Critical Evaluation of the Role of Transcription Factor RAR-Orphan Receptor-γt in the Development of Chronic Inflammatory Dermatological Diseases: A Promising Therapeutic Target
Abstract
1. Introduction
2. ROR-Gamma: Isoforms, Upstream Ligands and RORγ Activation
3. Downstream Genes: Promoter Regions RORγ Binds to and Response Elements It Activates/Regulates
4. Role of RORγt in Immune Cell Development and Differentiation
4.1. Lymphoid Organogenesis
4.2. T Cell Development and Lineage Commitment
4.3. Lineage Commitment to Th17 Cells
4.4. Influence on Regulatory T Cells Development
4.5. RORγt Expression in γσ T Cells
4.6. Development and Lineage Commitment of γσ T17 Cells
4.7. Thymic vs. Peripheral Imprinting
4.8. Role of RORγt in iNKT Cell Development
4.9. RORγt as the Lineage-Defining Factor for iNKT17 Cells
4.10. Thymic Development of iNKT17 Cells
5. Role of RORγt in Myeloid Cell Development
6. RORγt and Th17 Cell Centrality in Chronic Skin Disorders
7. Targeting RORγt Signaling for Therapy of Chronic Skin Inflammatory Diseases
7.1. Chemical Inhibitors and Novel Drugs
7.2. Natural Products Modulating RORγt
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, L.; Liu, X.; Liang, X.; Dai, S.; Wei, H.; Guo, M.; Chen, Z.; Xiao, D.; Chen, Y. Structural characterization of the DNA binding mechanism of retinoic acid-related orphan receptor gamma. Structure 2024, 32, 467–475.e3. [Google Scholar] [CrossRef] [PubMed]
- Ladurner, A.; Schwarz, P.F.; Dirsch, V.M. Natural products as modulators of retinoic acid receptor-related orphan receptors (RORs). Nat. Prod. Rep. 2020, 38, 757–781. [Google Scholar] [CrossRef] [PubMed]
- Kojetin, D.J.; Burris, T.P. REV-ERB and ROR nuclear receptors as drug targets. Nat. Rev. Drug Discov. 2014, 13, 197–216. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pastwińska, J.; Karwaciak, I.; Karaś, K.; Bachorz, R.A.; Ratajewski, M. RORγT agonists as immune modulators in anticancer therapy. Biochim. Biophys. Acta (BBA) Rev. Cancer 2023, 1878, 189021. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Bolin, S.; Miller, H.; Ng, H.L. RORγ Structural Plasticity and Druggability. Int. J. Mol. Sci. 2020, 21, 5329. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Strutzenberg, T.S.; Zhu, Y.; Novick, S.J.; Garcia-Ordonez, R.D.; Doebelin, C.; He, Y.; Chang, M.R.; Kamenecka, T.M.; Edwards, D.P.; Griffin, P.R. Conformational Changes of RORγ During Response Element Recognition and Coregulator Engagement. J. Mol. Biol. 2021, 433, 167258. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, Z.; Wang, F.; Ma, J.; Sen, S.; Zhang, J.; Gwack, Y.; Zhou, Y.; Sun, Z. Ubiquitination of RORγt at Lysine 446 Limits Th17 Differentiation by Controlling Coactivator Recruitment. J. Immunol. 2016, 197, 1148–1158. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, Z.; Zhang, J.; Du, Q.; Xu, J.; Gwack, Y.; Sun, Z. SRC3 Is a Cofactor for RORγt in Th17 Differentiation but Not Thymocyte Development. J. Immunol. 2019, 202, 760–769. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Geng, J.; Yu, S.; Zhao, H.; Sun, X.; Li, X.; Wang, P.; Xiong, X.; Hong, L.; Xie, C.; Gao, J.; et al. The transcriptional coactivator TAZ regulates reciprocal differentiation of TH17 cells and Treg cells. Nat. Immunol. 2017, 18, 800–812, Erratum in Nat. Immunol. 2017, 18, 1270. https://doi.org/10.1038/ni1117-1270c; Erratum in Nat. Immunol. 2018, 19, 1036. https://doi.org/10.1038/s41590-018-0055-9. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Xie, H.; Wang, R.; Sun, Z. Retinoid-related orphan receptor γt is a potential therapeutic target for controlling inflammatory autoimmunity. Expert Opin. Ther. Targets 2007, 11, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Saenz, S.A.; Local, A.; Carr, T.; Shakya, A.; Koul, S.; Hu, H.; Chourb, L.; Stedman, J.; Malley, J.; D’aGostino, L.A.; et al. Small molecule allosteric inhibitors of RORγt block Th17-dependent inflammation and associated gene expression in vivo. PLoS ONE 2021, 16, e0248034. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Griffin, P.R.; Chang, M.R.; Goswami, D.; Mercer, B.A.; Griffin, P.R. The therapeutic potential of RORγ modulators in the treatment of human disease. J. Exp. Pharmacol. 2012, 4, 141–148. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Milovanovic, J.; Arsenijevic, A.; Stojanovic, B.; Kanjevac, T.; Arsenijevic, D.; Radosavljevic, G.; Milovanovic, M.; Arsenijevic, N. Interleukin-17 in Chronic Inflammatory Neurological Diseases. Front. Immunol. 2020, 11, 947. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Robert, M.; Miossec, P. IL-17 in Rheumatoid Arthritis and Precision Medicine: From Synovitis Expression to Circulating Bioactive Levels. Front. Med. 2019, 5, 364. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fujino, S.; Andoh, A.; Bamba, S.; Ogawa, A.; Hata, K.; Araki, Y.; Bamba, T.; Fujiyama, Y. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 2003, 52, 65–70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.-H.; Wills-Karp, M. The Potential Role of Interleukin-17 in Severe Asthma. Curr. Allergy Asthma Rep. 2011, 11, 388–394. