The Metabolic Regulation of the NKG2D-Positive NK and T Cells and Their Role in Disease Progression
Abstract
1. Introduction
2. The Role of NKG2D in NK Cells
2.1. The Structural Characteristics and Functions of NKG2D
2.2. The Debate over Soluble NKG2D Ligands
2.3. Function of NKG2D on NK Cells
2.4. Application Potential of NKG2D in NK Cells
3. Metabolites Regulate NKG2D Expression as Well as NK Cell Function
3.1. Lipids
3.2. ROS
3.3. Glucose
3.4. Amino Acid
4. The Role of NKG2D-Positive NK/T Cells in the Progression of Diseases
4.1. Tumor Metabolic Microenvironment
4.2. Diabetes
4.3. Hepatic Steatosis
4.4. Intestinal-Related Diseases
4.5. Autoimmune Diseases
5. The Application of NKG2D-Targeted Therapy in Cancer
5.1. CAR-NK Cell Therapy
5.2. Vaccine
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Abbreviation | Full Name |
| 2DG | 2-deoxy-D-glucose |
| 5-ALA | 5-aminolevulinic acid |
| AA | Arachidonic Acid |
| ADCC | Antibody-Dependent Cellular Cytotoxicity |
| AITD | Autoimmune Thyroid Disease |
| AML | Acute Myeloid Leukaemia |
| BLS | Brucella Lumazine Synthase |
| CAR | Chimeric Antigen Receptor |
| CGD | Chronic Granomatous Disease |
| CLDN6 | Claudin-6 |
| CMV | Cytomegalovirus |
| CSF-1 | Colony Stimulating Factor-1 |
| DAEC | Diffusely Adherent E. coli |
| ECs | Endocannabinoids |
| ESRD | End-Stage Renal Disease |
| HAdV-F | Human Adenovirus F type |
| HDACi | Histone Deacetylase Inhibitor |
| HT | Hashimoto’s Thyroiditis |
| IBD | Inflammatory Bowel Disease |
| IDO | Indoleamine-2,3-dioxygenase |
| IP | Inosine Pranobex |
| JRA | Juvenile Rheumatoid Arthritis |
| L-KYN | L-kynurenine |
| MHV | Murine Hepatitis Virus |
| MM | Multiple Myeloma |
| MULT | Mouse ULBP-like Transcript |
| NKAE | Activated and Expanded NK cells |
| NLRP3 | NLR Family Pyrin Domain Containing 3 |
| NOD | Non-Obesity Diabetic (mouse) |
| OGD | Oxygen-Glucose Deprivation |
| RA | Rheumatoid Arthritis |
| RIP-LCMV | Rat Insulin Promoter-Lymphocytic Choriomeningitis Virus |
| SLE | Systemic Lupus Erythematosus |
| TDCA | Taurodeoxycholic Acid |
| TOX | Thymocyte Selection-Associated High Mobility Group Box |
| TSF2 | Tornabea scutellifera Polysaccharide Fraction 2 |
| ULBP | UL16-Binding Protein |
References
- Kucuksezer, U.C.; Aktas Cetin, E.; Esen, F.; Tahrali, I.; Akdeniz, N.; Gelmez, M.Y.; Deniz, G. The Role of Natural Killer Cells in Autoimmune Diseases. Front. Immunol. 2021, 12, 622306. [Google Scholar] [CrossRef] [PubMed]
- Barry, K.C.; Hsu, J.; Broz, M.L.; Cueto, F.J.; Binnewies, M.; Combes, A.J.; Nelson, A.E.; Loo, K.; Kumar, R.; Rosenblum, M.D.; et al. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat. Med. 2018, 24, 1178–1191. [Google Scholar] [CrossRef]
- Sohn, H.; Cooper, M.A. Metabolic regulation of NK cell function: Implications for immunotherapy. Immunometabolism 2023, 5, e00020. [Google Scholar] [CrossRef] [PubMed]
- Guo, R. Metabolic Regulation of Natural Killer Cells. Eng. Technol. 2023, 74, 888–894. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, X.; Qi, B.; Sun, C.; Sun, K.; Liu, N.; Zhu, L.; Wei, X. Ferroptosis and musculoskeletal diseases: “Iron Maiden” cell death may be a promising therapeutic target. Front. Immunol. 2022, 13, 972753. [Google Scholar] [CrossRef]
- Prajapati, K.; Perez, C.; Rojas, L.B.P.; Burke, B.; Guevara-Patino, J.A. Functions of NKG2D in CD8+ T cells: An opportunity for immunotherapy. Cell. Mol. Immunol. 2018, 15, 470–479. [Google Scholar] [CrossRef]
- Phoksawat, W.; Jumnainsong, A.; Sornkayasit, K.; Srisak, K.; Komanasin, N.; Leelayuwat, C. IL-17 and IFN-γ Productions by CD4+ T cells and T cell Subsets Expressing NKG2D Associated with the Number of Risk Factors for Cardiovascular Diseases. Mol. Immunol. 2020, 122, 193–199. [Google Scholar] [CrossRef]
- Zhang, C.; Röder, J.; Scherer, A.; Bodden, M.; Pfeifer Serrahima, J.; Bhatti, A.; Waldmann, A.; Müller, N.; Oberoi, P.; Wels, W.S. Bispecific antibody-mediated redirection of NKG2D-CAR natural killer cells facilitates dual targeting and enhances antitumor activity. J. Immunother. Cancer 2021, 9, e002980. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Tang, Y.; Zhuang, X.; Feng, W.; Boor, P.P.C.; Buschow, S.; Sprengers, D.; Zhou, G. Unlocking the therapeutic potential of the NKG2A-HLA-E immune checkpoint pathway in T cells and NK cells for cancer immunotherapy. J. Immunother. Cancer 2024, 12, e009934. [Google Scholar] [CrossRef]
- Wang, X.; Xiong, H.; Ning, Z. Implications of NKG2A in immunity and immune-mediated diseases. Front. Immunol. 2022, 13, 960852. [Google Scholar] [CrossRef]
