Phospholipases A2 (PLA2s) and Related Peptides from Bothrops Snake Venoms: History, Structure, Pharmacology, and Inhibitors
Abstract
1. Introduction
2. PLA2: Classification and Mechanistic Pathway
| Type | Group | Subgroup | Alternative Name | Sources | Catalytic Residue |
|---|---|---|---|---|---|
| Secretory | I | A | sPLA2 | Cobras, kraits | His/Asp |
| I | B | Human, porcine | |||
| II | A | Rattlesnake, human synovial fluid | |||
| II | B | Gaboon viper | |||
| II | C | Rat, murine | |||
| II | D, E, F | Human, murine | |||
| III | Not reported | Lizard/bee | |||
| V | Not reported | Human, murine | |||
| IX | Not reported | Snail venom | |||
| X | Not reported | Human | |||
| XI | A, B | Green rice shoots | |||
| XII | A, B | Human, Murine | |||
| XII | Not reported | Parvovirus | |||
| XIV | Not reported | Symbiotic fungus | |||
| Cytosolic | IV | A | cPLA2α | Human, murine | Ser/Asp |
| Cytosolic | IV | B | cPLA2β | Human, murine | |
| Cytosolic | IV | C | cPLA2γ | Human, murine | |
| Cytosolic | IV | D | cPLA2δ | Human, murine | |
| Cytosolic | IV | E | cPLA2ε | Human, murine | |
| Cytosolic | IV | F | cPLA2ζ | Human, murine | |
| Independent | VI | A | iPLA2α/iPLA2β | Human, murine | |
| Independent | VI | B | iPLA2γ | Human, murine | |
| Independent | VI | C | iPLA2δ | Human, murine | |
| Independent | VI | D | iPLA2ε | Human, murine | |
| Independent | VI | E | iPLA2ζ | Human, murine | |
| Independent | VI | F | iPLA2η | Human, murine | |
| Lipoprotein-associated | VII | A, B | Lp-PLA2/PAF-AH | Human, porcine, murine, bovine | Ser/His/Asp |
| VIII | A, B | Human | |||
| Lysosomal | XV | Not reported | LPLA2 | Human, murine, bovine | |
| Adipose Tissue Specific | XVI | Not reported | Ad-PLA2 | Human, mouse | Cys/His/His |
2.1. Secreted PLA2 (sPLA2)
| PLA2 | Bothrops Species | Function | Lenght | UniProt Entry |
|---|---|---|---|---|
| BaTX | B. alternatus | Edema-inducing activities; irreversible neuromuscular blockade. | 121 aa | P86453 |
| Myotoxin I | B. asper | Local myotoxic activity; anticoagulant action in plasma; edema-inducing; cytotoxic activity; bactericidal activity. | 138 aa | P20474 |
| Homolog 2 | Lacks enzymatic activity. It is myotoxic and induces a dose-dependent edema in the mouse foot pad. It also exhibits strong anticoagulant effects by binding to factor Xa (F10) and inhibiting the prothrombinase activity. Additionally, it shows cytotoxic activity against a variety of cell types and bactericidal activity against both Gram-negative and Gram-positive bacteria. It also induces a very rapid release of large amounts of potassium ions and ATP from muscle cells. | 137 aa | P24605 | |
| Braziliase-I | B. brazili | Edematogenic activity; mild cytotoxicity on Trypanosoma cruzi and Leishmania infantum; inhibits ADP- and collagen-induced platelet aggregation. | 107 aa | P0DUN3 |
| Braziliase-II | 92 aa * | P0DUN4 | ||
| Myotoxin-I | Exhibits myotoxin and anticoagulant activity; edema-inducing activities; cytotoxic activity against some cell lines and myotubes; antimicrobial activities against E. coli, C. albicans and Leishmania. | 78 aa * | P0DQP9 | |
| Basic phospholipase A2 homolog 2 | Myotoxic and displays edema-inducing activities; cytotoxic activity against myotubes | 121 aa | P0DTS8 | |
| Homolog 2 | Lacks enzymatic activity; myotoxic; edema-inducing; cytotoxic activity; antimicrobial activities against E. coli, C. albicans and Leishmania. | 121 aa | I6L8L6 | |
| Snaclec | B. diporus | Interferes with one step of hemostasis | 32 aa * | C0HJQ0 |
| sPLA2-I | Not reported | 138 aa | I2DAL4 | |
| sPLA2-II | 138 aa | I2DAL5 | ||
| Myo-II | 138 aa | I2DAL6 | ||
| BITP01A | B. insularis | Induces edema; produces neuromuscular blockade in chick biventer cervicis; increases CK release and produces myonecrosis; catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. | 138 aa | Q8QG87 |
| Acidic phospholipase A2 | Not reported | 107 aa * | P84397 | |
| Bothropstoxin-I | B. jararacussu | Local myotoxic activity; induces inflammation, edema and leukocytes infiltration; induces NLRP3 NLRP3, ASC (PYCARD), caspase-1 (CASP1), and IL-1beta (IL1B) gene expression in the gastrocnemius muscle, showing that it is able to activate NLRP3 inflammasome also damages artificial and myoblast membranes by a calcium-independent mechanism; bactericidal activity; induces neuromuscular blockade. | 137 aa | Q90249 |
| Bothropstoxin-II | Myotoxic activity; induces indirect hemolysis; anticoagulant properties; cytotoxic activities; induces muscle necrosis; polymorphonuclear cell infiltration; edema. | 138 aa | P45881 | |
| BthA-1 | Edema-inducing activities; inhibits phospholipid-dependent collagen; ADP-induced platelet aggregation; anticoagulant activities; bactericidal activity against E. coli and S. aureus; catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. | 138 aa | Q8AXY1 | |
| blK-PLA2 | B. leucurus | Myotoxic and edema-inducing activities. | 121 aa | P8697 |
| Basic phospholipase A2 | Cytotoxic; anticoagulant activity; induces Ehrlich tumor growth but not angiogenesis; catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. | 122 aa | P86974 | |
| Myotoxin II | B. moojeni | High myotoxin activities; neurotoxicity; edema-inducing activities; antimicrobial activity against E. coli and C. albicans; antitumoral activity against some human and mice cell lines. | 122 aa | Q9I834 |
| BnpTX-1 | B. pauloensis | In vitro, shows anticoagulant activity and induces cytotoxicity when tested on C2C12 myoblasts/myotubes. In vivo, when tested on mice, induces myotoxicity (intramuscular injection), edema (injection in the subplantar region) and lethality. Also induces neurotoxic effect on mouse neuromuscular preparations and has bactericidal activity | 50 aa * | P0DM51 |
| BnpTX-2 | Anticoagulant activity; cytotoxicity when tested on C2C12 myoblasts/myotubes; myotoxicity; edema; catalytic; anticoagulant activities; catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. | 35 aa * | P0DM52 | |
