Traditional and New Views on MSI-H/dMMR Endometrial Cancer
Abstract
1. Introduction
2. The Mechanism of MMR Pathway and MSI-H/dMMR EC
3. MMR Genes and MSI-H/dMMR EC
3.1. MSH2
3.2. MSH6
3.3. MSH3
3.4. MLH1
3.5. MLH3
3.6. PMS2
3.7. EXO1
4. Detection and Diagnosis Process of MSI-H/dMMR Type EC
5. Treatment of MSI-H/dMMR EC
5.1. Related Treatment
5.2. Noteworthy Issues in Treatment
5.2.1. Immune Microenvironment Characteristics and Therapeutic Effect Differences Among Different dMMR Subtypes of EC
5.2.2. Discussion on the Mechanism of Immunotherapy Resistance
5.2.3. dMMR Status and Poor Response to Progesterone Treatment
5.2.4. Possible Trends in Optimizing Diagnostic Strategies
6. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CCEC | clear cell endometrial carcinoma |
CE | capillary electrophoresis |
CNV | copy number variation |
CRC | colorectal cancer |
dMMR | deficient mismatch repair |
EC | endometrial cancer |
EEC | endometrioid endometrial carcinoma |
ESGO | European Society of Gynecological Oncology |
FIGO | International Federation of Gynecology and Obstetrics |
HNPCC | hereditary non-polyposis colorectal cancer |
HR | homologous recombination |
H-MSI | high-instability microsatellite instability |
IHC | immunohistochemistry |
ICIs | immune checkpoint inhibitors |
ICLs | interstrand cross-linking |
LLS | Lynch-like syndrome |
LS | Lynch syndrome |
MDSCs | myeloid-derived suppressor cells |
MLH1 | mutL homolog 1 |
MLH3 | mutL homolog 3 |
MMR | mismatch repair |
MMR-d | mismatch repair deficient |
MSH2 | mutS homolog 2 |
MSH3 | mutS homolog 3 |
MSH6 | mutS homolog 6 |
MSI | microsatellite instability |
MSI-H | high microsatellite instability |
MutLα | MLH1-PMS2 |
MutLγ | MLH1-MLH3 |
MutSα | MSH2-MSH6 |
MutSβ | MSH2-MSH3 |
NCCN | National Comprehensive Cancer Network |
NGS | next-generation sequencing |
NSMP | non-specific molecular profile |
OS | overall survival |
PCR | polymerase chain reaction |
PCR-CE | polymerase chain reaction-capillary electrophoresis |
PCNA | proliferating cell nuclear antigen |
PD-1 | programmed death receptor 1 |
PD-L1 | programmed death ligand 1 |
PMS2 | postmeiotic segregation increased 2 |
POLE | polymerase epsilon |
ProMisE | Proactive Molecular Risk Classifier for Endometrial Cancer |
RCC | renal cell carcinoma |
RFS | recurrence-free survival |
RFC | replication factor C |
RPA | replication protein A |
ssDNA | single-stranded DNA |
TAMs | tumor-associated macrophages |
TCGA | The Cancer Genome Atlas |
TILs | tumor-infiltrating lymphocytes |
TMB | tumor mutational burden |
TME | tumor microenvironment |
USC | uterine serous carcinoma |
WES | whole-exome sequencing |
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef]
- Xu, X.; Chen, L.; Nunez-Smith, M.; Clark, M.; Wright, J.D. Racial disparities in diagnostic evaluation of uterine cancer among Medicaid beneficiaries. JNCI J. Natl. Cancer Inst. 2023, 115, 636–643. [Google Scholar] [CrossRef]
- Abdol Manap, N.; Ng, B.K.; Phon, S.E.; Abdul Karim, A.K.; Lim, P.S.; Fadhil, M. Endometrial cancer in pre-menopausal women and younger: Risk factors and outcome. Int. J. Environ. Res. Public Health 2022, 19, 9059. [Google Scholar] [CrossRef]
- Nees, L.K.; Heublein, S.; Steinmacher, S.; Juhasz-Böss, I.; Brucker, S.; Tempfer, C.B.; Wallwiener, M. Endometrial hyperplasia as a risk factor of endometrial cancer. Arch. Gynecol. Obstet. 2022, 306, 407–421. [Google Scholar] [CrossRef]