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ma, R.; Su, H.; Jiao, K.; Liu, J. Association Between IL-17 and Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. Int. J. Chronic Obstr. Pulm. Dis. 2023, 18, 1681–1690. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, T.; Li, S.; Ying, S.; Tang, S.; Ding, Y.; Li, Y.; Qiao, J.; Fang, H. The IL-23/IL-17 Pathway in Inflammatory Skin Diseases: From Bench to Bedside. Front. Immunol. 2020, 11, 594735. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brembilla, N.C.; Montanari, E.; Truchetet, M.-E.; Raschi, E.; Meroni, P.; Chizzolini, C. Th17 cells favor inflammatory responses while inhibiting type I collagen deposition by dermal fibroblasts: Differential effects in healthy and systemic sclerosis fibroblasts. Arthritis Res. Ther. 2013, 15, R151. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, H.; Huang, S.-Y.; Shi, F.-H.; Gu, Z.-C.; Zhang, S.-G.; Wei, J.-F. α4β7 integrin inhibitors: A patent review. Expert Opin. Ther. Pat. 2018, 28, 903–917. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, M.; Nomura, A.; Doi, S.; Yamaguchi, K.; Hirata, K.; Shiozaki, M.; Maeda, K.; Hirashima, S.; Kotoku, M.; Yamaguchi, T.; et al. Ternary crystal structure of human RORγ ligand-binding-domain, an inhibitor and corepressor peptide provides a new insight into corepressor interaction. Sci. Rep. 2018, 8, 17374. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Luo, X.-Y.; Wu, D.-H.; Xu, Y. ROR nuclear receptors: Structures, related diseases, and drug discovery. Acta Pharmacol. Sin. 2014, 36, 71–87, Erratum in Acta Pharmacol. Sin. 2015, 36, 290. https://doi.org/10.1038/aps.2015.2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ruan, Q.; Kameswaran, V.; Zhang, Y.; Zheng, S.; Sun, J.; Wang, J.; DeVirgiliis, J.; Liou, H.-C.; Beg, A.A.; Chen, Y.H. The Th17 immune response is controlled by the Rel–RORγ–RORγT transcriptional axis. J. Exp. Med. 2011, 208, 2321–2333. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jetten, A.M.; Takeda, Y.; Slominski, A.; Kang, H.S. Retinoic acid-related orphan receptor γ (RORγ): Connecting sterol metabolism to regulation of the immune system and autoimmune disease. Curr. Opin. Toxicol. 2018, 8, 66–80. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cai, D.; Wang, J.; Gao, B.; Li, J.; Wu, F.; Zou, J.X.; Xu, J.; Jiang, Y.; Zou, H.; Huang, Z.; et al. RORγ is a targetable master regulator of cholesterol biosynthesis in a cancer subtype. Nat. Commun. 2019, 10, 1–17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Takeda, Y.; Kang, H.S.; Freudenberg, J.; DeGraff, L.M.; Jothi, R.; Jetten, A.M. Retinoic Acid-Related Orphan Receptor γ (RORγ): A Novel Participant in the Diurnal Regulation of Hepatic Gluconeogenesis and Insulin Sensitivity. PLOS Genet. 2014, 10, e1004331. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kang, H.S.; Angers, M.; Beak, J.Y.; Wu, X.; Gimble, J.M.; Wada, T.; Xie, W.; Collins, J.B.; Grissom, S.F.; Jetten, A.M. Gene expression profiling reveals a regulatory role for RORα and RORγ in phase I and phase II metabolism. Physiol. Genom. 2007, 31, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Jetten, A.M. Retinoid-Related Orphan Receptors (RORs): Critical Roles in Development, Immunity, Circadian Rhythm, and Cellular Metabolism. Nucl. Recept. Signal. 2009, 7, e003. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rauen, T.; Juang, Y.-T.; Hedrich, C.M.; Kis-Toth, K.; Tsokos, G.C. A novel isoform of the orphan receptor RORγt suppresses IL-17 production in human T cells. Genes Immun. 2012, 13, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Unutmaz, D.; Zou, Y.-R.; Sunshine, M.J.; Pierani, A.; Brenner-Morton, S.; Mebius, R.E.; Littman, D.R. Requirement for RORγ in Thymocyte Survival and Lymphoid Organ Development. Science 2000, 288, 2369–2373. [Google Scholar] [CrossRef] [PubMed]
- Sefik, E.; Geva-Zatorsky, N.; Oh, S.; Konnikova, L.; Zemmour, D.; McGuire, A.M.; Burzyn, D.; Ortiz-Lopez, A.; Lobera, M.; Yang, J.; et al. Individual intestinal symbionts induce a distinct population of RORγ + regulatory T cells. Science 2015, 349, 993–997. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kalyvianaki, K.; Panagiotopoulos, A.A.; Patentalaki, M.; Castanas, E.; Kampa, M. Importins involved in the nuclear transportation of steroid hormone receptors: In silico and in vitro data. Front. Endocrinol. 2022, 13, 954629. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burris, T.P.; de Vera, I.M.S.; Cote, I.; Flaveny, C.A.; Wanninayake, U.S.; Chatterjee, A.; Walker, J.K.; Steinauer, N.; Zhang, J.; Coons, L.A.; et al. International Union of Basic and Clinical Pharmacology CXIII: Nuclear Receptor Superfamily—Update 2023. Pharmacol. Rev. 2023, 75, 1233–1318. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brescia, C.; Audia, S.; Pugliano, A.; Scaglione, F.; Iuliano, R.; Trapasso, F.; Perrotti, N.; Chiarella, E.; Amato, R. Metabolic drives affecting Th17/Treg gene expression changes and differentiation: Impact on immune-microenvironment regulation. APMIS 2024, 132, 1026–1045. [Google Scholar] [CrossRef] [PubMed]
