.J.; Masoko, P.; Mdee, L.K.; Mokgotho, M.P.; Mampuru, L.J.; Howard, R.L. Antimycobacterial Evaluation of Fifteen Medicinal Plants in South Africa. Afr. J. Tradit. Complement. Altern. Med. 2010, 7, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Makgatho, M.E.; Nxumalo, W.; Raphoko, L.A. Anti-Mycobacterial, -Oxidative, -Proliferative and -Inflammatory Activities of Dichloromethane Leaf Extracts of Gymnosporia Senegalensis (Lam.) Loes. S. Afr. J. Bot. 2018, 114, 217–222. [Google Scholar] [CrossRef]
- Bah, F.; Dozolme, P.; Cabral, M.; Toure, A.; Lam, A.; Mobio, T.; Creppy, E.; Matar, S.; Fall, M.; Moukha, S. Cytotoxicity of Roots Methanolic Extract of Maytenus Senegalensis. Adv. J. Toxicol. 2020, 4, 011–016. [Google Scholar]
- Nabende, P.; Karanja, S.; Mwatha, J.; Wachira, S. Anti-Proliferative Activity of Prunus Africana, Warburgia Stuhlmannii and Maytenus Senegalensis Extracts in Breast and Colon Cancer Cell Lines. Eur. J. Med. Plants 2015, 5, 366–376. [Google Scholar] [CrossRef]
- Mujarnatu, A.; Musa, K.; Ibrahim, G.; Magaji, M. Toxicity and Analgesic Studies of Leaf Methanolic Extract of Maytenus Senegalensis (Lam.) Exell (Celastraceae). Int. J. Med. Investig. 2015, 4, 241–244. [Google Scholar]
- Mølgaard, P.; Nielsen, S.B.; Rasmussen, D.E.; Drummond, R.B.; Makaza, N.; Andreassen, J. Anthelmintic Screening of Zimbabwean Plants Traditionally Used against Schistosomiasis. J. Ethnopharmacol. 2001, 74, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, C.; Maharaj, V.J.; Crouch, N.R.; Grace, O.M.; Pillay, P.; Matsabisa, M.G.; Bhagwandin, N.; Smith, P.J.; Folb, P.I. In Vitro Antiplasmodial Activity of Medicinal Plants Native to or Naturalised in South Africa. J. Ethnopharmacol. 2004, 92, 177–191. [Google Scholar] [CrossRef]
- Muregi, F.W.; Ishih, A.; Miyase, T.; Suzuki, T.; Kino, H.; Amano, T.; Mkoji, G.M.; Terada, M. Antimalarial Activity of Methanolic Extracts from Plants Used in Kenyan Ethnomedicine and Their Interactions with Chloroquine (CQ) against a CQ-Tolerant Rodent Parasite, in Mice. J. Ethnopharmacol. 2007, 111, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Rukunga, G.M.; Gathirwa, J.W.; Omar, S.A.; Muregi, F.W.; Muthaura, C.N.; Kirira, P.G.; Mungai, G.M.; Kofi-Tsekpo, W.M. Anti-Plasmodial Activity of the Extracts of Some Kenyan Medicinal Plants. J. Ethnopharmacol. 2009, 121, 282–285. [Google Scholar] [CrossRef] [PubMed]
- Malebo, H.M.; Tanja, W.; Cal, M.; Swaleh, S.A.; Omolo, M.O.; Hassanali, A.; Séquin, U.; Hamburger, M.; Brun, R.; Ndiege, I.O. Antiplasmodial, Anti-Trypanosomal, Anti-Leishmanial and Cytotoxicity Activity of Selected Tanzanian Medicinal Plants. Tanzan. J. Health Res. 2009, 11, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Muthaura, C.N.; Keriko, J.M.; Mutai, C.; Yenesew, A.; Gathirwa, J.W.; Irungu, B.N.; Nyangacha, R.; Mungai, G.M.; Derese, S. Antiplasmodial Potential of Traditional Antimalarial Phytotherapy Remedies Used by the Kwale Community of the Kenyan Coast. J. Ethnopharmacol. 2015, 170, 148–157. [Google Scholar] [CrossRef]
- Mengistu, G.; Hoste, H.; Karonen, M.; Salminen, J.P.; Hendriks, W.H.; Pellikaan, W.F. The In Vitro Anthelmintic Properties of Browse Plant Species against Haemonchus Contortus Is Determined by the Polyphenol Content and Composition. Vet. Parasitol. 2017, 237, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Domo, G.A.; Kela, S.L.; Panda, S.M.; Samaila, A.B. Effects Of Maytenus Senegalensis (L) and Cassia Alata (L) Extracts on the Liver Enzymes of Albino Rats, Infected with Schistosomes Cercariae. J. Appl. Sci. Environ. Manag. 2021, 25, 1173–1178. [Google Scholar] [CrossRef]
- Mann, A. Assessment of Phytoconstituents and Antidiabetic Activity of the Crude Extract and Partitioned Fractions of Maytenus Senegalensis (Lam.) Exell (Celastraceae) Root Bark. Int. Res. J. Pure Appl. Chem. 2014, 4, 746–761. [Google Scholar] [CrossRef]
