The Transformative Role of Molecular, Cellular, and Blood Biomarkers in Precision Medicine
1. The Expanding Role of Biomarkers in Modern Medicine
2. An Overview of Published Articles
2.1. Original Articles
2.2. Review Articles
3. Conclusions
Declaration of Generative AI and AI-Assisted Technologies in the Writing Process
Conflicts of Interest
List of Contributions
- Murcia-Mejía, M.; Canela-Capdevila, M.; García-Pablo, R.; Jiménez-Franco, A.; Jiménez-Aguilar, J.M.; Badía, J.; Benavides-Villarreal, R.; Acosta, J.C.; Arguís, M.; Onoiu, A.I.; et al. Combining metabolomics and machine learning to identify diagnostic and prognostic biomarkers in patients with non-small cell lung cancer pre- and post-radiation therapy. Biomolecules 2024, 14, 898. https://doi.org/10.3390/biom14080898.
- Kozłowski, M.; Borzyszkowska, D.; Lerch, N.; Turoń-Skrzypińska, A.; Tkacz, M.; Lubikowski, J.; Tarnowski, M.; Rotter, I.; Cymbaluk-Płoska, A. IL-4, IL-7, IL-9, NT, NRP1 may be useful markers in the diagnosis of endometrial cancer. Biomolecules 2024, 14, 1095. https://doi.org/10.3390/biom14091095.
- Middlezong, W.; Stinnett, V.; Phan, M.; Phan, B.; Morsberger, L.; Klausner, M.; Ghabrial, J.; DeMetrick, N.; Zhu, J.; James, T.; et al. Rapid detection of PML::RARA fusions in acute promyelocytic leukemia: CRISPR/Cas9 nanopore sequencing with adaptive sampling. Biomolecules 2024, 14, 1595. https://doi.org/10.3390/biom14121595.
- Hegyi, B.; Csikó, K.G.; Balatoni, T.; Fröhlich, G.; Bőcs, K.; Tóth, E.; Mohos, A.; Neumark, A.R.; Menyhárt, C.D.; Ferrone, S.; et al. Tumor-infiltrating immune cells and HLA expression as potential biomarkers predicting response to PD-1 inhibitor therapy in stage IV melanoma patients. Biomolecules 2024, 14, 1609. https://doi.org/10.3390/biom14121609.
- Xin, R.; Kim, E.; Li, W.T.; Wang-Rodriguez, J.; Ongkeko, W.M. Non-coding RNAs: lncRNA, piRNA, and snoRNA as robust plasma biomarkers of Alzheimer’s disease. Biomolecules 2025, 15, 806. https://doi.org/10.3390/biom15060806.
- Wang, J.; Liu, M.; Zahid, R.; Zhang, W.; Cai, Z.; Liang, Y.; Li, D.; Hao, J.; Xu, Y. Identification of two critical contact residues in a pathogenic epitope from tetranectin for monoclonal antibody binding and preparation of single-chain variable fragments. Biomolecules 2025, 15, 1100. https://doi.org/10.3390/biom15081100.
- Sprenzel, C.J.; Amann, B.; Deeg, C.A.; Degroote, R.L. Glycan signatures on neutrophils in an equine model for autoimmune uveitis. Biomolecules 2025, 15, 1444. https://doi.org/10.3390/biom15101444.
- Quarta, R.; Martino, G.; Romano, L.R.; Lopes, G.; Greco, F.F.; Spaccarotella, C.A.M.; Indolfi, C.; Curcio, A.; Polimeni, A. The role of circulating biomarkers in patients with coronary microvascular disease. Biomolecules 2025, 15, 177. https://doi.org/10.3390/biom15020177.
- Pawluk, H.; Woźniak, A.; Tafelska-Kaczmarek, A.; Kosinska, A.; Pawluk, M.; Sergot, K.; Grochowalska, R.; Kołodziejska, R. The role of IL-6 in ischemic stroke. Biomolecules 2025, 15, 470. https://doi.org/10.3390/biom15040470.
- Serpe, C.; De Sanctis, P.; Marini, M.; Canaider, S.; Abruzzo, P.M.; Zucchini, C. Human blood-derived lncRNAs in autism spectrum disorder. Biomolecules 2025, 15, 937. https://doi.org/10.3390/biom15070937.
- Hon, K.W.; Naidu, R. Unveiling metabolic signatures as potential biomarkers incommon cancers: Insights from lung, breast, colorectal, liver, and gastric tumours. Biomolecules 2025, 15, 1376. https://doi.org/10.3390/biom15101376.