- André, P.; Denis, C.; Soulas, C.; Bourbon-Caillet, C.; Lopez, J.; Arnoux, T.; Bléry, M.; Bonnafous, C.; Gauthier, L.; Morel, A.; et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. Cell 2018, 175, 1731–1743.e13. [Google Scholar] [CrossRef]
- Della Chiesa, M.; Sivori, S.; Carlomagno, S.; Moretta, L.; Moretta, A. Activating KIRs and NKG2C in Viral Infections: Toward NK Cell Memory? Front. Immunol. 2015, 6, 573. [Google Scholar] [CrossRef] [PubMed]
- Marinović, S.; Lenartić, M.; Mladenić, K.; Šestan, M.; Kavazović, I.; Benić, A.; Krapić, M.; Rindlisbacher, L.; Cokarić Brdovčak, M.; Sparano, C.; et al. NKG2D-mediated detection of metabolically stressed hepatocytes by innate-like T cells is essential for initiation of NASH and fibrosis. Sci. Immunol. 2023, 8, eadd1599. [Google Scholar] [CrossRef] [PubMed]
- Lanier, L.L. NKG2D Receptor and Its Ligands in Host Defense. Cancer Immunol. Res. 2015, 3, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Raulet, D.H.; Gasser, S.; Gowen, B.G.; Deng, W.; Jung, H. Regulation of ligands for the NKG2D activating receptor. Annu. Rev. Immunol. 2013, 31, 413–441. [Google Scholar] [CrossRef]
- Jiang, S.; Li, H.; Zhang, L.; Mu, W.; Zhang, Y.; Chen, T.; Wu, J.; Tang, H.; Zheng, S.; Liu, Y.; et al. Generic Diagramming Platform (GDP): A comprehensive database of high-quality biomedical graphics. Nucleic Acids Res. 2025, 53, D1670–D1676. [Google Scholar] [CrossRef]
- Andresen, L.; Hansen, K.A.; Jensen, H.; Pedersen, S.F.; Stougaard, P.; Hansen, H.R.; Jurlander, J.; Skov, S. Propionic acid secreted from propionibacteria induces NKG2D ligand expression on human-activated T lymphocytes and cancer cells. J. Immunol. 2009, 183, 897–906. [Google Scholar] [CrossRef]
- Sheppard, S.; Guedes, J.; Mroz, A.; Zavitsanou, A.M.; Kudo, H.; Rothery, S.M.; Angelopoulos, P.; Goldin, R.; Guerra, N. The immunoreceptor NKG2D promotes tumour growth in a model of hepatocellular carcinoma. Nat. Commun. 2017, 8, 13930. [Google Scholar] [CrossRef]
- Møller, S.H.; Mellergaard, M.; Madsen, M.; Bermejo, A.V.; Jepsen, S.D.; Hansen, M.H.; Høgh, R.I.; Aldana, B.I.; Desler, C.; Rasmussen, L.J.; et al. Cytoplasmic Citrate Flux Modulates the Immune Stimulatory NKG2D Ligand MICA in Cancer Cells. Front. Immunol. 2020, 11, 1968. [Google Scholar] [CrossRef]
- Okita, R.; Maeda, A.; Shimizu, K.; Nojima, Y.; Saisho, S.; Nakata, M. Clinicopathological relevance of tumor expression of NK group 2 member D ligands in resected non-small cell lung cancer. Oncotarget 2019, 10, 6805–6815. [Google Scholar] [CrossRef]
- Diefenbach, A.; Jensen, E.R.; Jamieson, A.M.; Raulet, D.H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 2001, 413, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Legroux, L.; Moratalla, A.C.; Laurent, C.; Deblois, G.; Verstraeten, S.L.; Arbour, N. NKG2D and Its Ligand MULT1 Contribute to Disease Progression in a Mouse Model of Multiple Sclerosis. Front. Immunol. 2019, 10, 154. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, D.; Xu, W.; Wang, Y.; Ruan, Z.; Zhao, T.; Han, J.; Wu, Y. Tumor-derived soluble MICs impair CD3+CD56+ NKT-like cell cytotoxicity in cancer patients. Immunol. Lett. 2008, 120, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Salih, H.R.; Holdenrieder, S.; Steinle, A. Soluble NKG2D ligands: Prevalence, release, and functional impact. Front. Biosci. J. Virtual Libr. 2008, 13, 3448–3456. [Google Scholar] [CrossRef]
- Deng, W.; Gowen, B.G.; Zhang, L.; Wang, L.; Lau, S.; Iannello, A.; Xu, J.; Rovis, T.L.; Xiong, N.; Raulet, D.H. Antitumor immunity. A shed NKG2D ligand that promotes natural killer cell activation and tumor rejection. Science 2015, 348, 136–139. [Google Scholar] [CrossRef]
- Serritella, A.V.; Saenz-Lopez Larrocha, P.; Dhar, P.; Liu, S.; Medd, M.M.; Jia, S.; Cao, Q.; Wu, J.D. The Human Soluble NKG2D Ligand Differentially Impacts Tumorigenicity and Progression in Temporal and Model-Dependent Modes. Biomedicines 2024, 12, 196. [Google Scholar] [CrossRef]
- Wei, L.; Xiang, Z.; Zou, Y. The Role of NKG2D and Its Ligands in Autoimmune Diseases: New Targets for Immunotherapy. Int. J. Mol. Sci. 2023, 24, 17545. [Google Scholar] [CrossRef]
- Groh, V.; Bruhl, A.; El-Gabalawy, H.; Nelson, J.L.; Spies, T. Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 2003, 100, 9452–9457. [Google Scholar] [CrossRef]
- Liu, H.; Wang, S.; Xin, J.; Wang, J.; Yao, C.; Zhang, Z. Role of NKG2D and its ligands in cancer immunotherapy. Am. J. Cancer Res. 2019, 9, 2064–2078. [Google Scholar]