| BnSP-7 | Myotoxic; edema-inducing activity; bactericidal activity; promotes the blockage of the neuromuscular contraction of the chick biventer cervicis muscle; disrupts artificial membranes; tissue damages; edema, necrosis; inflammation; may act as pro-inflammatory mediator. | 121 aa | Q9IAT9 | |
| Piratoxin-2 | B. pirajai | Myotoxic activity and edema-inducing activities. | 121 aa | P82287 |
Lys49 PLA2-like
2.2. Cytosolic PLA2 (cPLA2)
2.3. Ca2+ Independent PLA2 (iPLA2)
3. PLA2s Function in Snakebites
4. Review of Phospholipases from Bothrops sp. Described in the Literature
5. Biotechnological and Therapeutic Applications of PLA2s and Peptides Derived from Snake Venom PLA2s
6. Phospholipase Inhibitors
7. Conclusions
8. Methodology
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carrasco, P.A.; Harvey, M.B.; Saravia, A.M. The Rare Andean Pitviper Rhinocerophis jonathani (Serpentes: Viperidae: Crotalinae): Redescription with Comments on Its Systematics and Biogeography. Zootaxa 2009, 2283, 1–15. [Google Scholar] [CrossRef]
- Carrasco, P.; Leynaud, G.; Scrocchi, G. Redescription of the Southernmost Snake Species, Bothrops ammodytoides (Serpentes: Viperidae: Crotalinae). Amphibia-Reptilia 2010, 31, 323–338. [Google Scholar] [CrossRef]
- Harvey, M.B. A New Species Of Montane Pitviper (Serpentes, Viperidae, Bothrops) From Cochabamba, Bolivia. Proc. Biol. Soc. Wash. 1994, 107, 60–66. [Google Scholar]
- Lira-da-Silva, R.M.; Mise, Y.F.; Casais-e-Silva, L.L.; Ulloa, J.; Hamdan, B.; Brazil, T.K. Serpentes de importância médica do Nordeste do Brasil. Gaz. Médica Bahia 2009, 79 (Suppl. S1), 7–20. [Google Scholar]
- Wallach, V.; Williams, K.L.; Boundy, J. Cobras do Mundo: Um Catálogo de Espécies Vivas e Extintas, 1st ed.; CRC Press-Taylor & Francis Group: Boca Raton, FL, USA, 2014. [Google Scholar]
- Wüster, W. The Venomous Reptiles of the Western Hemisphere, Jonathan A. Campbell, William W. Lamar. Comstock. Trans. R. Soc. Trop. Med. Hyg. 2005, 99, 476–477. [Google Scholar] [CrossRef]
- Bernarde, P.S.; Pucca, M.B.; Mota-da-Silva, A.; Da Fonseca, W.L.; De Almeida, M.R.N.; De Oliveira, I.S.; Cerni, F.A.; Gobbi Grazziotin, F.; Sartim, M.A.; Sachett, J.; et al. Bothrops bilineatus: An Arboreal Pitviper in the Amazon and Atlantic Forest. Front. Immunol. 2021, 12, 778302. [Google Scholar] [CrossRef]
- Barbo, F.E.; Grazziotin, F.G.; Sazima, I.; Martins, M.; Sawaya, R.J. A New and Threatened Insular Species of Lancehead from Southeastern Brazil. Herpetologica 2012, 68, 418–429. [Google Scholar] [CrossRef]
- Barbo, F.E.; Gasparini, J.L.; Almeida, A.P.; Zaher, H.; Grazziotin, F.G.; Gusmão, R.B.; Ferrarini, J.M.G.; Sawaya, R.J. Another New and Threatened Species of Lancehead Genus Bothrops (Serpentes, Viperidae) from Ilha Dos Franceses, Southeastern Brazil. Zootaxa 2016, 4097, 511–529. [Google Scholar] [CrossRef]
- Guedes, T.B.; Sawaya, R.J.; Zizka, A.; Laffan, S.; Faurby, S.; Pyron, R.A.; Bérnils, R.S.; Jansen, M.; Passos, P.; Prudente, A.L.C.; et al. Patterns, Biases and Prospects in the Distribution and Diversity of Neotropical Snakes. Glob. Ecol. Biogeogr. 2018, 27, 14–21. [Google Scholar] [CrossRef]
- Guedes, T.B.; Nogueira, C.; Marques, O.A.V. Diversity, Natural History, and Geographic Distribution of Snakes in the Caatinga, Northeastern Brazil. Zootaxa 2014, 3863, 1–93. [Google Scholar] [CrossRef]
- Turci, L.C.B.; Albuquerque, S.D.; Bernarde, P.S.; Miranda, D.B. Uso Do Hábitat, Atividade e Comportamento de Bothriopsis bilineatus e de Bothrops atrox (Serpentes: Viperidae) Na Floresta Do Rio Moa, Acre, Brasil. Biota Neotrop. 2009, 9, 197–206. [Google Scholar] [CrossRef]
- Reptile Database the Reptile Database. Available online: https://reptile-database.reptarium.cz/ (accessed on 22 November 2024).
- Sociedade Brasileira de Herpetologia. Herpetologia Brasileira. 2023, Volume 12. Available online: https://sbherpetologia.org.br/revista-herpetologia-brasileira (accessed on 22 November 2024).
- Sampat, G.H.; Hiremath, K.; Dodakallanavar, J.; Patil, V.S.; Harish, D.R.; Biradar, P.; Mahadevamurthy, R.K.; Barvaliya, M.; Roy, S. Unraveling Snake Venom Phospholipase A2: An Overview of Its Structure, Pharmacology, and Inhibitors. Pharmacol. Rep. 2023, 75, 1454–1473. [Google Scholar] [CrossRef]
- WHO Snakebite Envenoming; World Health Organization: Geneva, Switzerland, 2025.
- Bernarde, P.S. Serpentes Peçonhentas e Acidentes Ofídicos No Brasil; Anolis Books: São Paulo, Brazil, 2014; ISBN 978-85-65622-04-2. [Google Scholar]
- Silva, N.B.; Dias, E.H.V.; Costa, J.D.O.; Mamede, C.C.N. Bothrops moojeni Snake Venom: A Source of Potential Therapeutic Agents Against Hemostatic Disorders. Int. J. Cardiovasc. Sci. 2024, 37, e20220075. [Google Scholar] [CrossRef]
- TabNet Win32 3.3: Acidente por Animais Peçonhentos-Notificações Registradas No Sistema de Informação de Agravos de Notificação-Brasil. Available online: http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sinannet/cnv/animaisbr.def (accessed on 17 July 2025).
- Melgarejo, A.R. Animais Peçonhentos No Brasil: Biologia, Clínica e Terapêutica dos Acidentes; Sar vier: São Paulo, Brazil, 2003; pp. 33–61. [Google Scholar]
- Romanazzi, M.; Filardi, E.T.M.; Pires, G.M.M.; Cerveja, M.F.; Melo-dos-Santos, G.; Oliveira, I.S.; Ferreira, I.G.; Cerni, F.A.; Santos-Filho, N.A.; Monteiro, W.M.; et al. The Versatility of Serine Proteases from Brazilian Bothrops Venom: Their Roles in Snakebites and Drug Discovery. Biomolecules 2025, 15, 154. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, S.C.; Da Silva, M.S.; Gomes, A.A.S.; Moretti, N.S.; Lopes, D.S.; Ferro, E.A.V.; Rodrigues, V.D.M. Panacea within a Pandora’s Box: The Antiparasitic Effects of Phospholipases A2 (PLA2s) from Snake Venoms. Trends Parasitol. 2022, 38, 80–94. [Google Scholar] [CrossRef] [PubMed]
- Koh, D.C.I.; Armugam, A.; Jeyaseelan, K. Snake Venom Components and Their Applications in Biomedicine. Cell. Mol. Life Sci. CMLS 2006, 63, 3030–3041. [Google Scholar] [CrossRef]
- Tu, A.T. Overview of Snake Venom Chemistry. In Natural Toxins 2: Structure, Mechanism of Action, and Detection; Singh, B.R., Tu, A.T., Eds.; Springer: Boston, MA, USA, 1996; pp. 37–62. ISBN 978-1-4613-0361-9. [Google Scholar]