- Abu-Rustum, N.; Yashar, C.; Arend, R.; Barber, E.; Bradley, K.; Brooks, R.; Campos, S.M.; Chino, J.; Chon, H.S.; Chu, C. Uterine neoplasms, version 1.2023, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Cancer Netw. 2023, 21, 181–209. [Google Scholar] [CrossRef] [PubMed]
- Clarke, M.A.; Devesa, S.S.; Hammer, A.; Wentzensen, N. Racial and ethnic differences in hysterectomy-corrected uterine corpus cancer mortality by stage and histologic subtype. JAMA Oncol. 2022, 8, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Hitchins, M.P.; Ward, R.L. Constitutional (germline) MLH1 epimutation as an aetiological mechanism for hereditary non-polyposis colorectal cancer. J. Med. Genet. 2009, 46, 793–802. [Google Scholar] [CrossRef]
- Lu, K.H.; Dinh, M.; Kohlmann, W.; Watson, P.; Green, J.; Syngal, S.; Bandipalliam, P.; Chen, L.-M.; Allen, B.; Conrad, P. Gynecologic cancer as a “sentinel cancer” for women with hereditary nonpolyposis colorectal cancer syndrome. Obstet. Gynecol. 2005, 105, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.H.; Daniels, M. Endometrial and ovarian cancer in women with Lynch syndrome: Update in screening and prevention. Fam. Cancer 2013, 12, 273–277. [Google Scholar] [CrossRef]
- Murali, R.; Delair, D.F.; Bean, S.M.; Abu-Rustum, N.R.; Soslow, R.A. Evolving roles of histologic evaluation and molecular/genomic profiling in the management of endometrial cancer. J. Natl. Compr. Cancer Netw. 2018, 16, 201–209. [Google Scholar] [CrossRef]
- Levine, D.A.; The Cancer Genome Atlas Research Network. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73. [Google Scholar] [CrossRef]
- Pećina-Šlaus, N.; Kafka, A.; Salamon, I.; Bukovac, A. Mismatch repair pathway, genome stability and cancer. Front. Mol. Biosci. 2020, 7, 122. [Google Scholar] [CrossRef]
- Bartley, A.N.; Luthra, R.; Saraiya, D.S.; Urbauer, D.L.; Broaddus, R.R. Identification of cancer patients with Lynch syndrome: Clinically significant discordances and problems in tissue-based mismatch repair testing. Cancer Prev. Res. 2012, 5, 320–327. [Google Scholar] [CrossRef]
- Bruegl, A.S.; Ring, K.L.; Daniels, M.; Fellman, B.M.; Urbauer, D.L.; Broaddus, R.R. Clinical challenges associated with universal screening for Lynch syndrome–associated endometrial cancer. Cancer Prev. Res. 2017, 10, 108–115. [Google Scholar] [CrossRef]
- Evrard, C.; Cortes, U.; Ndiaye, B.; Bonnemort, J.; Martel, M.; Aguillon, R.; Tougeron, D.; Karayan-Tapon, L. An Innovative and Accurate Next-Generation Sequencing–Based Microsatellite Instability Detection Method for Colorectal and Endometrial Tumors. Lab. Investig. 2024, 104, 100297. [Google Scholar] [CrossRef] [PubMed]
- Glaire, M.A.; Ryan, N.A.; Ijsselsteijn, M.E.; Kedzierska, K.; Obolenski, S.; Ali, R.; Crosbie, E.J.; Bosse, T.; De Miranda, N.F.; Church, D.N. Discordant prognosis of mismatch repair deficiency in colorectal and endometrial cancer reflects variation in antitumour immune response and immune escape. J. Pathol. 2022, 257, 340–351. [Google Scholar] [CrossRef]
- Mittica, G.; Ghisoni, E.; Giannone, G.; Aglietta, M.; Genta, S.; Valabrega, G. Checkpoint inhibitors in endometrial cancer: Preclinical rationale and clinical activity. Oncotarget 2017, 8, 90532. [Google Scholar] [CrossRef] [PubMed]