- Romero, A.I.; Thorén, F.B.; Brune, M.; Hellstrand, K. NKp46 and NKG2D receptor expression in NK cells with CD56dim and CD56bright phenotype: Regulation by histamine and reactive oxygen species. Br. J. Haematol. 2006, 132, 91–98. [Google Scholar] [CrossRef]
- McCarthy, M.T.; Lin, D.; Soga, T.; Adam, J.; O’Callaghan, C.A. Inosine pranobex enhances human NK cell cytotoxicity by inducing metabolic activation and NKG2D ligand expression. Eur. J. Immunol. 2020, 50, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Balgoma, D.; Checa, A.; Sar, D.G.; Snowden, S.; Wheelock, C.E. Quantitative metabolic profiling of lipid mediators. Mol. Nutr. Food Res. 2013, 57, 1359–1377. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Shaw, J.L.; Haigis, M.C.; Greka, A. Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity. Mol. Cell 2021, 81, 3708–3730. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Han, M. Exploring developmental and physiological functions of fatty acid and lipid variants through worm and fly genetics. Annu. Rev. Genet. 2014, 48, 119–148. [Google Scholar] [CrossRef]
- Cockcroft, S. Mammalian lipids: Structure, synthesis and function. Essays Biochem. 2021, 65, 813–845. [Google Scholar] [CrossRef]
- Jones, A.B.; Rocco, A.; Lamb, L.S.; Friedman, G.K.; Hjelmeland, A.B. Regulation of NKG2D Stress Ligands and Its Relevance in Cancer Progression. Cancers 2022, 14, 2339. [Google Scholar] [CrossRef]
- Andresen, L.; Skovbakke, S.L.; Persson, G.; Hagemann-Jensen, M.; Hansen, K.A.; Jensen, H.; Skov, S. 2-deoxy D-glucose prevents cell surface expression of NKG2D ligands through inhibition of N-linked glycosylation. J. Immunol. 2012, 188, 1847–1855. [Google Scholar] [CrossRef]
- Høgh, R.I.; Møller, S.H.; Jepsen, S.D.; Mellergaard, M.; Lund, A.; Pejtersen, M.; Fitzner, E.; Andresen, L.; Skov, S. Metabolism of short-chain fatty acid propionate induces surface expression of NKG2D ligands on cancer cells. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2020, 34, 15531–15546. [Google Scholar] [CrossRef]
- Hu, X.; Jia, X.; Xu, C.; Wei, Y.; Wang, Z.; Liu, G.; You, Q.; Lu, G.; Gong, W. Downregulation of NK cell activities in Apolipoprotein C-III-induced hyperlipidemia resulting from lipid-induced metabolic reprogramming and crosstalk with lipid-laden dendritic cells. Metab. Clin. Exp. 2021, 120, 154800. [Google Scholar] [CrossRef]
- Brieger, K.; Schiavone, S.; Miller, F.J., Jr.; Krause, K.H. Reactive oxygen species: From health to disease. Swiss Med. Wkly. 2012, 142, w13659. [Google Scholar] [CrossRef]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef]
- Yang, S.; Lian, G. ROS and diseases: Role in metabolism and energy supply. Mol. Cell. Biochem. 2020, 467, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sarniak, A.; Lipińska, J.; Tytman, K.; Lipińska, S. Endogenous mechanisms of reactive oxygen species (ROS) generation. Postep. Hig. Med. Dosw. 2016, 70, 1150–1165. [Google Scholar] [CrossRef]
- Sun, Y.; Lu, Y.; Saredy, J.; Wang, X.; Drummer Iv, C.; Shao, Y.; Saaoud, F.; Xu, K.; Liu, M.; Yang, W.Y.; et al. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol. 2020, 37, 101696. [Google Scholar] [CrossRef]
- Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ. Res. 2018, 122, 877–902. [Google Scholar] [CrossRef]
- Yin, T.; Wang, G.; He, S.; Liu, Q.; Sun, J.; Wang, Y. Human cancer cells with stem cell-like phenotype exhibit enhanced sensitivity to the cytotoxicity of IL-2 and IL-15 activated natural killer cells. Cell. Immunol. 2016, 300, 41–45. [Google Scholar] [CrossRef]
- Wang, R.; Ma, X.; Zhang, X.; Jiang, D.; Mao, H.; Li, Z.; Tian, Y.; Cheng, B. Autophagy-mediated NKG2D internalization impairs NK cell function and exacerbates radiation pneumonitis. Front. Immunol. 2023, 14, 1250920. [Google Scholar] [CrossRef]
- Conejo-Garcia, J.R.; Benencia, F.; Courreges, M.C.; Gimotty, P.A.; Khang, E.; Buckanovich, R.J.; Frauwirth, K.A.; Zhang, L.; Katsaros, D.; Thompson, C.B.; et al. Ovarian carcinoma expresses the NKG2D ligand Letal and promotes the survival and expansion of CD28- antitumor T cells. Cancer Res. 2004, 64, 2175–2182. [Google Scholar] [CrossRef]
- Sasawatari, S.; Okamoto, Y.; Kumanogoh, A.; Toyofuku, T. Blockade of N-Glycosylation Promotes Antitumor Immune Response of T Cells. J. Immunol. 2020, 204, 1373–1385. [Google Scholar] [CrossRef]