- Calvete, J.J.; Juárez, P.; Sanz, L. Snake Venomics. Strategy and Applications. J. Mass Spectrom. 2007, 42, 1405–1414. [Google Scholar] [CrossRef]
- Calvete, J.J. Venomics: Digging into the Evolution of Venomous Systems and Learning to Twist Nature to Fight Pathology. J. Proteom. 2009, 72, 121–126. [Google Scholar] [CrossRef]
- Mamede, C.C.N.; De Sousa Simamoto, B.B.; Da Cunha Pereira, D.F.; De Oliveira Costa, J.; Ribeiro, M.S.M.; De Oliveira, F. Edema, Hyperalgesia and Myonecrosis Induced by Brazilian Bothropic Venoms: Overview of the Last Decade. Toxicon 2020, 187, 10–18. [Google Scholar] [CrossRef]
- Alape-Girón, A.; Sanz, L.; Escolano, J.; Flores-Díaz, M.; Madrigal, M.; Sasa, M.; Calvete, J.J. Snake Venomics of the Lancehead Pitviper Bothrops asper: Geographic, Individual, and Ontogenetic Variations. J. Proteome Res. 2008, 7, 3556–3571. [Google Scholar] [CrossRef]
- da Brasil, M.S. Guia-Animais Peçonhentos do Brasil—Ministério da Saúde, 1st ed.; Ministério da Saúde do Brasil: Brasília, Brazil, 2024; ISBN 978-65-5993-598-7. [Google Scholar]
- de Leite, R.S.; Targino, I.T.G.; Lopes, Y.A.C.F.; Barros, R.M.; Vieira, A.A. Epidemiology of Snakebite Accidents in the Municipalities of the State of Paraíba, Brazil. Cienc. Saude Coletiva 2013, 18, 1463–1471. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nicoleti, A.F.; Medeiros, C.R.; Duarte, M.R.; de França, F.O.S. Comparison of Bothropoides jararaca bites with and without envenoming treated at the Vital Brazil Hospital of the Butantan Institute, State of São Paulo, Brazil. Rev. Soc. Bras. Med. Trop. 2010, 43, 657–661. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Machado, A.S.; Barbosa, F.B.; da Mello, G.S.; de O. Pardal, P.P. Hemorrhagic stroke related to snakebite by Bothrops genus: A case report. Rev. Soc. Bras. Med. Trop. 2010, 43, 602–604. [Google Scholar] [CrossRef] [PubMed]
- Otero, R.; Gutiérrez, J.; Beatriz Mesa, M.; Duque, E.; Rodríguez, O.; Luis Arango, J.; Gómez, F.; Toro, A.; Cano, F.; María Rodríguez, L.; et al. Complications of Bothrops, Porthidium, and Bothriechis Snakebites in Colombia. A Clinical and Epidemiological Study of 39 Cases Attended in a University Hospital. Toxicon 2002, 40, 1107–1114. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Ownby, C.L. Skeletal Muscle Degeneration Induced by Venom Phospholipases A2: Insights into the Mechanisms of Local and Systemic Myotoxicity. Toxicon 2003, 42, 915–931. [Google Scholar] [CrossRef]
- Kini, R.M.; Evans, H.J. A Model to Explain the Pharmacological Effects of Snake Venom Phospholipases A2. Toxicon 1989, 27, 613–635. [Google Scholar] [CrossRef]
- Manjunatha Kini, R. Excitement Ahead: Structure, Function and Mechanism of Snake Venom Phospholipase A2 Enzymes. Toxicon 2003, 42, 827–840. [Google Scholar] [CrossRef]
- Kuchler, K.; Gmachl, M.; Sippl, M.J.; Kreil, G. Analysis of the cDNA for Phospholipase A2 from Honeybee Venom Glands. Eur. J. Biochem. 1989, 184, 249–254. [Google Scholar] [CrossRef]
- Lee, H.Y.; Bahn, S.C.; Shin, J.S.; Hwang, I.; Back, K.; Doelling, J.H.; Beungtae Ryu, S. Multiple Forms of Secretory Phospholipase A2 in Plants. Prog. Lipid Res. 2005, 44, 52–67. [Google Scholar] [CrossRef]
- McIntosh, J.M.; Ghomashchi, F.; Gelb, M.H.; Dooley, D.J.; Stoehr, S.J.; Giordani, A.B.; Naisbitt, S.R.; Olivera, B.M. Conodipine-M, a Novel Phospholipase A2 Isolated from the Venom of the Marine Snail Conus magus. J. Biol. Chem. 1995, 270, 3518–3526. [Google Scholar] [CrossRef]
- Ryu, Y.; Oh, Y.; Yoon, J.; Cho, W.; Baek, K. Molecular Characterization of a Gene Encoding the Drosophila melanogaster Phospholipase A2. Biochim. Biophys. Acta BBA-Gene Struct. Expr. 2003, 1628, 206–210. [Google Scholar] [CrossRef]
- Valentin, E.; Lambeau, G. What Can Venom Phospholipases A2 Tell Us about the Functional Diversity of Mammalian Secreted Phospholipases A2? Biochimie 2000, 82, 815–831. [Google Scholar] [CrossRef]
- Doery, H.M.; Pearson, J.E. Haemolysins in Venoms of Australian Snakes. Observations on the Haemolysins of the Venoms of Some Australian Snakes and the Separation of Phospholipase A from the Venom of Pseudechis porphyriacus. Biochem. J. 1961, 78, 820–827. [Google Scholar] [CrossRef]
- Hanahan, D.J.; Brockerhoff, H.; Barron, E.J. The Site of Attack of Phospholipase (Lecithinase) A on Lecithin: A Re-Evaluation. Position of Fatty Acids on Lecithins and Triglycerides. J. Biol. Chem. 1960, 235, 1917–1923. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Ilies, M.A. The Phospholipase A2 Superfamily: Structure, Isozymes, Catalysis, Physiologic and Pathologic Roles. Int. J. Mol. Sci. 2023, 24, 1353. [Google Scholar] [CrossRef] [PubMed]
- Dennis, E.A.; Cao, J.; Hsu, Y.-H.; Magrioti, V.; Kokotos, G. Phospholipase A2 Enzymes: Physical Structure, Biological Function, Disease Implication, Chemical Inhibition, and Therapeutic Intervention | Chemical Reviews. Chem. Rev. 2011, 111, 6130–6185. [Google Scholar] [CrossRef]
- Lam, L.; Ilies, M.A. Evaluation of the Impact of Esterases and Lipases from the Circulatory System against Substrates of Different Lipophilicity. Int. J. Mol. Sci. 2022, 23, 1262. [Google Scholar] [CrossRef]
- Six, D.A.; Dennis, E.A. The Expanding Superfamily of Phospholipase A2 Enzymes: Classification and Characterization. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids 2000, 1488, 1–19. [Google Scholar] [CrossRef]
- Abbott, M.J.; Tang, T.; Sul, H.S. The Role of Phospholipase A2-Derived Mediators in Obesity. Drug Discov. Today Dis. Mech. 2010, 7, e213–e218. [Google Scholar] [CrossRef]
- Peng, Z.; Chang, Y.; Fan, J.; Ji, W.; Su, C. Phospholipase A2 Superfamily in Cancer. Cancer Lett. 2021, 497, 165–177. [Google Scholar] [CrossRef]
- Balboa, M.A.; Balsinde, J. Phospholipases: From Structure to Biological Function. Biomolecules 2021, 11, 428. [Google Scholar] [CrossRef] [PubMed]
- Quach, N.D.; Arnold, R.D.; Cummings, B.S. Secretory Phospholipase A2 Enzymes as Pharmacological Targets for Treatment of Disease. Biochem. Pharmacol. 2014, 90, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.C.; Rastogi, P.; Beckett, C.S.; McHowat, J. Phospholipase A2 Inhibitors as Potential Anti-Inflammatory Agents. Curr. Pharm. Des. 2005, 11, 1301–1312. [Google Scholar] [CrossRef] [PubMed]