- Varshney, P.; Narasimhan, A.; Mittal, S.; Malik, G.; Sardana, K.; Saini, N. Transcriptome profiling unveils the role of cholesterol in IL-17A signaling in psoriasis. Sci. Rep. 2016, 6, 19295. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, X.; Wang, Y.; Hao, L.-Y.; Liu, X.; Lesch, C.; Sanchez, B.M.; Wendling, J.M.; Morgan, R.W.; Aicher, T.D.; Carter, L.L.; et al. Sterol metabolism controls TH17 differentiation by generating endogenous RORγ agonists. Nat. Chem. Biol. 2015, 11, 141–147, Erratum in Nat. Chem. Biol. 2015, 11, 741. https://doi.org/10.1038/nchembio0915-741b. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S. The role of transforming growth factor β in T helper 17 differentiation. Immunology 2018, 155, 24–35. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, F.; Meng, G.; Strober, W. Interactions among the transcription factors Runx1, RORγt and Foxp3 regulate the differentiation of interleukin 17–producing T cells. Nat. Immunol. 2008, 9, 1297–1306, Erratum in Nat. Immunol. 2009, 10, 223. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jetten, A.M.; Cook, D.N. (Inverse) Agonists of Retinoic Acid–Related Orphan Receptor γ: Regulation of Immune Responses, Inflammation, and Autoimmune Disease. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 371–390. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jin, P.; Duan, X.; Huang, Z.; Dong, Y.; Zhu, J.; Guo, H.; Tian, H.; Zou, C.-G.; Xie, K. Nuclear receptors in health and disease: Signaling pathways, biological functions and pharmaceutical interventions. Signal Transduct. Target. Ther. 2025, 10, 1–39. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frigo, D.E.; Bondesson, M.; Williams, C. Nuclear receptors: From molecular mechanisms to therapeutics. Essays Biochem. 2021, 65, 847–856. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, X.; Zhang, Y.; Yang, X.O.; Nurieva, R.I.; Chang, S.H.; Ojeda, S.S.; Kang, H.S.; Schluns, K.S.; Gui, J.; Jetten, A.M.; et al. Transcription of Il17 and Il17f Is Controlled by Conserved Noncoding Sequence 2. Immunity 2012, 36, 23–31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Capone, A.; Volpe, E. Transcriptional Regulators of T Helper 17 Cell Differentiation in Health and Autoimmune Diseases. Front. Immunol. 2020, 11, 348. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eberl, G.; Littman, D.R. The role of the nuclear hormone receptor RORγt in the development of lymph nodes and Peyer’s patches. Immunol. Rev. 2003, 195, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Guntermann, C.; Piaia, A.; Hamel, M.-L.; Theil, D.; Rubic-Schneider, T.; del Rio-Espinola, A.; Dong, L.; Billich, A.; Kaupmann, K.; Dawson, J.; et al. Retinoic-acid-orphan-receptor-C inhibition suppresses Th17 cells and induces thymic aberrations. J. Clin. Investig. 2017, 2, e91127. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kurebayashi, S.; Ueda, E.; Sakaue, M.; Patel, D.D.; Medvedev, A.; Zhang, F.; Jetten, A.M. Retinoid-related orphan receptor γ (RORγ) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. Proc. Natl. Acad. Sci. USA 2000, 97, 10132–10137. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Honda, K.; Littman, D.R. The Microbiome in Infectious Disease and Inflammation. Annu. Rev. Immunol. 2012, 30, 759–795. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vondenhoff, M.F.; Greuter, M.; Goverse, G.; Elewaut, D.; Dewint, P.; Ware, C.F.; Hoorweg, K.; Kraal, G.; Mebius, R.E. LTβR Signaling Induces Cytokine Expression and Up-Regulates Lymphangiogenic Factors in Lymph Node Anlagen. J. Immunol. 2009, 182, 5439–5445. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van de Pavert, S.A. Layered origins of lymphoid tissue inducer cells. Immunol. Rev. 2023, 315, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Yahia-Cherbal, H.; Rybczynska, M.; Lovecchio, D.; Stephen, T.; Lescale, C.; Placek, K.; Larghero, J.; Rogge, L.; Bianchi, E. NFAT primes the human RORC locus for RORγt expression in CD4+ T cells. Nat. Commun. 2019, 10, 1–17, Erratum in Nat. Commun. 2019, 10, 5450. https://doi.org/10.1038/s41467-019-13451-4. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sun, H.; Smallwood, P.M.; Nathans, J. Biochemical defects in ABCR protein variants associated with human retinopathies. Nat. Genet. 2000, 26, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Lin, C.; Hwang, J. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci. 2004, 13, 1402–1406. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ivanov, I.I.; McKenzie, B.S.; Zhou, L.; Tadokoro, C.E.; Lepelley, A.; Lafaille, J.J.; Cua, D.J.; Littman, D.R. The Orphan Nuclear Receptor RORγt Directs the Differentiation Program of Proinflammatory IL-17+ T Helper Cells. Cell 2006, 126, 1121–1133. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, S.; Tanaka, Y.; Araki, H.; Kohda, A.; Sanematsu, F.; Arasaki, T.; Duan, X.; Miura, F.; Katagiri, T.; Shindo, R.; et al. The AP-1 transcription factor JunB is required for Th17 cell differentiation. Sci. Rep. 2017, 7, 17402. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singh, A.K.; Khare, P.; Obaid, A.; Conlon, K.P.; Basrur, V.; DePinho, R.A.; Venuprasad, K. SUMOylation of ROR-γt inhibits IL-17 expression and inflammation via HDAC2. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, L.; Yang, X.; Liang, Y.; Xie, H.; Dai, Z.; Zheng, G. Transcription Factor Retinoid-Related Orphan Receptor γt: A Promising Target for the Treatment of Psoriasis. Front. Immunol. 2018, 9, 1210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, J.; Yamane, H.; Paul, W.E. Differentiation of Effector CD4 T Cell Populations. Annu. Rev. Immunol. 2010, 28, 445–489. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hwang, E.S. Transcriptional Regulation of T Helper 17 Cell Differentiation. Yonsei Med. J. 2010, 51, 484–491. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, Z.; Lin, F.; Gao, Y.; Li, Z.; Zhang, J.; Xing, Y.; Deng, Z.; Yao, Z.; Tsun, A.; Li, B. FOXP3 and RORγt: Transcriptional regulation of Treg and Th17. Int. Immunopharmacol. 2011, 11, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Hussein, H.; Denanglaire, S.; Van Gool, F.; Azouz, A.; Ajouaou, Y.; El-Khatib, H.; Oldenhove, G.; Leo, O.; Andris, F. Multiple Environmental Signaling Pathways Control the Differentiation of RORγt-Expressing Regulatory T Cells. Front. Immunol. 2020, 10, 3007. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- López-Fandiño, R.; Molina, E.; Lozano-Ojalvo, D. Intestinal factors promoting the development of RORγt+ cells and oral tolerance. Front. Immunol. 2023, 14, 1294292. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, B.-H.; Hagemann, S.; Mamareli, P.; Lauer, U.; Hoffmann, U.; Beckstette, M.; Föhse, L.; Prinz, I.; Pezoldt, J.; Suerbaum, S.; et al. Foxp3+ T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunol. 2016, 9, 444–457. [Google Scholar] [CrossRef] [PubMed]
- Parigi, S.M.; Das, S.; Frede, A.; Cardoso, R.F.; Tripathi, K.P.; Doñas, C.; Hu, Y.O.O.; Antonson, P.; Engstrand, L.; Gustafsson, J.; et al. Liver X receptor regulates Th17 and RORγt+ Treg cells by distinct mechanisms. Mucosal Immunol. 2020, 14, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Russler-Germain, E.; Rengarajan, S.; Hsieh, C.-S. Antigen-specific regulatory T-cell responses to intestinal microbiota. Mucosal Immunol. 2017, 10, 1375–1386. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ayyoub, M.; Deknuydt, F.; Raimbaud, I.; Dousset, C.; Leveque, L.; Bioley, G.; Valmori, D. Human memory FOXP3+Tregs secrete IL-17 ex vivo and constitutively express the TH17 lineage-specific transcription factor RORγt. Proc. Natl. Acad. Sci. USA 2009, 106, 8635–8640. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bekiaris, V.; Šedý, J.R.; Macauley, M.G.; Rhode-Kurnow, A.; Ware, C.F. The Inhibitory Receptor BTLA Controls γδ T Cell Homeostasis and Inflammatory Responses. Immunity 2013, 39, 1082–1094. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, X.; Liang, W.; Wang, Y.; Yi, R.; Luo, L.; Wang, W.; Sun, N.; Yu, M.; Xu, W.; Sheng, Q.; et al. Ontogeny of RORγt+ cells in the intestine of newborns and its role in the development of experimental necrotizing enterocolitis. Cell Biosci. 2022, 12, 1–10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, Y.; Shi, C.; Ma, S.; Ma, Y.; Lu, X.; Zhu, J.; Yang, D. The protective role of tissue-resident interleukin 17A–producing gamma delta T cells in Mycobacterium leprae infection. Front. Immunol. 2022, 13, 961405. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, X.; Morrissey, S.; Chen, F.; Yan, J. Novel Insight Into the Molecular and Metabolic Mechanisms Orchestrating IL-17 Production in γδ T Cells. Front. Immunol. 2019, 10, 2828. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fiala, G.J.; Gomes, A.Q.; Silva-Santos, B. From thymus to periphery: Molecular basis of effector γδ-T cell differentiation. Immunol. Rev. 2020, 298, 47–60. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kadekar, D.; Agerholm, R.; Rizk, J.; Neubauer, H.A.; Suske, T.; Maurer, B.; Viñals, M.T.; Comelli, E.M.; Taibi, A.; Moriggl, R.; et al. The neonatal microenvironment programs innate γδ T cells through the transcription factor STAT5. J. Clin. Investig. 2020, 130, 2496–2508. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- In, T.S.H.; Trotman-Grant, A.; Fahl, S.; Chen, E.L.Y.; Zarin, P.; Moore, A.J.; Wiest, D.L.; Zúñiga-Pflücker, J.C.; Anderson, M.K. HEB is required for the specification of fetal IL-17-producing γδ T cells. Nat. Commun. 2017, 8, 1–15. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- O’brien, R.L.; Born, W.K. Two functionally distinct subsets of IL-17 producing γδ T cells. Immunol. Rev. 2020, 298, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Thapa, P.; Manso, B.; Chung, J.Y.; Arocha, S.R.; Xue, H.-H.; Angelo, D.B.S.; Shapiro, V.S. The differentiation of ROR-γt expressing iNKT17 cells is orchestrated by Runx1. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Michel, M.-L.; Mendes-Da-Cruz, D.; Keller, A.C.; Lochner, M.; Schneider, E.; Dy, M.; Eberl, G.; Leite-De-Moraes, M.C. Critical role of ROR-γt in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation. Proc. Natl. Acad. Sci. USA 2008, 105, 19845–19850. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Luo, S.; Kwon, J.; Crossman, A.; Park, P.W.; Park, J.-H. CD138 expression is a molecular signature but not a developmental requirement for RORγt+ NKT17 cells. J. Clin. Investig. 2021, 6, e148038. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shissler, S.C.; Webb, T.J. The ins and outs of type I iNKT cell development. Mol. Immunol. 2019, 105, 116–130. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krovi, S.H.; Zhang, J.; Michaels-Foster, M.J.; Brunetti, T.; Loh, L.; Scott-Browne, J.; Gapin, L. Thymic iNKT single cell analyses unmask the common developmental program of mouse innate T cells. Nat. Commun. 2020, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Cording, S.; Medvedovic, J.; Cherrier, M.; Eberl, G. Development and regulation of RORγt+ innate lymphoid cells. FEBS Lett. 2014, 588, 4176–4181. [Google Scholar] [CrossRef] [PubMed]