- Yamada, N.; Kato-Kogoe, N.; Yamanegi, K.; Nishiura, H.; Fujihara, Y.; Fukunishi, S.; Okamura, H.; Terada, N.; Nakasho, K. Inhibition of Asparagine-linked Glycosylation Participates in Hypoxia-induced Down-regulation of Cell-surface MICA Expression. Anticancer Res. 2018, 38, 1353–1359. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Dou, B.; Shu, S.; Wei, L.; Zhu, S.; Ke, Z.; Wang, Z. Suppressing NK Cells by Astragaloside IV Protects Against Acute Ischemic Stroke in Mice Via Inhibiting STAT3. Front. Pharmacol. 2021, 12, 802047. [Google Scholar] [CrossRef] [PubMed]
- Tabarsa, M.; You, S.; Abedi, M.; Ahmadian, N.; Li, C.; Talapphet, N. The activation of RAW264.7 murine macrophage and natural killer cells by glucomannogalactan polysaccharides from Tornabea scutellifera. Carbohydr. Polym. 2019, 219, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Jensen, H.; Potempa, M.; Gotthardt, D.; Lanier, L.L. Cutting Edge: IL-2-Induced Expression of the Amino Acid Transporters SLC1A5 and CD98 Is a Prerequisite for NKG2D-Mediated Activation of Human NK Cells. J. Immunol. 2017, 199, 1967–1972. [Google Scholar] [CrossRef]
- Della Chiesa, M.; Carlomagno, S.; Frumento, G.; Balsamo, M.; Cantoni, C.; Conte, R.; Moretta, L.; Moretta, A.; Vitale, M. The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function. Blood 2006, 108, 4118–4125. [Google Scholar] [CrossRef]
- Dashti Gerdabi, N.; Ghafourian, M.; Nakajima, M.; Iranparast, S.; Khodadadi, A. Effect of 5-aminolevulinic acid on gene expression and presence of NKG2D receptor on NK cells. Int. Immunopharmacol. 2021, 97, 107677. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, S.; Ferry, A.; Guedes, J.; Guerra, N. The Paradoxical Role of NKG2D in Cancer Immunity. Front. Immunol. 2018, 9, 1808. [Google Scholar] [CrossRef]
- Mojic, M.; Shitaoka, K.; Ohshima, C.; Ucche, S.; Lyu, F.; Hamana, H.; Tahara, H.; Kishi, H.; Hayakawa, Y. NKG2D defines tumor-reacting effector CD8+ T cells within tumor microenvironment. Cancer Sci. 2021, 112, 3484–3490. [Google Scholar] [CrossRef]
- Barber, A.; Rynda, A.; Sentman, C.L. Chimeric NKG2D expressing T cells eliminate immunosuppression and activate immunity within the ovarian tumor microenvironment. J. Immunol. 2009, 183, 6939–6947. [Google Scholar] [CrossRef]
- Thompson, T.W.; Jackson, B.T.; Li, P.J.; Wang, J.; Kim, A.B.; Huang, K.T.H.; Zhang, L.; Raulet, D.H. Tumor-derived CSF-1 induces the NKG2D ligand RAE-1δ on tumor-infiltrating macrophages. eLife 2018, 7, e32919. [Google Scholar] [CrossRef]
- Van Belle, T.L.; Ling, E.; Haase, C.; Bresson, D.; Ursø, B.; von Herrath, M.G. NKG2D blockade facilitates diabetes prevention by antigen-specific Tregs in a virus-induced model of diabetes. J. Autoimmun. 2013, 40, 66–73. [Google Scholar] [CrossRef]
- Ogasawara, K.; Hamerman, J.A.; Ehrlich, L.R.; Bour-Jordan, H.; Santamaria, P.; Bluestone, J.A.; Lanier, L.L. NKG2D blockade prevents autoimmune diabetes in NOD mice. Immunity 2004, 20, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Phoksawat, W.; Jumnainsong, A.; Leelayuwat, N.; Leelayuwat, C. Aberrant NKG2D expression with IL-17 production of CD4+ T subsets in patients with type 2 diabetes. Immunobiology 2017, 222, 944–951. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Wang, H.; Cao, K.; Xu, C.; Ma, A.; Zheng, M.; Xu, Y.; Zhang, M. Dysfunction of circulating CD3+CD56+ NKT-like cells in type 2 diabetes mellitus. Int. J. Med. Sci. 2023, 20, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, X.; Liu, W.; Zhou, Y.; Wei, W.; Liu, D.; Wong, C.C.; Sung, J.J.Y.; Yu, J. Activated Natural Killer Cell Promotes Nonalcoholic Steatohepatitis Through Mediating JAK/STAT Pathway. Cell. Mol. Gastroenterol. Hepatol. 2022, 13, 257–274. [Google Scholar] [CrossRef]
- Kahraman, A.; Schlattjan, M.; Kocabayoglu, P.; Yildiz-Meziletoglu, S.; Schlensak, M.; Fingas, C.D.; Wedemeyer, I.; Marquitan, G.; Gieseler, R.K.; Baba, H.A.; et al. Major histocompatibility complex class I-related chains A and B (MIC A/B): A novel role in nonalcoholic steatohepatitis. Hepatology 2010, 51, 92–102. [Google Scholar] [CrossRef]
- Caballano-Infantes, E.; García-García, A.; Lopez-Gomez, C.; Cueto, A.; Robles-Diaz, M.; Ortega-Alonso, A.; Martín-Reyes, F.; Alvarez-Alvarez, I.; Arranz-Salas, I.; Ruiz-Cabello, F.; et al. Differential iNKT and T Cells Activation in Non-Alcoholic Fatty Liver Disease and Drug-Induced Liver Injury. Biomedicines 2021, 10, 55. [Google Scholar] [CrossRef]
- Wu, T.; Hu, J.; Wang, X.; Luo, X.; Wang, H.; Ning, Q. High-fat-induced nonalcoholic fatty liver potentiates vulnerability to and the severity of viral hepatitis in a C3H/HeN mouse model. BioFactors 2022, 48, 216–227. [Google Scholar] [CrossRef]