- Garcia Denegri, M.E.; Acosta, O.C.; Huancahuire-Vega, S.; Martins-de-Souza, D.; Marangoni, S.; Maruñak, S.L.; Teibler, G.P.; Leiva, L.C.; Ponce-Soto, L.A. Isolation and Functional Characterization of a New Acidic PLA2 Ba SpII RP4 of the Bothrops alternatus Snake Venom from Argentina. Toxicon 2010, 56, 64–74. [Google Scholar] [CrossRef]
- Arni, R.K.; Ward, R.J.; Gutierrez, J.M.; Tulinsky, A. Structure of a Calcium-Independent Phospholipase-like Myotoxic Protein from Bothrops asper Venom. Acta Crystallogr. D Biol. Crystallogr. 1995, 51, 311–317. [Google Scholar] [CrossRef]
- Dunn, R.D.; Broady, K.W. Snake Inhibitors of Phospholipase A2 Enzymes. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids 2001, 1533, 29–37. [Google Scholar] [CrossRef]
- Gelb, M.H.; Min, J.-H.; Jain, M.K. Do Membrane-Bound Enzymes Access Their Substrates from the Membrane or Aqueous Phase: Interfacial versus Non-Interfacial Enzymes. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids 2000, 1488, 20–27. [Google Scholar] [CrossRef]
- Carredano, E.; Westerlund, B.; Persson, B.; Saarinen, M.; Ramaswamy, S.; Eaker, D.; Eklund, H. The Three-Dimensional Structures of Two Toxins from Snake Venom Throw Light on the Anticoagulant and Neurotoxic Sites of Phospholipase A2. Toxicon 1998, 36, 75–92. [Google Scholar] [CrossRef]
- Francis, B.R.; Da Silva, N.J.; Seebart, C.; Silva, L.L.C.E.; Schmidt, J.J.; Kaiser, I.I. Toxins Isolated from the Venom of the Brazilian Coral Snake (Micrurus frontalis frontalis) Include Hemorrhagic Type Phospholipases A2 and Postsynaptic Neurotoxins. Toxicon 1997, 35, 1193–1203. [Google Scholar] [CrossRef]
- Chijiwa, T.; Tokunaga, E.; Ikeda, R.; Terada, K.; Ogawa, T.; Oda-Ueda, N.; Hattori, S.; Nozaki, M.; Ohno, M. Discovery of Novel [Arg49]Phospholipase A2 Isozymes from Protobothrops elegans Venom and Regional Evolution of Crotalinae Snake Venom Phospholipase A2 Isozymes in the Southwestern Islands of Japan and Taiwan. Toxicon 2006, 48, 672–682. [Google Scholar] [CrossRef]
- Tsai, I.-H.; Wang, Y.-M.; Chen, Y.-H.; Tsai, T.-S.; Tu, M.-C. Venom Phospholipases A2 of Bamboo Viper (Trimeresurus stejnegeri): Molecular Characterization, Geographic Variations and Evidence of Multiple Ancestries. Biochem. J. 2004, 377, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, E.A.; Kayano, A.M.; Diniz-Sousa, R.; Setúbal, S.S.; Zanchi, F.B.; Zuliani, J.P.; Matos, N.B.; Almeida, J.R.; Resende, L.M.; Marangoni, S.; et al. Isolation, Structural and Functional Characterization of a New Lys49 Phospholipase A2 Homologue from Bothrops neuwiedi Urutu with Bactericidal Potential. Toxicon 2016, 115, 13–21. [Google Scholar] [CrossRef]
- Salvador, G.H.M.; Dos Santos, J.I.; Lomonte, B.; Fontes, M.R.M. Crystal Structure of a Phospholipase A2 from Bothrops asper Venom: Insights into a New Putative “Myotoxic Cluster”. Biochimie 2017, 133, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Castro-Amorim, J.; de Oliveira, A.N.; Silva, S.L.D.; Soares, A.M.; Mukherjee, A.K.; Ramos, M.J.; Fernandes, P.A. Catalytically Active Snake Venom PLA2 Enzymes: An Overview of Its Elusive Mechanisms of Reaction. J. Med. Chem. 2023, 66, 5364–5376. [Google Scholar] [CrossRef] [PubMed]
- Zambelli, V.; Picolo, G.; Fernandes, C.; Fontes, M.; Cury, Y. Secreted Phospholipases A2 from Animal Venoms in Pain and Analgesia. Toxins 2017, 9, 406. [Google Scholar] [CrossRef]
- Teixeira, S.S.; Silveira, L.B.; da Silva, F.M.N.; Marchi-Salvador, D.P.; Silva, F.P.; Izidoro, L.F.M.; Fuly, A.L.; Juliano, M.A.; dos Santos, C.R.; Murakami, M.T.; et al. Molecular Characterization of an Acidic Phospholipase A2 from Bothrops pirajai Snake Venom: Synthetic C-Terminal Peptide Identifies Its Antiplatelet Region. Arch. Toxicol. 2011, 85, 1219–1233. [Google Scholar] [CrossRef]
- Harris, J.B. Myotoxic Phospholipases A2 and the Regeneration of Skeletal Muscles. Toxicon 2003, 42, 933–945. [Google Scholar] [CrossRef]
- Maruñak, S.L.; Leiva, L.; Denegri, M.E.; Teibler, P.; Acosta, O. Isolation and Biological Characterization of a Basic Phospholipase A2 from Bothrops jararacussu Snake Venom. Biocell 2007, 31, 355–364. [Google Scholar] [CrossRef]
- Ownby, C.L. Structure, Function and Biophysical Aspects of the Myotoxins from Snake Venoms. J. Toxicol. Toxin Rev. 1998, 17, 213–238. [Google Scholar] [CrossRef]
- Lomonte, B. Lys49 Myotoxins, Secreted Phospholipase A2-like Proteins of Viperid Venoms: A Comprehensive Review. Toxicon 2023, 224, 107024. [Google Scholar] [CrossRef]
- Lomonte, B.; Angulo, Y.; Sasa, M.; Gutiérrez, J.M. The Phospholipase A2 Homologues of Snake Venoms: Biological Activities and Their Possible Adaptive Roles. Protein Pept. Lett. 2009, 16, 860–876. [Google Scholar] [CrossRef] [PubMed]
- Sousa, L.F.; Freitas, A.P.; Cardoso, B.L.; Del-Rei, T.H.M.; Mendes, V.A.; Oréfice, D.P.; Rocha, M.M.T.; Prezoto, B.C.; Moura-da-Silva, A.M. Diversity of Phospholipases A2 from Bothrops atrox Snake Venom: Adaptive Advantages for Snakes Compromising Treatments for Snakebite Patients. Toxins 2022, 14, 543. [Google Scholar] [CrossRef] [PubMed]
- Moreira, V.; Leiguez, E.; Janovits, P.M.; Maia-Marques, R.; Fernandes, C.M.; Teixeira, C. Inflammatory Effects of Bothrops Phospholipases A2: Mechanisms Involved in Biosynthesis of Lipid Mediators and Lipid Accumulation. Toxins 2021, 13, 868. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.D.L. Estudos Estruturais de Fosfolipases A2 Isoladas de Peçonha de Bothrops jararacussu e Descrição de Inibidores Hábeis em Tratamento de Ofidismo. Dissertação de Mestrado, Universidade Federal da Paraíba, Centro de Ciências em Biologia Celular e Molecular, João Pessoa, Brazil, 2013. [Google Scholar]
- Conceição Sobrinho, J. Isolamento e Caracterização Bioquímica e Estrutural de Fosfolipases A2 Ácidas do Veneno da Serpente Bothrops brazili. Master’s Dissertation, Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, Brazil, 2014. Available online: http://www.ri.unir.br/jspui/handle/123456789/2210 (accessed on 7 September 2025).