- Scoville, S.D.; Freud, A.G.; Caligiuri, M. Cellular pathways in the development of human and murine innate lymphoid cells. Curr. Opin. Immunol. 2018, 56, 100–106. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cherrier, M.; Ramachandran, G.; Golub, R. The interplay between innate lymphoid cells and T cells. Mucosal Immunol. 2020, 13, 732–742. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Ye, B.; Zhu, X.; Huang, G.; Yang, L.; Zhu, P.; Du, Y.; Wu, J.; Meng, S.; Tian, Y.; et al. IL-7Rα glutamylation and activation of transcription factor Sall3 promote group 3 ILC development. Nat. Commun. 2017, 8, 1–14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kogame, T.; Egawa, G.; Nomura, T.; Kabashima, K. Waves of layered immunity over innate lymphoid cells. Front. Immunol. 2022, 13, 957711. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Castellanos, J.G.; Longman, R.S. The balance of power: Innate lymphoid cells in tissue inflammation and repair. J. Clin. Investig. 2019, 129, 2640–2650. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Klose, C.S.N.; Kiss, E.A.; Schwierzeck, V.; Ebert, K.; Hoyler, T.; D’hArgues, Y.; Göppert, N.; Croxford, A.L.; Waisman, A.; Tanriver, Y.; et al. A T-bet gradient controls the fate and function of CCR6−RORγt+ innate lymphoid cells. Nature 2013, 494, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Scoville, S.D.; Mundy-Bosse, B.L.; Zhang, M.H.; Chen, L.; Zhang, X.; Keller, K.A.; Hughes, T.; Chen, L.; Cheng, S.; Bergin, S.M.; et al. A Progenitor Cell Expressing Transcription Factor RORγt Generates All Human Innate Lymphoid Cell Subsets. Immunity 2016, 44, 1140–1150. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koprivica, I.; Stanisavljević, S.; Mićanović, D.; Jevtić, B.; Stojanović, I.; Miljković, Đ. ILC3: A case of conflicted identity. Front. Immunol. 2023, 14, 1271699. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Muraoka, W.T.; Korchagina, A.A.; Xia, Q.; Shein, S.A.; Jing, X.; Lai, Z.; Weldon, K.S.; Wang, L.-J.; Chen, Y.; Kummer, L.W.; et al. Campylobacter infection promotes IFNγ-dependent intestinal pathology via ILC3 to ILC1 conversion. Mucosal Immunol. 2020, 14, 703–716. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hashemi, E.; McCarthy, C.; Rao, S.; Malarkannan, S. Transcriptomic diversity of innate lymphoid cells in human lymph nodes compared to BM and spleen. Commun. Biol. 2024, 7, 1–16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ebihara, T.; Song, C.; Ryu, S.H.; Plougastel-Douglas, B.; Yang, L.; Levanon, D.; Groner, Y.; Bern, M.D.; Stappenbeck, T.S.; Colonna, M.; et al. Runx3 specifies lineage commitment of innate lymphoid cells. Nat. Immunol. 2015, 16, 1124–1133. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Strauss, L.; Sangaletti, S.; Consonni, F.M.; Szebeni, G.; Morlacchi, S.; Totaro, M.G.; Porta, C.; Anselmo, A.; Tartari, S.; Doni, A.; et al. RORC1 Regulates Tumor-Promoting “Emergency” Granulo-Monocytopoiesis. Cancer Cell 2015, 28, 253–269. [Google Scholar] [CrossRef] [PubMed]
- Narasimhan, H.; Richter, M.L.; Shakiba, R.; Papaioannou, N.E.; Stehle, C.; Rengarajan, K.R.; Ulmert, I.; Kendirli, A.; de la Rosa, C.; Kuo, P.-Y.; et al. RORγt-expressing dendritic cells are functionally versatile and evolutionarily conserved antigen-presenting cells. Proc. Natl. Acad. Sci. USA 2025, 122, e2417308122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hsu, A.Y.; Wang, T.; Syahirah, R.; Liu, S.; Li, K.; Zhang, W.; Wang, J.; Cao, Z.; Tian, S.; Matosevic, S.; et al. Rora Regulates Neutrophil Migration and Activation in Zebrafish. Front. Immunol. 2022, 13, 756034. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pramanik, A.; Bhattacharyya, S. Myeloid derived suppressor cells and innate immune system interaction in tumor microenvironment. Life Sci. 2022, 305, 120755. [Google Scholar] [CrossRef] [PubMed]