- Rutkowski, E.; Leibelt, S.; Born, C.; Friede, M.E.; Bauer, S.; Weil, S.; Koch, J.; Steinle, A. Clr-a: A Novel Immune-Related C-Type Lectin-like Molecule Exclusively Expressed by Mouse Gut Epithelium. J. Immunol. 2017, 198, 916–926. [Google Scholar] [CrossRef]
- Tieng, V.; Le Bouguénec, C.; du Merle, L.; Bertheau, P.; Desreumaux, P.; Janin, A.; Charron, D.; Toubert, A. Binding of Escherichia coli adhesin AfaE to CD55 triggers cell-surface expression of the MHC class I-related molecule MICA. Proc. Natl. Acad. Sci. USA 2002, 99, 2977–2982. [Google Scholar] [CrossRef]
- Oliveira, E.R.A.; Li, L.; Bouvier, M. Intracellular Sequestration of the NKG2D Ligand MIC B by Species F Adenovirus. Viruses 2021, 13, 1289. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Sinha, D.; Biswas, R.; Biswas, T. IL-15 stimulates NKG2D while promoting IgM expression of B-1a cells. Cytokine 2017, 95, 43–50. [Google Scholar] [CrossRef]
- Verneris, M.R.; Karimi, M.; Baker, J.; Jayaswal, A.; Negrin, R.S. Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8+ T cells. Blood 2004, 103, 3065–3072. [Google Scholar] [CrossRef]
- Marçais, A.; Viel, S.; Grau, M.; Henry, T.; Marvel, J.; Walzer, T. Regulation of mouse NK cell development and function by cytokines. Front. Immunol. 2013, 4, 450. [Google Scholar] [CrossRef] [PubMed]
- Serrano, A.E.; Menares-Castillo, E.; Garrido-Tapia, M.; Ribeiro, C.H.; Hernández, C.J.; Mendoza-Naranjo, A.; Gatica-Andrades, M.; Valenzuela-Diaz, R.; Zúñiga, R.; López, M.N.; et al. Interleukin 10 decreases MICA expression on melanoma cell surface. Immunol. Cell Biol. 2011, 89, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Dean, J.W.; Peters, L.D.; Fuhrman, C.A.; Seay, H.R.; Posgai, A.L.; Stimpson, S.E.; Brusko, M.A.; Perry, D.J.; Yeh, W.I.; Newby, B.N.; et al. Innate inflammation drives NK cell activation to impair Treg activity. J. Autoimmun. 2020, 108, 102417. [Google Scholar] [CrossRef]
- Song, H.; Hur, D.Y.; Kim, K.E.; Park, H.; Kim, T.; Kim, C.W.; Bang, S.; Cho, D.H. IL-2/IL-18 prevent the down-modulation of NKG2D by TGF-beta in NK cells via the c-Jun N-terminal kinase (JNK) pathway. Cell. Immunol. 2006, 242, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.J.; Marusina, A.I.; Pathmanathan, I.; Borrego, F.; Coligan, J.E. IL-21 down-regulates NKG2D/DAP10 expression on human NK and CD8+ T cells. J. Immunol. 2006, 176, 1490–1497. [Google Scholar] [CrossRef]
- Zhang, C.; Niu, J.; Zhang, J.; Wang, Y.; Zhou, Z.; Zhang, J.; Tian, Z. Opposing effects of interferon-alpha and interferon-gamma on the expression of major histocompatibility complex class I chain-related A in tumors. Cancer Sci. 2008, 99, 1279–1286. [Google Scholar] [CrossRef]
- Tahrali, I.; Kucuksezer, U.C.; Akdeniz, N.; Altintas, A.; Uygunoglu, U.; Aktas-Cetin, E.; Deniz, G. CD3−CD56+ NK cells display an inflammatory profile in RR-MS patients. Immunol. Lett. 2019, 216, 63–69. [Google Scholar] [CrossRef]
- Tougaard, P.; Skov, S.; Pedersen, A.E.; Krych, L.; Nielsen, D.S.; Bahl, M.I.; Christensen, E.G.; Licht, T.R.; Poulsen, S.S.; Metzdorff, S.B.; et al. TL1A regulates TCRγδ+ intraepithelial lymphocytes and gut microbial composition. Eur. J. Immunol. 2015, 45, 865–875. [Google Scholar] [CrossRef]
- Zhu, S.; Denman, C.J.; Cobanoglu, Z.S.; Kiany, S.; Lau, C.C.; Gottschalk, S.M.; Hughes, D.P.; Kleinerman, E.S.; Lee, D.A. The narrow-spectrum HDAC inhibitor entinostat enhances NKG2D expression without NK cell toxicity, leading to enhanced recognition of cancer cells. Pharm. Res. 2015, 32, 779–792. [Google Scholar] [CrossRef] [PubMed]
- Satwani, P.; Bavishi, S.; Saha, A.; Zhao, F.; Ayello, J.; van de Ven, C.; Chu, Y.; Cairo, M.S. Upregulation of NKG2D ligands in acute lymphoblastic leukemia and non-Hodgkin lymphoma cells by romidepsin and enhanced in vitro and in vivo natural killer cell cytotoxicity. Cytotherapy 2014, 16, 1431–1440. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Yahr, A.; Huang, B.; Ayello, J.; Barth, M.; Cairo, M.S. Romidepsin alone or in combination with anti-CD20 chimeric antigen receptor expanded natural killer cells targeting Burkitt lymphoma in vitro and in immunodeficient mice. Oncoimmunology 2017, 6, e1341031. [Google Scholar] [CrossRef] [PubMed]
- Weiss, T.; Schneider, H.; Silginer, M.; Steinle, A.; Pruschy, M.; Polić, B.; Weller, M.; Roth, P. NKG2D-Dependent Antitumor Effects of Chemotherapy and Radiotherapy against Glioblastoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 882–895. [Google Scholar] [CrossRef]