- Cedro, R.C.A.; Menaldo, D.L.; Costa, T.R.; Zoccal, K.F.; Sartim, M.A.; Santos-Filho, N.A.; Faccioli, L.H.; Sampaio, S.V. Cytotoxic and Inflammatory Potential of a Phospholipase A2 from Bothrops jararaca Snake Venom. J. Venom. Anim. Toxins Trop. Dis. 2018, 24, 33. [Google Scholar] [CrossRef] [PubMed]
- Kini, R.M. Anticoagulant Proteins from Snake Venoms: Structure, Function and Mechanism. Biochem. J. 2006, 397, 377–387. [Google Scholar] [CrossRef]
- Kini, R.M.; Evans, H.J. Structure-Function Relationships of Phospholipases. The Anticoagulant Region of Phospholipases A2. J. Biol. Chem. 1987, 262, 14402–14407. [Google Scholar] [CrossRef]
- Mukherjee, A.K.; Ghosal, S.K.; Maity, C.R. Some Biochemical Properties of Russell’s Viper (Daboia russelli) Venom from Eastern India: Correlation with Clinico-Pathological Manifestation in Russell’s Viper Bite. Toxicon 2000, 38, 163–175. [Google Scholar] [CrossRef]
- Saikia, D.; Thakur, R.; Mukherjee, A.K. An Acidic Phospholipase A2 (RVVA-PLA2-I) Purified from Daboia russelli Venom Exerts Its Anticoagulant Activity by Enzymatic Hydrolysis of Plasma Phospholipids and by Non-Enzymatic Inhibition of Factor Xa in a Phospholipids/Ca2+ Independent Manner. Toxicon 2011, 57, 841–850. [Google Scholar] [CrossRef]
- Doley, R.; King, G.F.; Mukherjee, A.K. Differential Hydrolysis of Erythrocyte and Mitochondrial Membrane Phospholipids by Two Phospholipase A2 Isoenzymes (NK-PLA2-I and NK-PLA2-II) from the Venom of the Indian Monocled Cobra Naja kaouthia. Arch. Biochem. Biophys. 2004, 425, 1–13. [Google Scholar] [CrossRef]
- Mukherjee, A.K. A Major Phospholipase A2 from Daboia russelii russelii Venom Shows Potent Anticoagulant Action via Thrombin Inhibition and Binding with Plasma Phospholipids. Biochimie 2014, 99, 153–161. [Google Scholar] [CrossRef]
- Stefansson, S.; Kini, R.M.; Evans, H.J. The Inhibition of Clotting Complexes of the Extrinsic Coagulation Cascade by the Phospholipase A2 Isoenzymes from Naja nigricollis Venom. Thromb. Res. 1989, 55, 481–491. [Google Scholar] [CrossRef]
- Dutta, S.; Gogoi, D.; Mukherjee, A.K. Anticoagulant Mechanism and Platelet Deaggregation Property of a Non-Cytotoxic, Acidic Phospholipase A2 Purified from Indian Cobra (Naja naja) Venom: Inhibition of Anticoagulant Activity by Low Molecular Weight Heparin. Biochimie 2015, 110, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Osipov, A.V.; Filkin, S.Y.; Makarova, Y.V.; Tsetlin, V.I.; Utkin, Y.N. A New Type of Thrombin Inhibitor, Noncytotoxic Phospholipase A2, from the Naja haje Cobra Venom. Toxicon 2010, 55, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Kini, R.M. Structure–Function Relationships and Mechanism of Anticoagulant Phospholipase A2 Enzymes from Snake Venoms. Toxicon 2005, 45, 1147–1161. [Google Scholar] [CrossRef] [PubMed]
- Bonfim, V.L.; de Carvalho, D.D.; Ponce-Soto, L.A.; Kassab, B.H.; Marangoni, S. Toxicity of Phospholipases A2 D49 (6-1 and 6-2) and K49 (Bj-VII) from Bothrops jararacussu Venom. Cell Biol. Toxicol. 2009, 25, 523–532. [Google Scholar] [CrossRef]
- Murakami, M.; Shimbara, S.; Kambe, T.; Kuwata, H.; Winstead, M.V.; Tischfield, J.A.; Kudo, I. The Functions of Five Distinct Mammalian Phospholipase A2s in Regulating Arachidonic Acid Release: Type IIA and Type V Secretory Phospholipase A2s Are Functionally Redundat and Act in Concert With Cytosolic Phospholipase A2. J. Biol. Chem. 1998, 273, 14411–14423. [Google Scholar] [CrossRef]
- Granata, F.; Nardicchi, V.; Loffredo, S.; Frattini, A.; Ilaria Staiano, R.; Agostini, C.; Triggiani, M. Secreted Phospholipases A2: A Proinflammatory Connection between Macrophages and Mast Cells in the Human Lung. Immunobiology 2009, 214, 811–821. [Google Scholar] [CrossRef]
- Murakami, M.; Koduri, R.S.; Enomoto, A.; Shimbara, S.; Seki, M.; Yoshihara, K.; Singer, A.; Valentin, E.; Ghomashchi, F.; Lambeau, G.; et al. Distinct Arachidonate-Releasing Functions of Mammalian Secreted Phospholipase A2s in Human Embryonic Kidney 293 and Rat Mastocytoma RBL-2H3 Cells through Heparan Sulfate Shuttling and External Plasma Membrane Mechanisms. J. Biol. Chem. 2001, 276, 10083–10096. [Google Scholar] [CrossRef]
- Triggiani, M.; Granata, F.; Frattini, A.; Marone, G. Activation of Human Inflammatory Cells by Secreted Phospholipases A2. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids 2006, 1761, 1289–1300. [Google Scholar] [CrossRef]
- Garcia-Martinez, V.; Gimenez-Molina, Y.; Villanueva, J.; Darios, F.D.; Davletov, B.; Gutiérrez, L.M. Emerging Evidence for the Modulation of Exocytosis by Signalling Lipids. FEBS Lett. 2018, 592, 3493–3503. [Google Scholar] [CrossRef]
- Pungerčar, J.; Križaj, I. Understanding the Molecular Mechanism Underlying the Presynaptic Toxicity of Secreted Phospholipases A2. Toxicon 2007, 50, 871–892. [Google Scholar] [CrossRef]
- Schaechter, J.D.; Benowitz, L.I. Activation of Protein Kinase C by Arachidonic Acid Selectively Enhances the Phosphorylation of GAP-43 in Nerve Terminal Membranes. J. Neurosci. 1993, 13, 4361–4371. [Google Scholar] [CrossRef]
- St. John, P.A.; Gordon, H. Agonists Cause Endocytosis of Nicotinic Acetylcholine Receptors on Cultured Myotubes. J. Neurobiol. 2001, 49, 212–223. [Google Scholar] [CrossRef]
- Marinho, A.D.; de Silveira, J.A.M.; Chaves Filho, A.J.M.; Jorge, A.R.C.; Nogueira Júnior, F.A.; Pereira, V.B.M.; de Aquino, P.E.A.; Pereira, C.A.S.; Evangelista, J.S.A.M.; Macedo, D.S.; et al. Bothrops pauloensis Snake Venom-Derived Asp-49 and Lys-49 Phospholipases A2 Mediates Acute Kidney Injury by Oxidative Stress and Release of Inflammatory Cytokines. Toxicon 2021, 190, 31–38. [Google Scholar] [CrossRef]
- Bustillo, S.; Fernández, J.; Chaves-Araya, S.; Angulo, Y.; Leiva, L.C.; Lomonte, B. Isolation of Two Basic Phospholipases A2 from Bothrops diporus Snake Venom: Comparative Characterization and Synergism between Asp49 and Lys49 Variants. Toxicon 2019, 168, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Borges, R.J.; Salvador, G.H.M.; Campanelli, H.B.; Pimenta, D.C.; de Oliveira Neto, M.; Usón, I.; Fontes, M.R.M. BthTX-II from Bothrops jararacussu Venom Has Variants with Different Oligomeric Assemblies: An Example of Snake Venom Phospholipases A2 Versatility. Int. J. Biol. Macromol. 2021, 191, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Echeverría, S.M.; Van de Velde, A.C.; Luque, D.E.; Cardozo, C.M.; Kraemer, S.; del Gauna Pereira, M.C.; Gay, C.C. Platelet Aggregation Inhibitors from Bothrops alternatus Snake Venom. Toxicon 2023, 223, 107014. [Google Scholar] [CrossRef] [PubMed]
- Sobrinho, J.C.; Simões-Silva, R.; Holanda, R.J.; Alfonso, J.; Gomez, A.F.; Zanchi, F.B.; Moreira-Dill, L.S.; Grabner, A.N.; Zuliani, J.P.; Calderon, L.A.; et al. Antitumoral Potential of Snake Venom Phospholipases A2 and Synthetic Peptides. Curr. Pharm. Biotechnol. 2016, 17, 1201–1212. [Google Scholar] [CrossRef]
- Bazaa, A.; Pasquier, E.; Defilles, C.; Limam, I.; Kessentini-Zouari, R.; Kallech-Ziri, O.; Battari, A.E.; Braguer, D.; Ayeb, M.E.; Marrakchi, N.; et al. MVL-PLA2, a Snake Venom Phospholipase A2, Inhibits Angiogenesis through an Increase in Microtubule Dynamics and Disorganization of Focal Adhesions. PLoS ONE 2010, 5, e10124. [Google Scholar] [CrossRef]
- de Oliveira, A.L.N.; Lacerda, M.T.; Ramos, M.J.; Fernandes, P.A. Viper Venom Phospholipase A2 Database: The Structural and Functional Anatomy of a Primary Toxin in Envenomation. Toxins 2024, 16, 71. [Google Scholar] [CrossRef]