References
- Sharma, R.; Ghosh, G.; Abbas, A.; Mahato, K. Biochemical, biophysical, and digital biomarkers in precision healthcare. In Nano-Bioelectronics for Precision Health Monitoring; Mahato, K., Chandra, P., Eds.; Springer: Singapore, 2025. [Google Scholar] [CrossRef]
- Zafar, S.; Hafeez, A.; Shah, H.; Mutiullah, I.; Ali, A.; Khan, K.; Figueroa-González, G.; Reyes-Hernández, O.D.; Quintas-Granados, L.I.; Peña-Corona, S.I.; et al. Emerging biomarkers for early cancer detection and diagnosis: Challenges, innovations, and clinical perspectives. Eur. J. Med. Res. 2025, 30, 760. [Google Scholar] [CrossRef]
- Salvadó, G.; Janelidze, S.; Bali, D.; Dolado, A.O.; Therriault, J.; Brum, W.S.; Pichet Binette, A.; Stomrud, E.; Mattsson-Carlgren, N.; Palmqvist, S.; et al. Plasma phosphorylated tau 217 to identify preclinical Alzheimer disease. JAMA Neurol. 2025, 82, 1122–1134. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Tao, L.; Qiu, J.; Xu, J.; Yang, X.; Zhang, Y.; Tian, X.; Guan, X.; Cen, X.; Zhao, Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct. Target. Ther. 2024, 9, 132. [Google Scholar] [CrossRef] [PubMed]
- Vo, D.K.; Trinh, K.T.L. Emerging biomarkers in metabolomics: Advancements in precision health and disease diagnosis. Int. J. Mol. Sci. 2024, 25, 13190. [Google Scholar] [CrossRef]
- Zhu, K.; Yang, X.; Tai, H.; Zhong, X.; Luo, T.; Zheng, H. HER2-targeted therapies in cancer: A systematic review. Biomark. Res. 2024, 12, 16. [Google Scholar] [CrossRef]
- Adhit, K.K.; Wanjari, A.; Menon, S.; K, S. Liquid biopsy: An evolving paradigm for non-invasive disease diagnosis and monitoring in medicine. Cureus 2023, 15, e50176. [Google Scholar] [CrossRef] [PubMed]
- Zoccali, C.; Tripepi, G.; Stel, V.; Fu, E.L.; Mallamaci, F.; Dekker, F.; Jager, K.J. Biomarkers in clinical epidemiology studies. Clin. Kidney J. 2024, 17, sfae130. [Google Scholar] [CrossRef] [PubMed]
- FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and Other Tools) Resource [Internet]; Bookshelf ID: NBK326791; Food and Drug Administration (US): Silver Spring, MD, USA, 2016.
- Gupta, S.; Venkatesh, A.; Ray, S.; Srivastava, S. Challenges and prospects for biomarker research: A current perspective from the developing world. Biochim. Biophys. Acta 2014, 1844, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Götze, K.; Vrillon, A.; Dumurgier, J.; Indart, S.; Sanchez-Ortiz, M.; Slimi, H.; Raynaud-Simon, A.; Cognat, E.; Martinet, M.; Zetterberg, H.; et al. Plasma neurofilament light chain as prognostic marker of cognitive decline in neurodegenerative diseases, a clinical setting study. Alzheimers Res. Ther. 2024, 16, 231. [Google Scholar] [CrossRef] [PubMed]
- Papa, L.; McKinley, W.I.; Valadka, A.B.; Newman, Z.C.; Nordgren, R.K.; Pramuka, P.E.; Barbosa, C.E.; Brito, A.M.P.; Loss, L.J.; Tinoco-Garcia, L.; et al. Diagnostic performance of GFAP, UCH-L1, and MAP-2 within 30 and 60 minutes of traumatic brain injury. JAMA Netw. Open 2024, 7, e2431115. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camps, J.; Fort-Gallifa, I.; Gabaldó-Barrios, X. The Transformative Role of Molecular, Cellular, and Blood Biomarkers in Precision Medicine. Biomolecules 2025, 15, 1680. https://doi.org/10.3390/biom15121680
Camps J, Fort-Gallifa I, Gabaldó-Barrios X. The Transformative Role of Molecular, Cellular, and Blood Biomarkers in Precision Medicine. Biomolecules. 2025; 15(12):1680. https://doi.org/10.3390/biom15121680
Chicago/Turabian StyleCamps, Jordi, Isabel Fort-Gallifa, and Xavier Gabaldó-Barrios. 2025. "The Transformative Role of Molecular, Cellular, and Blood Biomarkers in Precision Medicine" Biomolecules 15, no. 12: 1680. https://doi.org/10.3390/biom15121680
APA StyleCamps, J., Fort-Gallifa, I., & Gabaldó-Barrios, X. (2025). The Transformative Role of Molecular, Cellular, and Blood Biomarkers in Precision Medicine. Biomolecules, 15(12), 1680. https://doi.org/10.3390/biom15121680