- Okita, R.; Yukawa, T.; Nojima, Y.; Maeda, A.; Saisho, S.; Shimizu, K.; Nakata, M. MHC class I chain-related molecule A and B expression is upregulated by cisplatin and associated with good prognosis in patients with non-small cell lung cancer. Cancer Immunol. Immunother. CII 2016, 65, 499–509. [Google Scholar] [CrossRef]
- Luo, D.; Dong, X.W.; Yan, B.; Liu, M.; Xue, T.H.; Liu, H.; You, J.H.; Li, F.; Wang, Z.L.; Chen, Z.N. MG132 selectively upregulates MICB through the DNA damage response pathway in A549 cells. Mol. Med. Rep. 2019, 19, 213–220. [Google Scholar] [CrossRef]
- Lee, Y.S.; Heo, W.; Nam, J.; Jeung, Y.H.; Bae, J. The combination of ionizing radiation and proteasomal inhibition by bortezomib enhances the expression of NKG2D ligands in multiple myeloma cells. J. Radiat. Res. 2018, 59, 245–252. [Google Scholar] [CrossRef]
- Le Maux Chansac, B.; Missé, D.; Richon, C.; Vergnon, I.; Kubin, M.; Soria, J.C.; Moretta, A.; Chouaib, S.; Mami-Chouaib, F. Potentiation of NK cell-mediated cytotoxicity in human lung adenocarcinoma: Role of NKG2D-dependent pathway. Int. Immunol. 2008, 20, 801–810. [Google Scholar] [CrossRef]
- De Andrade, L.F.; Tay, R.E.; Pan, D.; Luoma, A.M.; Ito, Y.; Badrinath, S.; Tsoucas, D.; Franz, B.; May, K.F., Jr.; Harvey, C.J.; et al. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science 2018, 359, 1537–1542. [Google Scholar] [CrossRef]
- Park, M.J.; Bae, J.H.; Chung, J.S.; Kim, S.H.; Kang, C.D. Induction of NKG2D ligands and increased sensitivity of tumor cells to NK cell-mediated cytotoxicity by hematoporphyrin-based photodynamic therapy. Immunol. Investig. 2011, 40, 367–382. [Google Scholar] [CrossRef]
- Konjević, G.; Mirjačić Martinović, K.; Vuletić, A.; Babović, N. In-vitro IL-2 or IFN-α-induced NKG2D and CD161 NK cell receptor expression indicates novel aspects of NK cell activation in metastatic melanoma patients. Melanoma Res. 2010, 20, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, R.; Lazear, E.; Wang, X.; Arefanian, S.; Zheleznyak, A.; Carreno, B.M.; Higashikubo, R.; Gelman, A.E.; Kreisel, D.; Fremont, D.H.; et al. Selective targeting of IL-2 to NKG2D bearing cells for improved immunotherapy. Nat. Commun. 2016, 7, 12878. [Google Scholar] [CrossRef] [PubMed]
- Hagemann-Jensen, M.; Uhlenbrock, F.; Kehlet, S.; Andresen, L.; Gabel-Jensen, C.; Ellgaard, L.; Gammelgaard, B.; Skov, S. The selenium metabolite methylselenol regulates the expression of ligands that trigger immune activation through the lymphocyte receptor NKG2D. J. Biol. Chem. 2014, 289, 31576–31590. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Liu, M.; Li, Y.; Nie, Y.; Mi, Q.; Zhao, S. Ovarian tumor-associated microRNA-20a decreases natural killer cell cytotoxicity by downregulating MICA/B expression. Cell. Mol. Immunol. 2014, 11, 495–502. [Google Scholar] [CrossRef]
- Shen, J.; Pan, J.; Du, C.; Si, W.; Yao, M.; Xu, L.; Zheng, H.; Xu, M.; Chen, D.; Wang, S.; et al. Silencing NKG2D ligand-targeting miRNAs enhances natural killer cell-mediated cytotoxicity in breast cancer. Cell Death Dis. 2017, 8, e2740. [Google Scholar] [CrossRef]
- Vantourout, P.; Willcox, C.; Turner, A.; Swanson, C.M.; Haque, Y.; Sobolev, O.; Grigoriadis, A.; Tutt, A.; Hayday, A. Immunological visibility: Posttranscriptional regulation of human NKG2D ligands by the EGF receptor pathway. Sci. Transl. Med. 2014, 6, 231ra249. [Google Scholar] [CrossRef]
- Zhou, M.T.; Zhao, C.; Chen, X.; Zhang, H.C.; Li, G.; Lou, H.; Huang, W.J.; Wei, L.J.; Li, D.W.; Wu, X.; et al. MicroRNA-34a promotes MICB expression in hepatocytes. Carcinogenesis 2018, 39, 1477–1487. [Google Scholar] [CrossRef]
- Fu, R.; Yu, F.; Wu, W.; Liu, J.; Li, J.; Guo, F.; Xu, L.; Wang, F.; Cui, X. Bufalin enhances the killing efficacy of NK cells against hepatocellular carcinoma by inhibiting MICA shedding. Int. Immunopharmacol. 2021, 101, 108195. [Google Scholar] [CrossRef]
- Hosomi, S.; Grootjans, J.; Tschurtschenthaler, M.; Krupka, N.; Matute, J.D.; Flak, M.B.; Martinez-Naves, E.; Gomez Del Moral, M.; Glickman, J.N.; Ohira, M.; et al. Intestinal epithelial cell endoplasmic reticulum stress promotes MULT1 up-regulation and NKG2D-mediated inflammation. J. Exp. Med. 2017, 214, 2985–2997. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, C.; Zhou, Z.; Zhang, J.; Zhang, J.; Tian, Z. Small intestinal intraepithelial lymphocytes expressing CD8 and T cell receptor γδ are involved in bacterial clearance during Salmonella enterica serovar Typhimurium infection. Infect. Immun. 2012, 80, 565–574. [Google Scholar] [CrossRef]