- Frangieh, J.; Rima, M.; Fajloun, Z.; Henrion, D.; Sabatier, J.-M.; Legros, C.; Mattei, C. Snake Venom Components: Tools and Cures to Target Cardiovascular Diseases. Molecules 2021, 26, 2223. [Google Scholar] [CrossRef]
- Rodrigues, R.S.; Izidoro, L.F.M.; de Oliveira, R.J., Jr.; Soares, A.M.; Rodrigues, V.M.; Sampaio, S.V. Snake Venom Phospholipases A2: A New Class of Antitumor Agents. Protein Pept. Lett. 2009, 16, 894–898. [Google Scholar] [CrossRef] [PubMed]
- Sales, T.A.; Marcussi, S.; Da Cunha, E.F.F.; Kuca, K.; Ramalho, T.C. Can Inhibitors of Snake Venom Phospholipases A2 Lead to New Insights into Anti-Inflammatory Therapy in Humans? A Theoretical Study. Toxins 2017, 9, 341. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.M.; Giglio, J.R. Chemical Modifications of Phospholipases A2 from Snake Venoms: Effects on Catalytic and Pharmacological Properties. Toxicon 2003, 42, 855–868. [Google Scholar] [CrossRef] [PubMed]
- Costa, T.R.; Menaldo, D.L.; Oliveira, C.Z.; Santos-Filho, N.A.; Teixeira, S.S.; Nomizo, A.; Fuly, A.L.; Monteiro, M.C.; de Souza, B.M.; Palma, M.S.; et al. Myotoxic Phospholipases A2 Isolated from Bothrops brazili Snake Venom and Synthetic Peptides Derived from Their C-Terminal Region: Cytotoxic Effect on Microorganism and Tumor Cells. Peptides 2008, 29, 1645–1656. [Google Scholar] [CrossRef]
- Stábeli, R.G.; Amui, S.F.; Sant’Ana, C.D.; Pires, M.G.; Nomizo, A.; Monteiro, M.C.; Romão, P.R.T.; Guerra-Sá, R.; Vieira, C.A.; Giglio, J.R.; et al. Bothrops moojeni Myotoxin-II, a Lys49-Phospholipase A2 Homologue: An Example of Function Versatility of Snake Venom Proteins. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2006, 142, 371–381. [Google Scholar] [CrossRef]
- Soares, A.; Fontes, M.; Giglio, J. Phospholipase A2 Myotoxins from Bothrops Snake Venoms: Structure- Function Relationship. Curr. Org. Chem. 2004, 8, 1677–1690. [Google Scholar] [CrossRef]
- Siniavin, A.E.; Nikiforova, M.A.; Grinkina, S.D.; Gushchin, V.A.; Starkov, V.G.; Osipov, A.V.; Tsetlin, V.I.; Utkin, Y.N. Snake Venom Phospholipases A2 Possess a Strong Virucidal Activity against SARS-CoV-2 in vitro and Block the Cell Fusion Mediated by Spike Glycoprotein Interaction with the ACE2 Receptor. bioRxiv 2021. [Google Scholar] [CrossRef]
- Bultrón, E.; Thelestam, M.; Gutiérrez, J. Effects on Cultured Mammalian Cells of Myotoxin III, a Phospholipase A2 Isolated from Bothrops asper (Terciopelo) Venom. Biochim. Biophys. Acta BBA-Mol. Cell Res. 1993, 1179, 253–259. [Google Scholar] [CrossRef]
- Zouari-Kessentini, R.; Luis, J.; Karray, A.; Kallech-Ziri, O.; Srairi-Abid, N.; Bazaa, A.; Loret, E.; Bezzine, S.; El Ayeb, M.; Marrakchi, N. Two Purified and Characterized Phospholipases A2 from Cerastes cerastes Venom, That Inhibit Cancerous Cell Adhesion and Migration. Toxicon 2009, 53, 444–453. [Google Scholar] [CrossRef]
- Farooqui, A.A.; Litsky, M.L.; Farooqui, T.; Horrocks, L.A. Inhibitors of Intracellular Phospholipase A2 Activity: Their Neurochemical Effects and Therapeutical Importance for Neurological Disorders. Brain Res. Bull. 1999, 49, 139–153. [Google Scholar] [CrossRef]
- Landucci, E.C.T.; Condino-Neto, A.; Perez, A.C.; Hyslop, S.; Corrado, A.P.; Novello, J.C.; Marangoni, S.; Oliveira, B.; Antunes, E.; De Nucci, G. Crotoxin Induces Aggregation of Human Washed Platelets. Toxicon 1994, 32, 217–226. [Google Scholar] [CrossRef]
- Silveira, L.B.; Marchi-Salvador, D.P.; Santos-Filho, N.A.; Silva, F.P.; Marcussi, S.; Fuly, A.L.; Nomizo, A.; Da Silva, S.L.; Stábeli, R.G.; Arantes, E.C.; et al. Isolation and Expression of a Hypotensive and Anti-Platelet Acidic Phospholipase A2 from Bothrops moojeni Snake Venom. J. Pharm. Biomed. Anal. 2013, 73, 35–43. [Google Scholar] [CrossRef]
- Cañas, C.A.; Castaño-Valencia, S.; Castro-Herrera, F.; Cañas, F.; Tobón, G.J. Biomedical Applications of Snake Venom: From Basic Science to Autoimmunity and Rheumatology. J. Transl. Autoimmun. 2021, 4, 100076. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, D.F.; Mota, I. Effect of Crotalus Venom on the Humoral and Cellular Immune Response. Toxicon 1997, 35, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.M.; Sestito, W.P.; Marcussi, S.; Stábeli, R.G.; Andrião-Escarso, S.H.; Cunha, O.A.B.; Vieira, C.A.; Giglio, J.R. Alkylation of Myotoxic Phospholipases A2 in Bothrops moojeni Venom: A Promising Approach to an Enhanced Antivenom Production. Int. J. Biochem. Cell Biol. 2004, 36, 258–270. [Google Scholar] [CrossRef]
- Mohamed Abd El-Aziz, T.; Soares, A.G.; Stockand, J.D. Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving. Toxins 2019, 11, 564. [Google Scholar] [CrossRef]
- Ferreira, S.H. A Bradykinin-Potentiating Factor (Bpf) Present in the Venom of Bothrops jararaca. Br. J. Pharmacol. Chemother. 1965, 24, 163–169. [Google Scholar] [CrossRef]
- Cushman, D.W.; Ondetti, M.A. History of the Design of Captopril and Related Inhibitors of Angiotensin Converting Enzyme. Hypertension 1991, 17, 589–592. [Google Scholar] [CrossRef]
- Oliveira, A.L.; Viegas, M.F.; da Silva, S.L.; Soares, A.M.; Ramos, M.J.; Fernandes, P.A. The Chemistry of Snake Venom and Its Medicinal Potential. Nat. Rev. Chem. 2022, 6, 451–469. [Google Scholar] [CrossRef]
- Santamaría, C.; Larios, S.; Angulo, Y.; Pizarro-Cerda, J.; Gorvel, J.-P.; Moreno, E.; Lomonte, B. Antimicrobial Activity of Myotoxic Phospholipases A2 from Crotalid Snake Venoms and Synthetic Peptide Variants Derived from Their C-Terminal Region. Toxicon 2005, 45, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Lomonte, B.; Angulo, Y.; Moreno, E. Synthetic Peptides Derived from the C-Terminal Region of Lys49 Phospholipase A2 Homologues from Viperidae Snake Venoms: Biomimetic Activities and Potential Applications. Curr. Pharm. Des. 2010, 16, 3224–3230. [Google Scholar] [CrossRef] [PubMed]
- Araya, C.; Lomonte, B. Antitumor Effects of Cationic Synthetic Peptides Derived from Lys49 Phospholipase A2 Homologues of Snake Venoms. Cell Biol. Int. 2007, 31, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Lomonte, B.; Angulo, Y.; Calderón, L. An Overview of Lysine-49 Phospholipase A2 Myotoxins from Crotalid Snake Venoms and Their Structural Determinants of Myotoxic Action. Toxicon 2003, 42, 885–901. [Google Scholar] [CrossRef]
- Santos-Filho, N.A.; Lorenzon, E.N.; Ramos, M.A.S.; Santos, C.T.; Piccoli, J.P.; Bauab, T.M.; Fusco-Almeida, A.M.; Cilli, E.M. Synthesis and Characterization of an Antibacterial and Non-Toxic Dimeric Peptide Derived from the C-Terminal Region of Bothropstoxin-I. Toxicon 2015, 103, 160–168. [Google Scholar] [CrossRef]
- Freire, M.C.L.C.; Noske, G.D.; Bitencourt, N.V.; Sanches, P.R.S.; Santos-Filho, N.A.; Gawriljuk, V.O.; de Souza, E.P.; Nogueira, V.H.R.; de Godoy, M.O.; Nakamura, A.M.; et al. Non-Toxic Dimeric Peptides Derived from the Bothropstoxin-I Are Potent SARS-CoV-2 and Papain-like Protease Inhibitors. Molecules 2021, 26, 4896. [Google Scholar] [CrossRef]
- Núñez, C.E.; Angulo, Y.; Lomonte, B. Identification of the Myotoxic Site of the Lys49 Phospholipase A2 from Agkistrodon piscivorus piscivorus Snake Venom: Synthetic C-Terminal Peptides from Lys49, but Not from Asp49 Myotoxins, Exert Membrane-Damaging Activities. Toxicon 2001, 39, 1587–1594. [Google Scholar] [CrossRef]
- Q8AYA2, PLIA_BOTMO. Available online: https://www.uniprot.org/uniprotkb/Q8AYA2/entry (accessed on 7 September 2025).