- Randrian, V.; Evrard, C.; Tougeron, D. Microsatellite instability in colorectal cancers: Carcinogenesis, neo-antigens, immuno-resistance and emerging therapies. Cancers 2021, 13, 3063. [Google Scholar] [CrossRef] [PubMed]
- Bani, M.A.; Maulard, A.; Morice, P.; Chargari, C.; Genestie, C. Integration of the molecular classification of endometrial carcinoma to select patients for fertility sparing strategies. Anticancer Res. 2024, 44, 445–452. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, L.; Zang, Y.; Liu, W.; Liu, S.; Teng, F.; Xue, F.; Wang, Y. Endometrial cancer in Lynch syndrome. Int. J. Cancer 2022, 150, 7–17. [Google Scholar] [CrossRef]
- Resnick, K.E.; Hampel, H.; Fishel, R.; Cohn, D.E. Current and emerging trends in Lynch syndrome identification in women with endometrial cancer. Gynecol. Oncol. 2009, 114, 128–134. [Google Scholar] [CrossRef]
- Goodfellow, P.J.; Billingsley, C.C.; Lankes, H.A.; Ali, S.; Cohn, D.E.; Broaddus, R.J.; Ramirez, N.; Pritchard, C.C.; Hampel, H.; Chassen, A.S. Combined microsatellite instability, MLH1 methylation analysis, and immunohistochemistry for Lynch syndrome screening in endometrial cancers from GOG210: An NRG Oncology and Gynecologic Oncology Group Study. J. Clin. Oncol. 2015, 33, 4301–4308. [Google Scholar] [CrossRef]
- Turinetto, M.; Lombardo, V.; Pisano, C.; Musacchio, L.; Pignata, S. Pembrolizumab as a single agent for patients with MSI-H advanced endometrial carcinoma. Expert Rev. Anticancer Ther. 2022, 22, 1039–1047. [Google Scholar] [CrossRef]
- Taylor, N.P.; Powell, M.A.; Gibb, R.K.; Rader, J.S.; Huettner, P.C.; Thibodeau, S.N.; Mutch, D.G.; Goodfellow, P.J. MLH3 mutation in endometrial cancer. Cancer Res. 2006, 66, 7502–7508. [Google Scholar] [CrossRef]
- Wang, A.; Hu, W.; Zhang, Q.; Ren, H.; Zhang, Z.; Zhao, Z.; Chen, Y. Updated evaluation of clinicopathologic landscape in histopathologic subtypes of endometrial carcinoma with MMR gene mutation. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Azhin Saber, A.; Alalem, L.S. Exploring the Diagnostic Potential of IHC and Next-Generation Sequencing Approaches for Endometrial Carcinoma Detection and Classification. J. Clin. Med. Curr. Res. 2023, 3, 1–10. [Google Scholar]
- Moore, L.; Leongamornlert, D.; Coorens, T.H.; Sanders, M.A.; Ellis, P.; Dentro, S.C.; Dawson, K.J.; Butler, T.; Rahbari, R.; Mitchell, T.J. The mutational landscape of normal human endometrial epithelium. Nature 2020, 580, 640–646. [Google Scholar] [CrossRef]
- Masuda, K.; Banno, K.; Yanokura, M.; Kobayashi, Y.; Kisu, I.; Ueki, A.; Ono, A.; Asahara, N.; Nomura, H.; Hirasawa, A. Relationship between DNA mismatch repair deficiency and endometrial cancer. Mol. Biol. Int. 2011, 2011, 256063. [Google Scholar] [CrossRef]
- Martin, S.A.; Lord, C.J.; Ashworth, A. Therapeutic targeting of the DNA mismatch repair pathway. Clin. Cancer Res. 2010, 16, 5107–5113. [Google Scholar] [CrossRef]
- Steinbuch, S.C.; Lüß, A.-M.; Eltrop, S.; Götte, M.; Kiesel, L. Endometriosis-associated ovarian cancer: From molecular pathologies to clinical relevance. Int. J. Mol. Sci. 2024, 25, 4306. [Google Scholar] [CrossRef]
- Grassi, T.; Calcagno, A.; Marzinotto, S.; Londero, A.P.; Orsaria, M.; Canciani, G.N.; Beltrami, C.A.; Marchesoni, D.; Mariuzzi, L. Mismatch repair system in endometriotic tissue and eutopic endometrium of unaffected women. Int. J. Clin. Exp. Pathol. 2015, 8, 1867. [Google Scholar]