- Wrońska, K.; Hałasa, M.; Szczuko, M. The Role of the Immune System in the Course of Hashimoto’s Thyroiditis: The Current State of Knowledge. Int. J. Mol. Sci. 2024, 25, 6883. [Google Scholar] [CrossRef] [PubMed]
- Popko, K.; Górska, E. The role of natural killer cells in pathogenesis of autoimmune diseases. Cent.-Eur. J. Immunol. 2015, 40, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.C.; Ilieva, K.M.; Visconti, A.; Beaumont, M.; Kiddle, S.J.; Dobson, R.J.B.; Mangino, M.; Lim, E.M.; Pezer, M.; Steves, C.J.; et al. Dysregulated Antibody, Natural Killer Cell and Immune Mediator Profiles in Autoimmune Thyroid Diseases. Cells 2020, 9, 665. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liang, K.; Zhou, X.; Zhang, X.; Xu, H.; Dai, H.; Song, X.; Yang, X.; Liu, B.; Shi, T.; et al. Combination therapy of DKK1 inhibition and NKG2D chimeric antigen receptor T cells for the treatment of gastric cancer. Cancer Sci. 2023, 114, 2798–2809. [Google Scholar] [CrossRef]
- Zhou, Y.; Farooq, M.A.; Ajmal, I.; He, C.; Gao, Y.; Guo, D.; Duan, Y.; Jiang, W. Co-expression of IL-4/IL-15-based inverted cytokine receptor in CAR-T cells overcomes IL-4 signaling in immunosuppressive pancreatic tumor microenvironment. Biomed. Pharmacother. Biomed. Pharmacother. 2023, 168, 115740. [Google Scholar] [CrossRef]
- Leivas, A.; Valeri, A.; Córdoba, L.; García-Ortiz, A.; Ortiz, A.; Sánchez-Vega, L.; Graña-Castro, O.; Fernández, L.; Carreño-Tarragona, G.; Pérez, M.; et al. NKG2D-CAR-transduced natural killer cells efficiently target multiple myeloma. Blood Cancer J. 2021, 11, 146. [Google Scholar] [CrossRef]
- Li, Y.; Hermanson, D.L.; Moriarity, B.S.; Kaufman, D.S. Human iPSC-Derived Natural Killer Cells Engineered with Chimeric Antigen Receptors Enhance Anti-tumor Activity. Cell Stem Cell 2018, 23, 181–192.e5. [Google Scholar] [CrossRef]
- Song, D.G.; Ye, Q.; Santoro, S.; Fang, C.; Best, A.; Powell, D.J., Jr. Chimeric NKG2D CAR-expressing T cell-mediated attack of human ovarian cancer is enhanced by histone deacetylase inhibition. Hum. Gene Ther. 2013, 24, 295–305. [Google Scholar] [CrossRef]
- Li, J.; Hu, H.; Lian, H.; Yang, S.; Liu, M.; He, J.; Cao, B.; Chen, D.; Hu, Y.; Zhi, C.; et al. NK-92MI Cells Engineered with Anti-claudin-6 Chimeric Antigen Receptors in Immunotherapy for Ovarian Cancer. Int. J. Biol. Sci. 2024, 20, 1578–1601. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; He, M.; Xing, W.; Hou, R.; Zhang, H. Co-expression of IL-21-Enhanced NKG2D CAR-NK cell therapy for lung cancer. BMC Cancer 2024, 24, 119. [Google Scholar] [CrossRef]
- Xiao, L.; Cen, D.; Gan, H.; Sun, Y.; Huang, N.; Xiong, H.; Jin, Q.; Su, L.; Liu, X.; Wang, K.; et al. Adoptive Transfer of NKG2D CAR mRNA-Engineered Natural Killer Cells in Colorectal Cancer Patients. Mol. Ther. J. Am. Soc. Gene Ther. 2019, 27, 1114–1125. [Google Scholar] [CrossRef]
- Badrinath, S.; Dellacherie, M.O.; Li, A.; Zheng, S.; Zhang, X.; Sobral, M.; Pyrdol, J.W.; Smith, K.L.; Lu, Y.; Haag, S.; et al. A vaccine targeting resistant tumours by dual T cell plus NK cell attack. Nature 2022, 606, 992–998. [Google Scholar] [CrossRef]
- Torres, N.; Regge, M.V.; Secchiari, F.; Friedrich, A.D.; Spallanzani, R.G.; Raffo Iraolagoitia, X.L.; Núñez, S.Y.; Sierra, J.M.; Ziblat, A.; Santilli, M.C.; et al. Restoration of antitumor immunity through anti-MICA antibodies elicited with a chimeric protein. J. Immunother. Cancer 2020, 8, e000233. [Google Scholar] [CrossRef]
- Zhou, H.; Luo, Y.; Lo, J.F.; Kaplan, C.D.; Mizutani, M.; Mizutani, N.; Lee, J.D.; Primus, F.J.; Becker, J.C.; Xiang, R.; et al. DNA-based vaccines activate innate and adaptive antitumor immunity by engaging the NKG2D receptor. Proc. Natl. Acad. Sci. USA 2005, 102, 10846–10851. [Google Scholar] [CrossRef]
- Zhou, H.; Luo, Y.; Kaplan, C.D.; Krüger, J.A.; Lee, S.H.; Xiang, R.; Reisfeld, R.A. A DNA-based cancer vaccine enhances lymphocyte cross talk by engaging the NKG2D receptor. Blood 2006, 107, 3251–3257. [Google Scholar] [CrossRef]






| Name | Source | Function | References |
|---|---|---|---|
| MICA/MICB | Human | It makes the killing effect of NK cells stronger by acting on the NKG2D receptor. | Okita R et al., 2019 [20] |
| ULBP1-6 | Human | ||
| Rae1 | Mouse | It stimulates tumor immunity. | Diefenbach A et al., 2001 [21] |
| H60 | Mouse | ||
| MULT1 | Mouse | Soluble MULT1 greatly enhances the cytotoxic function of CD8+ T cells through the NKG2D receptor. | Legroux L et al., 2019 [22] |
| Name | Function | References |
|---|---|---|
| IL-2 | Upregulation of NKG2D expression | Verneris MR et al., 2004 [72] |