- UniProt Phospholipase Inhibitors in UniProtKB Search. Available online: https://www.uniprot.org/uniprotkb?query=Phospholipase+inhibitors (accessed on 25 November 2024).
- Glaser, K.B. Regulation of Phospholipase A2 Enzymes: Selective Inhibitors and Their Pharmacological Potential. In Advances in Pharmacology; Elsevier: Amsterdam, The Netherlands, 1995; Volume 32, pp. 31–66. ISBN 978-0-12-032933-5. [Google Scholar]
- Lizano, S.; Angulo, Y.; Lomonte, B.; Fox, J.W.; Lambeau, G.; Lazdunski, M.; María Gutiérrez, J. Two Phospholipase A2 Inhibitors from the Plasma of Cerrophidion (Bothrops) godmani Which Selectively Inhibit Two Different Group-II Phospholipase A2 Myotoxins from Its Own Venom: Isolation, Molecular Cloning and Biological Properties. Biochem. J. 2000, 346, 631–639. [Google Scholar] [CrossRef]
- Okumura, K.; Inoue, S.; Ikeda, K.; Hayashi, K. cDNA Cloning and Bacterial Expression of Phospholipase A2 Inhibitor PLIα from the Serum of the Chinese Mamushi, Agkistrodon blomhoffii siniticus. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids 1999, 1441, 51–60. [Google Scholar] [CrossRef]
- Picelli, C.G.; Borges, R.J.; Fernandes, C.A.H.; Matioli, F.M.; Fernandes, C.F.C.; Sobrinho, J.C.; Holanda, R.J.; Ozaki, L.S.; Kayano, A.M.; Calderon, L.A.; et al. Molecular Cloning and Structural Modelling of Gamma-Phospholipase A2 Inhibitors from Bothrops atrox and Micrurus lemniscatus Snakes. Int. J. Biol. Macromol. 2017, 103, 525–532. [Google Scholar] [CrossRef]
- Donnini, S.; Finetti, F.; Francese, S.; Boscaro, F.; Dani, F.R.; Maset, F.; Frasson, R.; Palmieri, M.; Pazzagli, M.; De Filippis, V.; et al. A Novel Protein from the Serum of Python sebae, Structurally Homologous with Type-γ Phospholipase A2 Inhibitor, Displays Antitumour Activity. Biochem. J. 2011, 440, 251–262. [Google Scholar] [CrossRef]
- Shirai, R.; Gotou, R.; Hirano, F.; Ikeda, K.; Inoue, S. Autologous Extracellular Cytochrome c Is an Endogenous Ligand for Leucine-Rich α2-Glycoprotein and β-Type Phospholipase A2 Inhibitor. J. Biol. Chem. 2010, 285, 21607–21614. [Google Scholar] [CrossRef]
- Shirai, R.; Shibata, K.; Fujii, S.; Fukunaga, R.; Inoue, S. One-Step Affinity Purification of Leucine-Rich α2-Glycoproteins from Snake Sera and Characterization of Their Phospholipase A2-Inhibitory Activities as β-Type Phospholipase A2 Inhibitors. Toxins 2024, 16, 126. [Google Scholar] [CrossRef] [PubMed]
- Estevão-Costa, M.I.; Rocha, B.C.; de Alvarenga Mudado, M.; Redondo, R.; Franco, G.R.; Fortes-Dias, C.L. Prospection, Structural Analysis and Phylogenetic Relationships of Endogenous γ-Phospholipase A2 Inhibitors in Brazilian Bothrops Snakes (Viperidae, Crotalinae). Toxicon 2008, 52, 122–129. [Google Scholar] [CrossRef]
- Fernandes, D.A.; Gomes, B.A.; Mendonça, S.C.; de Pinheiro, C.C.; Sanchez, E.O.F.; Leitão, S.G.; Fuly, A.L.; Leitão, G.G. Alkaloids from Siparuna (Siparunaceae) Are Predicted as the Inhibitors of Proteolysis and Plasma Coagulation Caused by Snake Venom and Potentially Counteract Phospholipase A2 Activity of Bothrops jararaca. J. Ethnopharmacol. 2024, 332, 118349. [Google Scholar] [CrossRef]








| Bothrops Species | Country | Brazilian Region | Brazilian State |
|---|---|---|---|
| B. alcatraz | Brazil | Southeast | SP |
| B. alternatus | Argentina, Brazil, and Uruguay | South, Southeast, and Midwest | MS, GO, MG, RJ, SP, PR, SC, and RS |
| B. ammodytoides | Argentina | Na. | Na. |
| B. asper | Belize, Colombia, Costa Rica, Ecuador, Guatemala, Honduras, Nicaragua, Mexico, Panama, Peru, and Venezuela | Na. | Na. |
| B. atrox | Bolivia, Brazil, Colombia, Ecuador, English Guiana, French Guiana, Peru, Suriname, Trinidad, and Venezuela | North, Midwest, and Northeast | RR, AP, AC, RO, AM, PA, TO, MT, and MA |
| B. ayerbei | Colombia | Na. | Na. |
| B. barnetti | Peru | Na. | Na. |
| B. bilineatus | Bolivia, Brazil, Colombia, Ecuador, English Guiana, French Guiana, and Suriname | North, Northeast, Southeast, and Midwest | RR, AP, RO, AM, PA, MT, CE, PE, AL, BA, ES, MG, and RJ |
| B. brazili | Bolivia, Brazil, Colombia, English Guiana, French Guiana, Peru, Venezuela, and Suriname | North, Northeast, and Midwest | AC, RO, AM, PA, MT, and MA |
| B. caribbaeus | Saint Lucia and Antilles | Na. | Na. |
| B. chloromelas | Peru | Na. | Na. |
| B. cotiara | Argentina and Brazil | Southeast and South | SP, PR, SC, and RS |
| B. diporus | Argentina, Bolivia, Brazil, and Paraguay | Southeast and South | SP, PR, SC, and RS |
| B. erythromelas | Brazil | Northeast and Southeast | PI, CE, RN, PB, PE, AL, SE, and BA |
| B. fonsecai | Brazil | Na. | MG, RJ, and SP |
| B. germanoi | Brazil | Southeast | SP |
| B. insularis | Brazil | Southeast | SP |
| B. itapetiningae | Brazil | Midwest, Southeast, and South | MS, GO, DF, MG, SP, and PR |
| B. jabrensis | Brazil | Northeast | PB |
| B. jararaca | Argentina, Brazil, and Paraguay | Midwest, Southeast, and South | GO, BA, ES, MG, RJ, SP, PR, SC, and RS |
| B. jararacussu | Argentina, Bolivia, Brazil, and Paraguay | Northeast, Southeast, and South | BA, ES, MG, RJ, SP, PR, SC, RS, and MS |
| B. jonathani | Argentina and Bolivia | Na. | Na. |
| B. lanceolatus | Antilles | Na. | Na. |