- Ueda, M.; Watanabe, T.; Momma, T.; Kanke, Y.; Kato, A.; Okabe, C.; Sato, T.; Kamo, N.; Endo, Y.; Furukawa, S. Diaphragmatic clear cell carcinoma with Lynch syndrome after surgery for atypical endometrial hyperplasia and ovarian endometriosis: A case report. Mol. Clin. Oncol. 2024, 21, 46. [Google Scholar] [CrossRef]
- Santoro, A.; Angelico, G.; Inzani, F.; Spadola, S.; Arciuolo, D.; Valente, M.; Fiorentino, V.; Mulè, A.; Scambia, G.; Zannoni, G.F. The many faces of endometriosis-related neoplasms in the same patient: A brief report. Gynecol. Obstet. Investig. 2020, 85, 371–376. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Mikami, Y.; Kusunoki, M.; Yoshimura, S.; Motohara, T.; Kondoh, E. Mismatch repair protein deficiency in endometriosis: Precursor of endometriosis-associated ovarian cancer in women with lynch syndrome. Taiwan. J. Obstet. Gynecol. 2023, 62, 448–452. [Google Scholar] [CrossRef]
- Kunkel, T.A.; Erie, D.A. DNA mismatch repair. Annu. Rev. Biochem. 2005, 74, 681–710. [Google Scholar] [CrossRef]
- Kadyrov, F.A.; Dzantiev, L.; Constantin, N.; Modrich, P. Endonucleolytic function of MutLα in human mismatch repair. Cell 2006, 126, 297–308. [Google Scholar] [CrossRef]
- Bulock, C.R.; Xing, X.; Shcherbakova, P.V. DNA polymerase δ proofreads errors made by DNA polymerase ε. Proc. Natl. Acad. Sci. USA 2020, 117, 6035–6041. [Google Scholar] [CrossRef]
- Pluciennik, A.; Dzantiev, L.; Iyer, R.R.; Constantin, N.; Kadyrov, F.A.; Modrich, P. PCNA function in the activation and strand direction of MutLα endonuclease in mismatch repair. Proc. Natl. Acad. Sci. USA 2010, 107, 16066–16071. [Google Scholar] [CrossRef]
- Genschel, J.; Bazemore, L.R.; Modrich, P. Human Exonuclease I Is Required for 5′ and 3′ Mismatch Repair∗. J. Biol. Chem. 2002, 277, 13302–13311. [Google Scholar] [CrossRef]
- Gola, M.; Stefaniak, P.; Godlewski, J.; Jereczek-Fossa, B.A.; Starzyńska, A. Prospects of POLD1 in human cancers: A review. Cancers 2023, 15, 1905. [Google Scholar] [CrossRef]
- Roske, J.J.; Yeeles, J.T. Structural basis for processive daughter-strand synthesis and proofreading by the human leading-strand DNA polymerase Pol ε. Nat. Struct. Mol. Biol. 2024, 31, 1921–1931. [Google Scholar] [CrossRef]
- Levin, D.S.; McKenna, A.E.; Motycka, T.A.; Matsumoto, Y.; Tomkinson, A.E. Interaction between PCNA and DNA ligase I is critical for joining of Okazaki fragments and long-patch base-excision repair. Curr. Biol. 2000, 10, 919–922. [Google Scholar] [CrossRef]
- Jiang, S.; Li, H.; Zhang, L.; Mu, W.; Zhang, Y.; Chen, T.; Wu, J.; Tang, H.; Zheng, S.; Liu, Y. Generic Diagramming Platform (GDP): A comprehensive database of high-quality biomedical graphics. Nucleic Acids Res. 2025, 53, D1670–D1676. [Google Scholar] [CrossRef]
- Selkoe, K.A.; Toonen, R.J. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 2006, 9, 615–629. [Google Scholar] [CrossRef]
- Yamamoto, H.; Imai, K. Microsatellite instability: An update. Arch. Toxicol. 2015, 89, 899–921. [Google Scholar] [CrossRef]
- Møller, P.; Seppälä, T.; Bernstein, I.; Holinski-Feder, E.; Sala, P.; Evans, D.G.; Lindblom, A.; Macrae, F.; Blanco, I.; Sijmons, R. Cancer incidence and survival in Lynch syndrome patients receiving colonoscopic and gynaecological surveillance: First report from the prospective Lynch syndrome database. Gut 2017, 66, 464–472. [Google Scholar] [CrossRef]