| IL-4 | Downregulation of NKG2D expression | Marçais A et al., 2013 [73] |
| IL-10 | Downregulation of MICA expression | Serrano AE et al., 2011 [74] |
| IL-12 | Upregulation of NKG2D expression | Dean JW et al., 2020 [75] |
| IL-15 | Upregulation of NKG2D expression | Ghosh AK et al., 2017 [71] |
| IL-18 | Upregulation of NKG2D expression | Song H et al., 2006 [76] |
| IL-21 | Downregulation of NKG2D expression | Burgess SJ et al., 2006 [77] |
| TNF-α | Upregulation of NKG2D expression | Groh V et al., 2003 [28] |
| TGF-β | Downregulation of NKG2D expression | Song H et al., 2006 [76] |
| IFN-α | Upregulation of MICA expression | Zhang C et al., 2008 [78] |
| IFN-β | Upregulation of NKG2D expression | Tahrali I et al., 2019 [79] |
| IFN-γ | Downregulation of MICA expression | Zhang C et al., 2008 [78] |
| CSF-1 | Upregulation of RAE-1δ expression | Thompson TW et al., 2018 [59] |
| TL1A | Upregulation of NKG2D expression | Tougaard P et al., 2015 [80] |
| Name | CAS Number | Function | References |
|---|---|---|---|
| Entinostat | 209783-80-2 | A certain HDAC inhibitor can upregulate the expression of MIC A and MIC B, thereby enhancing NK cell cytotoxicity. | Zhu S et al., 2015 [81] |
| Romidepsin | 128517-07-7 | An HDAC inhibitor can enhance NK cell cytotoxicity. | Satwani P et al., 2014 [82]; Chu Y et al., 2017 [83] |
| Temozolomide | 85622-93-1 | It can upregulate the expression of MIC A, MIC B, ULBP2, RAE-1, and MULT-1. | Weiss T et al., 2018 [84] |
| Cisplatin | 15663-27-1 | Upregulation of MIC A and MIC B expression enhances NK cell cytotoxicity. | Okita R et al., 2016 [85] [85] |
| MG132 | 133407-82-6 | Upregulation of MIC B expression enhances NK cell cytotoxicity. | Luo D et al., 2019 [86] |
| Bortezomib | 179324-69-7 | Upregulation of MIC B and ULBP1 expression enhances NK cell cytotoxicity. | Lee YS et al., 2018 [87] |
| MMP inhibitor | For example, MMPI-IV can upregulate the expression of MIC A, MIC B, ULBP2, and ULBP3, thereby enhancing NK cell cytotoxicity. | Le Maux Chansac B et al., 2008 [88] | |
| 7C6 monoclonal antibody | Upregulation of MIC A and MIC B expression enhances NK cell cytotoxicity. | Ferrari de Andrade L et al., 2018 [89] | |
| Hematoporphyrin | Upregulation of MIC B, ULBP1, ULBP2, and ULBP3 expression enhances NK cell cytotoxicity. | Park MJ et al., 2011 [90] | |
| Cytokine | Cytokines such as IL-2, IL-12, IL-18, and IL-15 can upregulate the expression of the NKG2D receptor, thereby enhancing NK cell cytotoxicity. | Song H et al., 2006 [76]; Konjević G et al., 2010 [91]; Ghasemi R et al., 2016 [92] | |
| CH3SeH | It can upregulate the expression of MIC A and MIC B, thereby enhancing NK cell cytotoxicity. | Hagemann-Jensen M et al., 2014 [93] | |
| miR-20a | Downregulation of MIC A and MIC B expression reduces NK cell cytotoxicity. | Xie J et al., [94]., 2014; Shen J et al., 2017 [95] | |
| EGFR activator | It can upregulate the expression of MIC A and ULBP2, thereby enhancing NK cell cytotoxicity. | Vantourout P et al., 2014 [96] | |
| miR-34a | It can both induce and reduce MIC B expression, thereby enhancing NK cell release of the cytotoxic effector IFN-γ. | Zhou MT et al., 2018 [97] | |
| Bufalin | 465-21-4 | It can directly balance the stimulatory and inhibitory receptors on the surface of NK cells and indirectly activate NK cells by inhibiting MIC A shedding, thus preventing immune evasion and enhancing NKG2D-dependent immune surveillance. | Fu R et al., 2021 [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Lu, Y.; Chen, M.; Wu, Q.; Li, Y.; Qin, Y.; Liang, S.; Luo, S.; Liu, K. The Metabolic Regulation of the NKG2D-Positive NK and T Cells and Their Role in Disease Progression. Biomolecules 2025, 15, 1506. https://doi.org/10.3390/biom15111506
Tang J, Lu Y, Chen M, Wu Q, Li Y, Qin Y, Liang S, Luo S, Liu K. The Metabolic Regulation of the NKG2D-Positive NK and T Cells and Their Role in Disease Progression. Biomolecules. 2025; 15(11):1506. https://doi.org/10.3390/biom15111506
Chicago/Turabian StyleTang, Jiayi, Yaqi Lu, Min Chen, Qifan Wu, Yifei Li, Yingqiao Qin, Shaomei Liang, Sulan Luo, and Kunpeng Liu. 2025. "The Metabolic Regulation of the NKG2D-Positive NK and T Cells and Their Role in Disease Progression" Biomolecules 15, no. 11: 1506. https://doi.org/10.3390/biom15111506
APA StyleTang, J., Lu, Y., Chen, M., Wu, Q., Li, Y., Qin, Y., Liang, S., Luo, S., & Liu, K. (2025). The Metabolic Regulation of the NKG2D-Positive NK and T Cells and Their Role in Disease Progression. Biomolecules, 15(11), 1506. https://doi.org/10.3390/biom15111506