| B. leucurus | Brazil | Northeast and Southeast | CE, RN, PB, PE, AL, SE, BA, ES, and MG |
| B. lutzi | Brazil | North, Midwest, and Southeast | TO, GO, DF, MA, PI, CE, PE, BA, and MG |
| B. marajoensis | Brazil | North and Northeast | AP, PA, and MA |
| B. marmoratus | Brazil | North, Midwest, and Southeast | TO, GO, DF, and MG |
| B. mattogrossensis | Bolivia and Brazil | North, Midwest, and Southeast | RO, AM, TO, MT, MS, GO, and SP |
| B. medusa | Venezuela | Na. | Na. |
| B. monsignifer | Bolivia | Na. | Na. |
| B. moojeni | Argentina, Bolivia, Brazil, and Paraguay | North, Midwest, Southeast, and Northeast | TO, MT, MS, GO, DF, MA, PI, BA, MG, SP, and PR |
| B. muriciensis | Brazil | Northeast | AL |
| B. neuwiedi | Argentina and Brazil | Midwest, Southeast, and South | GO, DF, BA, MG, RJ, SP PR, SC, and RS |
| B. oligobalius | Bolivia, Brazil, Colombia, English Guiana, French Guiana, Peru, Venezuela, and Suriname | North | AP, AM, and PA |
| B. oligolepis | Peru | Na. | Na. |
| B. osbornei | Ecuador and Peru | Na. | Na. |
| B. otavioi | Brazil | Southeast | SP |
| B. pauloensis | Bolivia and Brazil | Midwest and Southeast | MT, MS, GO, DF, MG, SP, and PR |
| B. pictus | Peru | Na. | Na. |
| B. pirajai | Brazil | Northeast | BA |
| B. pubescens | Brazil and Uruguay | South | SC and RS |
| B. pulcher | Colombia and Ecuador | Na. | Na. |
| B. punctatus | Colombia, Ecuador, and Panama | Na. | Na. |
| B. sanctaecrucis | Bolivia | Na. | Na. |
| B. sazimai | Brazil | Southeast | ES |
| B. smaragdinus | Bolivia, Brazil, Colombia, Ecuador, English Guiana, French Guiana, and Suriname | North | AC, RO, and AM |
| B. sonene | Peru | Na. | Na. |
| B. taeniatus | Bolivia, Brazil, Colombia, Ecuador, English Guiana, French Guiana, and Peru | North, Midwest, and Northeast | RR, AP, AC, RO, AM, PA, MT, and MA |
| B. venezuelensis | Venezuela | Na. | Na. |
| Application Category | Description | Ref. |
|---|---|---|
| Antimicrobial | Activity against pathogenic bacteria, fungi, and protozoa; cytotoxic activity. | [106,107] |
| Antiviral | Potent virucidal (neutralizing) activity against SARS-CoV-2; potential HIV inhibitor by blocking host cell invasion. | [108,109] |
| Antitumor | Inhibition of tumor cell adhesion and migration; inhibition of angiogenesis. | [99,110,111] |
| Anti-inflammatory | Modulation of the inflammatory response, reduction/inhibition of cytokines and inflammatory mediators. | [55,112] |
| Antithrombotic/Anticoagulant | Prevention of platelet aggregation and blood clot formation. | [82,113] |
| Hypotensive | Vasodilation and blood pressure reduction. | [114] |
| Immunotherapeutic Potential | Low immunogenicity suggests potential immunosuppressive effects. | [115,116] |
| Industrial Applications | Use in bioremediation processes, formulation of antivenom serums, and specific inhibitors. | [105,117] |
| Pharmacological | PLA2 enzymes, by binding to target proteins, may induce their pharmacological effects. | [36,105] |
| PLA2 Inhibitor | Snake | Lenght | Uniprot Entry |
|---|---|---|---|
| Myotoxin inhibitor protein | B. moojeni | 166 aa | Q8AYA2 |
| PLA2 inhibitor | B. jararaca | 331 aa | A0A481S6S6 |
| PLA2 inhibitor | B. jararaca | 332 aa | A0A481S7E6 |
| PLA2 inhibitor | B. jararacussu | 331 aa | A0A481S718 |
| PLA2 inhibitor | B. neuwiedi | 332 aa | A0A481S8C9 |
| PLA2 inhibitor | B. neuwiedi | 332 aa | A0A481S6U1 |
| PLA2 inhibitor | B. alternatus | 331 aa | A0A481S7I6 |
| PLA2 inhibitor | B. alternatus | 331 aa | A0A481S6U8 |
| PLA2 inhibitor | B. moojeni | 331 aa | A0A481S725 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, I.C.d.; Romanazzi, M.; Malachias-Pires, G.M.; Aragão, A.R.; Filardi, E.T.M.; Melo-dos-Santos, G.; Salvador, L.C.; Cerveja, M.F.; Rocha, A.M.; Magalhães, A.; et al. Phospholipases A2 (PLA2s) and Related Peptides from Bothrops Snake Venoms: History, Structure, Pharmacology, and Inhibitors. Biomolecules 2025, 15, 1583. https://doi.org/10.3390/biom15111583
Santos ICd, Romanazzi M, Malachias-Pires GM, Aragão AR, Filardi ETM, Melo-dos-Santos G, Salvador LC, Cerveja MF, Rocha AM, Magalhães A, et al. Phospholipases A2 (PLA2s) and Related Peptides from Bothrops Snake Venoms: History, Structure, Pharmacology, and Inhibitors. Biomolecules. 2025; 15(11):1583. https://doi.org/10.3390/biom15111583
Chicago/Turabian StyleSantos, Isabela C. dos, Marcela Romanazzi, Geovanna M. Malachias-Pires, Ariani R. Aragão, Eloise T. M. Filardi, Guilherme Melo-dos-Santos, Lara C. Salvador, Marcos F. Cerveja, Anderson M. Rocha, Ananda Magalhães, and et al. 2025. "Phospholipases A2 (PLA2s) and Related Peptides from Bothrops Snake Venoms: History, Structure, Pharmacology, and Inhibitors" Biomolecules 15, no. 11: 1583. https://doi.org/10.3390/biom15111583
APA StyleSantos, I. C. d., Romanazzi, M., Malachias-Pires, G. M., Aragão, A. R., Filardi, E. T. M., Melo-dos-Santos, G., Salvador, L. C., Cerveja, M. F., Rocha, A. M., Magalhães, A., de Oliveira, I. S., Almeida, J. R., Santos-Filho, N. A., & Pucca, M. B. (2025). Phospholipases A2 (PLA2s) and Related Peptides from Bothrops Snake Venoms: History, Structure, Pharmacology, and Inhibitors. Biomolecules, 15(11), 1583. https://doi.org/10.3390/biom15111583