- Okine, L.K.N.; Nyarko, A.K.; Osei-Kwabena, N.; Oppong, I.V.; Barnes, F.; Ofosuhene, M. The Antidiabetic Activity of the Herbal Preparation ADD-199 in Mice: A Comparative Study with Two Oral Hypoglycaemic Drugs. J. Ethnopharmacol. 2005, 97, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Sall, C.; Ndoye, S.; Dioum, M.; Seck, I.; Gueye, R.; Faye, B.; Thiam, C.; Seck, M.; Gueye, P.; Fall, D.; et al. Contribution of Three (3) Medicinal Plants of Senegalese Flora in the Management of Sickle Cell Disease. In Advances in Applied Science and Technology; BP International: Hong Kong, China, 2017; Volume 4, pp. 1–11. [Google Scholar]
- Nyarko, A.K.; Okine, L.K.N.; Wedzi, R.K.; Addo, P.A.; Ofosuhene, M. Subchronic Toxicity Studies of the Antidiabetic Herbal Preparation ADD-199 in the Rat: Absence of Organ Toxicity and Modulation of Cytochrome P450. J. Ethnopharmacol. 2005, 97, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Verschaeve, L.; Van Staden, J. Mutagenic and Antimutagenic Properties of Extracts from South African Traditional Medicinal Plants. J. Ethnopharmacol. 2008, 119, 575–587. [Google Scholar] [CrossRef]
Plant Part | Country | Traditional Uses | References |
---|---|---|---|
Bark | Burkina Faso | Oral diseases, toothache, gingivitis, and sores | [56] |
Ethiopia | Lung cancer, stomach pain. | [3,54] | |
Nigeria | Dysentery, ulcers, and wounds | [58] | |
Uganda | Syphilis, oral candidiasis | [51] | |
Leaves | Burkina Faso | Malaria, diarrhea, dental pain, headache, oral diseases, toothache, gingivitis, and sores | [56,57] |
Ethiopia | Lung cancer | [3] | |
Kenya | Eye infections | [49] | |
Nigeria | Dysentery | [58] | |
Uganda | Syphilis, oral candidiasis | [51] | |
Togo | Diarrhea | [55] | |
South Africa | Tuberculosis | [60] | |
Zambia | Tuberculosis | [48] | |
Zimbabwe | Respiratory ailments including pneumonia and tuberculosis | [47] | |
Ocular illnesses, tooth pain, stomatitis, gingivitis, and antibilharzial and anti-ulcerous gastric agents | [44] | ||
Seeds | Ethiopia | Epilepsy and headache (In combination with Ocimum lamiifolium) | [53] |
Roots | Senegal | Malaria, fever, diarrhea, and abscess | [40,41,42,43] |
Kenya | Chest pains, rheumatism, snakebites, diarrhea, and fever | [49] | |
Botswana | Cough, tuberculosis, and sexually transmitted infections | [45] | |
Burkina Faso | Malaria, diarrhea, dental pain, headache, oral diseases, toothache, gingivitis, and sores | [56,57] | |
India | Menorrhagia and leucorrhea | [59] | |
Nigeria | Stomachache, snakebite, amoebic dysentery, and yellow fever | [58] | |
South Africa | Schistosomiasis | [46] | |
Uganda | Syphilis, oral candidiasis, and diabetes mellitus | [51,52] | |
Zimbabwe | Respiratory ailments including pneumonia and tuberculosis. Schistosomiasis | [46,47] | |
Tooth pain, wound skinning, and gonorrhea. | [44] | ||
Root bark | Kenya | Malaria | [50] |
Stem bark | Togo | Diarrhea | [55] |
Sudan | Dysentery, snakebites, and tumors | [10] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramadwa, T.E.; Meddows-Taylor, S. A Review of the Phytochemistry, Molecular Docking, Pharmacology, Toxicology, Ethnopharmacology, Botany, and Clinical Studies of Maytenus senegalensis (Lam.) Excell. Biomolecules 2025, 15, 197. https://doi.org/10.3390/biom15020197
Ramadwa TE, Meddows-Taylor S. A Review of the Phytochemistry, Molecular Docking, Pharmacology, Toxicology, Ethnopharmacology, Botany, and Clinical Studies of Maytenus senegalensis (Lam.) Excell. Biomolecules. 2025; 15(2):197. https://doi.org/10.3390/biom15020197
Chicago/Turabian StyleRamadwa, Thanyani Emelton, and Stephen Meddows-Taylor. 2025. "A Review of the Phytochemistry, Molecular Docking, Pharmacology, Toxicology, Ethnopharmacology, Botany, and Clinical Studies of Maytenus senegalensis (Lam.) Excell" Biomolecules 15, no. 2: 197. https://doi.org/10.3390/biom15020197
APA StyleRamadwa, T. E., & Meddows-Taylor, S. (2025). A Review of the Phytochemistry, Molecular Docking, Pharmacology, Toxicology, Ethnopharmacology, Botany, and Clinical Studies of Maytenus senegalensis (Lam.) Excell. Biomolecules, 15(2), 197. https://doi.org/10.3390/biom15020197