- Mahanti, K.; Saha, J.; Sarkar, D.; Pramanik, A.; Chattopadhyay, N.R.; Bhattacharyya, S. Alteration of functionality and differentiation directed by changing gene expression patterns in myeloid-derived suppressor cells (MDSCs) in tumor microenvironment and bone marrow through early to terminal phase of tumor progression. J. Leukoc. Biol. 2024, 115, 958–984. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.; Abdalsalam, N.M.F.; Liang, Z.; Tariq, H.K.; Li, R.; Afolabi, L.O.; Rabiu, L.; Chen, X.; Xu, S.; Xu, Z.; et al. MDSC checkpoint blockade therapy: A new breakthrough point overcoming immunosuppression in cancer immunotherapy. Cancer Gene Ther. 2025, 32, 371–392. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guo, J.; Zhang, H.; Lin, W.; Lu, L.; Su, J.; Chen, X. Signaling pathways and targeted therapies for psoriasis. Signal Transduct. Target. Ther. 2023, 8, 1–38. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, J.; Chen, H.; Qian, H.; Wang, F.; Xu, Y. Advances in the modulation of ROS and transdermal administration for anti-psoriatic nanotherapies. J. Nanobiotechnol. 2022, 20, 1–31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mosca, M.; Hong, J.; Hadeler, E.; Hakimi, M.; Liao, W.; Bhutani, T. The Role of IL-17 Cytokines in Psoriasis. ImmunoTargets Ther. 2021, 10, 409–418. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Johansen, C.; Usher, P.; Kjellerup, R.; Lundsgaard, D.; Iversen, L.; Kragballe, K. Characterization of the interleukin-17 isoforms and receptors in lesional psoriatic skin. Br. J. Dermatol. 2009, 160, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.A.; Towne, J.E.; Kricorian, G.; Klekotka, P.; Gudjonsson, J.E.; Krueger, J.G.; Russell, C.B. The Emerging Role of IL-17 in the Pathogenesis of Psoriasis: Preclinical and Clinical Findings. J. Investig. Dermatol. 2013, 133, 17–26. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aggarwal, S.; Ghilardi, N.; Xie, M.-H.; de Sauvage, F.J.; Gurney, A.L. Interleukin-23 Promotes a Distinct CD4 T Cell Activation State Characterized by the Production of Interleukin-17. J. Biol. Chem. 2003, 278, 1910–1914. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; De Leon-Tabaldo, A.; Luna-Roman, R.; Castro, G.; Albers, M.; Schoetens, F.; DePrimo, S.; Devineni, D.; Wilde, T.; Goldberg, S.; et al. Author Correction: Preclinical and clinical characterization of the RORγt inhibitor JNJ-61803534. Sci. Rep. 2022, 12, 1–2, Erratum in Sci. Rep. 2021, 11, 11066. https://doi.org/10.1038/s41598-021-90497-9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mohamed, M.F.; Qian, Y.; D’CUnha, R.; Sligh, T.; Ferris, L.K.; Eldred, A.; Levy, G.F.; Hao, S.; Gannu, S.; Rizzo, D.G.; et al. Pharmacokinetics, safety, and efficacy of cedirogant from phase I studies in healthy participants and patients with chronic plaque psoriasis. Clin. Transl. Sci. 2023, 17, e13682. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ecoeur, F.; Weiss, J.; Kaupmann, K.; Hintermann, S.; Orain, D.; Guntermann, C. Antagonizing Retinoic Acid-Related-Orphan Receptor Gamma Activity Blocks the T Helper 17/Interleukin-17 Pathway Leading to Attenuated Pro-inflammatory Human Keratinocyte and Skin Responses. Front. Immunol. 2019, 10, 577. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Takaishi, M.; Ishizaki, M.; Suzuki, K.; Isobe, T.; Shimozato, T.; Sano, S. Oral administration of a novel RORγt antagonist attenuates psoriasis-like skin lesion of two independent mouse models through neutralization of IL-17. J. Dermatol. Sci. 2017, 85, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Pantelyushin, S.; Haak, S.; Ingold, B.; Kulig, P.; Heppner, F.L.; Navarini, A.A.; Becher, B. Rorγt+ innate lymphocytes and γδ T cells initiate psoriasiform plaque formation in mice. J. Clin. Investig. 2012, 122, 2252–2256. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sarkar, D.; Pramanik, A.; Das, D.; Bhattacharyya, S. Shifting phenotype and differentiation of CD11b+Gr.1+ immature heterogeneous myeloid derived adjuster cells support inflammation and induce regulators of IL17A in imiquimod induced psoriasis. Inflamm. Res. 2024, 73, 1581–1599. [Google Scholar] [CrossRef] [PubMed]
- Makowska, K.; Nowaczyk, J.; Blicharz, L.; Waśkiel-Burnat, A.; Czuwara, J.; Olszewska, M.; Rudnicka, L. Immunopathogenesis of Atopic Dermatitis: Focus on Interleukins as Disease Drivers and Therapeutic Targets for Novel Treatments. Int. J. Mol. Sci. 2023, 24, 781. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pappa, G.; Sgouros, D.; Theodoropoulos, K.; Kanelleas, A.; Bozi, E.; Gregoriou, S.; Krasagakis, K.; Katoulis, A.C. The IL-4/-13 Axis and Its Blocking in the Treatment of Atopic Dermatitis. J. Clin. Med. 2022, 11, 5633. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sugaya, M. The Role of Th17-Related Cytokines in Atopic Dermatitis. Int. J. Mol. Sci. 2020, 21, 1314. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koga, C.; Kabashima, K.; Shiraishi, N.; Kobayashi, M.; Tokura, Y. Possible Pathogenic Role of Th17 Cells for Atopic Dermatitis. J. Investig. Dermatol. 2008, 128, 2625–2630. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; Yang, H.; Liu, E.-M.; Wang, H. Establishing a Role for Interleukin-17 in Atopic Dermatitis-Related Skin Inflammation. J. Cutan. Med. Surg. 2017, 21, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Yang, C.; Tang, L.; Liu, G.; Cheng, L.; Chen, M. Increased expression of T helper 17 cells and interleukin-17 in atopic dermatitis: A systematic review and meta-analysis. Ann. Palliat. Med. 2021, 10, 12801–12809. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Wan, H.; Zhang, D. Innate lymphoid cells: A new key player in atopic dermatitis. Front. Immunol. 2023, 14, 1277120. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haertlé, J.; Kienlin, P.; Begemann, G.; Werfel, T.; Roesner, L.M. Inhibition of IL-17 ameliorates keratinocyte-borne cytokine responses in an in vitro model for house-dust-mite triggered atopic dermatitis. Sci. Rep. 2023, 13, 1–9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ahn, K.; Kim, B.E.; Kim, J.; Leung, D.Y. Recent advances in atopic dermatitis. Curr. Opin. Immunol. 2020, 66, 14–21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Furue, M. Regulation of Filaggrin, Loricrin, and Involucrin by IL-4, IL-13, IL-17A, IL-22, AHR, and NRF2: Pathogenic Implications in Atopic Dermatitis. Int. J. Mol. Sci. 2020, 21, 5382. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dai, J.; Choo, M.-K.; Park, J.M.; Fisher, D.E. Topical ROR Inverse Agonists Suppress Inflammation in Mouse Models of Atopic Dermatitis and Acute Irritant Dermatitis. J. Investig. Dermatol. 2017, 137, 2523–2531. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Malhotra, N.; Leyva-Castillo, J.M.; Jadhav, U.; Barreiro, O.; Kam, C.; O’nEill, N.K.; Meylan, F.; Chambon, P.; von Andrian, U.H.; Siegel, R.M.; et al. RORα-expressing T regulatory cells restrain allergic skin inflammation. Sci. Immunol. 2018, 3, eaao6923. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kavian, N.; Mehlal, S.; Jeljeli, M.; Saidu, N.E.B.; Nicco, C.; Cerles, O.; Chouzenoux, S.; Cauvet, A.; Camus, C.; Ait-Djoudi, M.; et al. The Nrf2-Antioxidant Response Element Signaling Pathway Controls Fibrosis and Autoimmunity in Scleroderma. Front. Immunol. 2018, 9, 1896, Erratum in Front. Immunol. 2021, 12, 737303. https://doi.org/10.3389/fimmu.2021.737303. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Muruganandam, M.; Ariza-Hutchinson, A.; Patel, R.; Jr, W.L.S. Biomarkers in the Pathogenesis, Diagnosis, and Treatment of Systemic Sclerosis. J. Inflamm. Res. 2023, 16, 4633–4660. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gabsi, A.; Heim, X.; Dlala, A.; Gati, A.; Sakhri, H.; Abidi, A.; Amri, S.; Neili, B.; Leroyer, A.S.; Bertaud, A.; et al. TH17 cells expressing CD146 are significantly increased in patients with Systemic sclerosis. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sekiguchi, A.; Shimokawa, C.; Kato, T.; Uchiyama, A.; Yokoyama, Y.; Ogino, S.; Torii, R.; Hisaeda, H.; Ohno, H.; Motegi, S.-I. Inhibition of skin fibrosis via regulation of Th17/Treg imbalance in systemic sclerosis. Sci. Rep. 2025, 15, 1–11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saigusa, R.; Asano, Y.; Taniguchi, T.; Hirabayashi, M.; Nakamura, K.; Miura, S.; Yamashita, T.; Takahashi, T.; Ichimura, Y.; Toyama, T.; et al. Fli1-haploinsufficient dermal fibroblasts promote skin-localized transdifferentiation of Th2-like regulatory T cells. Arthritis Res. Ther. 2018, 20, 23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xing, X.; Li, A.; Tan, H.; Zhou, Y. IFN-γ+IL-17+Th17 cells regulate fibrosis through secreting IL-21 in systemic scleroderma. J. Cell. Mol. Med. 2020, 24, 13600–13608. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gege, C. Retinoic acid-related orphan receptor gamma t (RORγt) inverse agonists/antagonists for the treatment of inflammatory diseases—where are we presently? Expert Opin. Drug Discov. 2021, 16, 1517–1535. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Yuan, C.; Ma, X.; Wang, Y.; Gu, X.; Fu, W. Molecular Mechanism of Action of RORγt Agonists and Inverse Agonists: Insights from Molecular Dynamics Simulation. Molecules 2018, 23, 3181. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, L.; Su, M.; Jin, Q.; Wang, C.-G.; Assani, I.; Wang, M.-X.; Zhao, S.-F.; Lv, S.-M.; Wang, J.-W.; Sun, B.; et al. Discovery of N-(2-benzyl-4-oxochroman-7-yl)-2-(5-(ethylsulfonyl) pyridin-2-yl) acetamide (b12) as a potent, selective, and orally available novel retinoic acid receptor-related orphan receptor γt inverse agonist. Bioorganic Chem. 2022, 119, 105483. [Google Scholar] [CrossRef] [PubMed]
- Tyring, S.; Moore, A.; Morita, A.; Hong, H.C.-H.; Song, I.-H.; Eccleston, J.; Levy, G.; Mohamed, M.-E.F.; Qian, Y.; Wu, T.; et al. Cedirogant in adults with psoriasis: A phase II, randomized, placebo-controlled clinical trial. Clin. Exp. Dermatol. 2024, 49, 1347–1355. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Wang, Y. RORγt inhibitors in clinical development for the treatment of autoimmune diseases: Challenges and opportunities. Expert Opin. Ther. Patents 2025, 35, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.; Pehrson, R.; Grindebacke, H.; Leffler, A.; Ramnegård, M.; Rannikmäe, H.; Krutrök, N.; Yrlid, L.; Pollard, C.; Dainty, I.; et al. RORγt inverse agonists demonstrating a margin between inhibition of IL-17A and thymocyte apoptosis. PLoS ONE 2025, 20, e0317090. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fader, K.A.; Gosink, M.M.; Xia, S.; Lanz, T.A.; Halsey, C.; Vaidya, V.S.; Radi, Z.A. Thymic lymphoma detection in RORγ knockout mice using 5-hydroxymethylcytosine profiling of circulating cell-free DNA. Toxicol. Appl. Pharmacol. 2023, 473, 116582. [Google Scholar] [CrossRef] [PubMed]
