Embracing the Multifaceted Roles of Biomolecules in Biology and Medicine
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- So long to the silos. Nat. Biotechnol. 2016, 34, 357. [CrossRef]
- Shah, D. Biomolecules: The Elements That Make Up Life. Int. J. Basic Clin. Stud. 2023, 8, 1–3. [Google Scholar] [CrossRef]
- Barr, A.J. The biochemical basis of disease. Essays Biochem. 2018, 62, 619–642. [Google Scholar] [CrossRef]
- Zhang, V. The potential role of biomolecules in cellular function. Global J. Life Sci. Res. 2023, 9, 32. [Google Scholar] [CrossRef]
- Wygrecka, M.; Kosanovic, D.; Kwapiszewska, G.; Preissner, K.T. Multitasking biomolecules in human pathologies: Known players on their unexpected journeys. Front. Med. 2020, 7, 748. [Google Scholar] [CrossRef]
- Stranger, B.E.; Dermitzakis, E.T. From DNA to RNA and back: The ‘central dogma’ of regulatory disease variation. Hum. Genom. 2006, 2, 383. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Jeon, Y.; Lim, J.Y.; Kim, Y.; Cha, B.; Kim, W. Emerging regulatory mechanisms and functions of biomolecular condensates: Implications for therapeutic targets. Nat. Signal Transduct. Target. Ther. 2025, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Kortagere, S.; Krasowski, M.D.; Ekins, S. The importance of discerning shape in molecularpharmacology. Trends Pharmacol. Sci. 2009, 30, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.K. Enzymes: Principles and biotechnological applications. Essays Biochem. 2015, 59, 1–41. [Google Scholar] [CrossRef]
- McBride, J.M.; Eckmann, J.; Tlusty, T. General theory of specific binding: Insights from a genetic-mechano-chemical protein model. Mol. Biol. Evol. 2022, 39, msac217. [Google Scholar] [CrossRef]
- Bich, L.; Mossio, M.; Soto, A.M. Glycemia regulation: From feedback loops to organizational closure. Front. Physiol. 2020, 11, 69. [Google Scholar] [CrossRef]
- Rao, G.H.R. Role of Biomolecules, Biologics in Precision Medicine. Personalized Medicine and Emerging Therapies. Int. J. Biomed. 2022, 12, 70–81. [Google Scholar] [CrossRef]
- Rao, G.H.R. Editorial: Insights in diabetes: Molecular mechanisms 2022. Front. Endocrinol. 2023, 14, 1242759. [Google Scholar] [CrossRef]
- Tate, A.R.; Rao, G.H.R. Inflammation: Is it a healer, Confounder, or a Promoter of Cardiometabolic Risks? Biomolecules 2024, 14, 948. [Google Scholar] [CrossRef]
- Tate, A.C.; Rao, G.H.R. Cardiometabolic Diseases: Cellular and Molecular Mechanisms. Cardiol Cardiovasc. Res. 2025, 3, 1–15. [Google Scholar] [CrossRef]
- Conley, J.M.; Jochim, A.; Evans-Molina, C.; Watts, V.J.; Ren, H. G Protein-Coupled Receptor 17 inhibits Glucagon-like Peptide-1. Secretion via Gi/o-dependent mechanisms in enteroendocrine cells. Biomolecules 2025, 15, 9. [Google Scholar] [CrossRef]
- Antoniewicz, M.R. A guide to metabolic flux analysis in metabolic engineering: Methods, tools and applications. Metab. Eng. 2021, 63, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Villanueva, J.; Diaz-Molina, R.; Gardia-Gonzalez, V. Protein folding and mechanisms of proteostasis. Int. J. Mol. Sci. 2015, 16, 17193–17230. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Huang, X.; Dou, L.; Yan, M.; Shen, T.; Tang, W.; Li, J. Aging and aging-related diseases: From molecular mechanisms to interventions and treatments. Signal Transduct. Target. Ther. 2022, 7, 391. [Google Scholar] [CrossRef]
- Li, Q.; Xiao, N.; Zhang, H.; Liang, G.; Lin, Y.; Qian, Z.; Yang, X.; Yang, J.; Fu, Y.; Zhang, C.; et al. Systemic ageing and ageing-related diseases. FASEB J. 2025, 39, e70430. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Li, D.; Guo, Q.; Wang, R.; Li, W. Effect of HB conformational changes on oxygen transport physiology. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2024, 49, 467–475. [Google Scholar] [PubMed]
- Babu, C.S.; Babar, S.M.; Song, E.J.; Oh, E.; Yoo, Y.S. Kinetic analysis of the MAPK and P13K/Akt signalling pathways. Mol. Cells 2008, 25, 397–406. [Google Scholar] [CrossRef]
- Asmamaw, M.; Zawdie, B. Mechanisms and applications of CRISPR/Cas-9-mediated Genome Editing. Biologics 2021, 15, 353–361. [Google Scholar] [PubMed]
- Meyts, P.D. The Insulin Receptor and Its Signal Transduction Network; Feingold, K.R., Ahmed, S.F., Anawalt, B., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK378978/ (accessed on 15 November 2025).
- Abuetabh, Y.; Wu, H.H.; Chai, C.; Al Yousef, H.; Persad, S.; Sergi, C.M.; Leng, R. DNA damage response revisited: The p53 family and its regulators provide endless cancer therapy opportunities. Exp. Mol. Med. 2022, 54, 1658–1669. [Google Scholar] [CrossRef]
- Altna-Bonnet, G.; Mukherjee, R. Cytokine-mediated communication: A quantitative appraisal of immune complexity. Nat. Rev. Immunol. 2019, 19, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Solaro, R.J.; Rosevear, P.; Kobayashi, T. The unique functions of cardiac troponin 1 in the control of cardiac muscle contraction and relaxation. Biochem. Biophys. Res. Comm. 2007, 369, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Mahley, R.W. Apolipoprotein E: Structure and function in lipid metabolism, neurobiology, and Alzhemiers’s diseases. Neurobiol. Dis. 2014, 72, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Orihashi, R.; Imamura, Y.; Yamada, S.; Monji, A.; Mizoguchi, Y. Association between cortisol and aging-related hippocampus volume changes in community-dwelling older adults: A 7-year follow-up study. BMC Geriatr. 2022, 22, 765. [Google Scholar] [CrossRef] [PubMed]
- Fiszman, G.L.; Jasnis, M.A. Molecular mechanisms of Trastuzumab resistance in HER2 overexpressing breast cancer. Int. J. Breast Cancer 2011, 2011, 352182. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, G.H.R. Embracing the Multifaceted Roles of Biomolecules in Biology and Medicine. Biomolecules 2025, 15, 1636. https://doi.org/10.3390/biom15121636
Rao GHR. Embracing the Multifaceted Roles of Biomolecules in Biology and Medicine. Biomolecules. 2025; 15(12):1636. https://doi.org/10.3390/biom15121636
Chicago/Turabian StyleRao, Gundu H. R. 2025. "Embracing the Multifaceted Roles of Biomolecules in Biology and Medicine" Biomolecules 15, no. 12: 1636. https://doi.org/10.3390/biom15121636
APA StyleRao, G. H. R. (2025). Embracing the Multifaceted Roles of Biomolecules in Biology and Medicine. Biomolecules, 15(12), 1636. https://doi.org/10.3390/biom15121636