- Lobo, S. Is there enough focus on lipophilicity in drug discovery? Expert Opin. Drug Discov. 2019, 15, 261–263. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.; Wu, S.; Gupta, A.; von Mackensen, Y.-L.; Siemetzki, H.; Freudenberg, J.; Wigger-Alberti, W.; Yamaguchi, Y. A phase I randomized controlled trial to evaluate safety and clinical effect of topically applied GSK2981278 ointment in a psoriasis plaque test. Br. J. Dermatol. 2017, 178, 1427–1429. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, D.; Pramanik, A.; Saha, J.; Das, D.; Mahanti, K.; Mahato, M.; Mondal, P.; Bhattacharyya, S. Amelioration of imiquimod induced psoriasis through reduction in IL-17A and Th17 population by dihydromyricetin involves regulation of RORγt pathway. Int. Immunopharmacol. 2025, 153, 114492. [Google Scholar] [CrossRef]
- Xu, T.; Wang, X.; Zhong, B.; Nurieva, R.I.; Ding, S.; Dong, C. Ursolic Acid Suppresses Interleukin-17 (IL-17) Production by Selectively Antagonizing the Function of RORγt Protein. J. Biol. Chem. 2011, 286, 22707–22710. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pastwińska, J.; Karaś, K.; Sałkowska, A.; Karwaciak, I.; Chałaśkiewicz, K.; Wojtczak, B.A.; Bachorz, R.A.; Ratajewski, M. Identification of Corosolic and Oleanolic Acids as Molecules Antagonizing the Human RORγT Nuclear Receptor Using the Calculated Fingerprints of the Molecular Similarity. Int. J. Mol. Sci. 2022, 23, 1906. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karaś, K.; Sałkowska, A.; Sobalska-Kwapis, M.; Walczak-Drzewiecka, A.; Strapagiel, D.; Dastych, J.; Bachorz, R.A.; Ratajewski, M. Digoxin, an Overlooked Agonist of RORγ/RORγT. Front. Pharmacol. 2019, 9, 1460. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, F.; Zhang, R.; Ni, D.; Luo, X.; Chen, S.; Luo, C.; Xiao, W. Discovery of betulinaldehyde as a natural RORγt agonist. Fitoterapia 2019, 137, 104200. [Google Scholar] [CrossRef] [PubMed]



| SL No. | Chemical Inhibitors and Novel Drugs | Mode of Action | Trial Phase | References |
|---|---|---|---|---|
| 1. | VTP-43742 | Selectively inhibits RORα and RORβ isotypes | Phase 2a | [97,103] |
| 2. | JNJ-61803534 | Selectively inhibits RORγt | Phase 1 | [103] |
| 3. | Cedirogant | Inverse agonist of nuclear receptor ROR-gamma isoform 2 (RORyt) | Phase 1 | [104] |
| 4. | SR1001 | Inverse agonist of RORα and RORγ | Preclinical | [119] |
| 5. | GSK2981278 | Interferes with co-activator binding to the RORγt ligand-binding domain | Phase 1/Phase 2 | [97] |
| 6. | ABBV-553 | Interferes with co-activator binding to the RORγt ligand-binding domain | Phase 1/Phase 2 | [97] |
| 7. | ARN-6039 | Interferes with co-activator binding to the RORγt ligand-binding domain | Phase 1 | [97] |
| 8. | AZD-0284 | Interferes with co-activator binding to the RORγt ligand-binding domain | Phase 1 | [97] |
| 9. | JTE-451 | Interferes with co-activator binding to the RORγt ligand-binding domain | Phase 1/Phase 2 | [97] |
| SL No. | Natural Products | Mode of Action | References |
|---|---|---|---|
| 1. | Dihydromyricetin | Reduces nuclear translocation of RORγt | [136] |
| 2. | Ursolic Acid | Selective antagonist of the RORγt | [137] |
| 3. | Corosolic acid | Inverse agonist of the RORγt | [138] |
| 4. | Oleaniolic acid | Inverse agonist of the RORγt | [138] |
| 5. | Digoxin | Suppresses Th17 cell differentiation by inversely agonizing RORγt activity at very high doses | [2] |
| 6. | Arctigenin [lignan] | Decreases RORγt mRNA and protein levels | [2] |
| 7. | Epigallocatechin-3-gallate [polyphenol] | Decreases RORγt mRNA and protein levels | [2] |
| 8. | Astragalus Polysaccharide and Astragaloside IV [saponin] | Decreases RORγt mRNA and protein levels | [2] |
| 9. | Oxymatrine [quinolizidine alkaloid] | Decreases RORγt mRNA and protein levels | [2] |
| 10. | Rapamycin [macrolide] | Indirectly affects RORγt by downregulating the transcription factor HIF-1α | [2] |
| 11. | α-Mangostin [xanthone] | Decreases RORγt mRNA and protein levels | [2] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pramanik, A.; Mondal, P.; Bhattacharyya, S. Critical Evaluation of the Role of Transcription Factor RAR-Orphan Receptor-γt in the Development of Chronic Inflammatory Dermatological Diseases: A Promising Therapeutic Target. Biomolecules 2025, 15, 1543. https://doi.org/10.3390/biom15111543
Pramanik A, Mondal P, Bhattacharyya S. Critical Evaluation of the Role of Transcription Factor RAR-Orphan Receptor-γt in the Development of Chronic Inflammatory Dermatological Diseases: A Promising Therapeutic Target. Biomolecules. 2025; 15(11):1543. https://doi.org/10.3390/biom15111543
Chicago/Turabian StylePramanik, Anik, Pallabi Mondal, and Sankar Bhattacharyya. 2025. "Critical Evaluation of the Role of Transcription Factor RAR-Orphan Receptor-γt in the Development of Chronic Inflammatory Dermatological Diseases: A Promising Therapeutic Target" Biomolecules 15, no. 11: 1543. https://doi.org/10.3390/biom15111543
APA StylePramanik, A., Mondal, P., & Bhattacharyya, S. (2025). Critical Evaluation of the Role of Transcription Factor RAR-Orphan Receptor-γt in the Development of Chronic Inflammatory Dermatological Diseases: A Promising Therapeutic Target. Biomolecules, 15(11), 1543. https://doi.org/10.3390/biom15111543