- Giardiello, F.M.; Allen, J.I.; Axilbund, J.E.; Boland, C.R.; Burke, C.A.; Burt, R.W.; Church, J.M.; Dominitz, J.A.; Johnson, D.A.; Kaltenbach, T. Guidelines on genetic evaluation and management of Lynch syndrome: A consensus statement by the US Multi-Society Task Force on colorectal cancer. Gastroenterology 2014, 147, 502–526. [Google Scholar] [CrossRef]
- Broaddus, R.R.; Lynch, H.T.; Chen, L.m.; Daniels, M.S.; Conrad, P.; Munsell, M.F.; White, K.G.; Luthra, R.; Lu, K.H. Pathologic features of endometrial carcinoma associated with HNPCC: A comparison with sporadic endometrial carcinoma. Cancer 2006, 106, 87–94. [Google Scholar] [CrossRef]
- Chapel, D.B.; Patil, S.A.; Plagov, A.; Puranik, R.; Mendybaeva, A.; Steinhardt, G.; Wanjari, P.; Lastra, R.R.; Kadri, S.; Segal, J.P. Quantitative next-generation sequencing-based analysis indicates progressive accumulation of microsatellite instability between atypical hyperplasia/endometrial intraepithelial neoplasia and paired endometrioid endometrial carcinoma. Mod. Pathol. 2019, 32, 1508–1520. [Google Scholar] [CrossRef]
- Riedinger, C.J.; Esnakula, A.; Haight, P.J.; Suarez, A.A.; Chen, W.; Gillespie, J.; Villacres, A.; Chassen, A.; Cohn, D.E.; Goodfellow, P.J. Characterization of mismatch-repair/microsatellite instability-discordant endometrial cancers. Cancer 2024, 130, 385–399. [Google Scholar] [CrossRef]
- Mensenkamp, A.R.; Vogelaar, I.P.; van Zelst–Stams, W.A.; Goossens, M.; Ouchene, H.; Hendriks–Cornelissen, S.J.; Kwint, M.P.; Hoogerbrugge, N.; Nagtegaal, I.D.; Ligtenberg, M.J. Somatic mutations in MLH1 and MSH2 are a frequent cause of mismatch-repair deficiency in Lynch syndrome-like tumors. Gastroenterology 2014, 146, 643–646. e648. [Google Scholar] [CrossRef]
- Raskin, L.; Schwenter, F.; Freytsis, M.; Tischkowitz, M.; Wong, N.; Chong, G.; Narod, S.A.; Levine, D.A.; Bogomolniy, F.; Aronson, M. Characterization of two Ashkenazi Jewish founder mutations in MSH6 gene causing Lynch syndrome. Clin. Genet. 2011, 79, 512–522. [Google Scholar] [CrossRef]
- Dominguez-Valentin, M.; Haupt, S.; Seppälä, T.T.; Sampson, J.R.; Sunde, L.; Bernstein, I.; Jenkins, M.A.; Engel, C.; Aretz, S.; Nielsen, M. Mortality by age, gene and gender in carriers of pathogenic mismatch repair gene variants receiving surveillance for early cancer diagnosis and treatment: A report from the prospective Lynch syndrome database. eClinicalMedicine 2023, 58, 101909. [Google Scholar] [CrossRef]
- Hendriks, Y.M.; Wagner, A.; Morreau, H.; Menko, F.; Stormorken, A.; Quehenberger, F.; Sandkuijl, L.; Møller, P.; Genuardi, M.; Van Houwelingen, H. Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: Impact on counseling and surveillance. Gastroenterology 2004, 127, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, M.G.; Farrington, S.M.; Carothers, A.D.; Wyllie, A.H.; Sharp, L.; Burn, J.; Liu, B.; Kinzler, K.W.; Vogelstein, B. Cancer risk associated with germline DNA mismatch repair gene mutations. Hum. Mol. Genet. 1997, 6, 105–110. [Google Scholar] [CrossRef]
- Marques-de-Sá, I.; Castro, R.; Pita, I.; Dinis-Ribeiro, M.; Brandão, C. Cancer-risk by family history and mismatch-repair mutation in Lynch syndrome. Scand. J. Gastroenterol. 2020, 55, 701–705. [Google Scholar] [CrossRef]
- Danley, K.T.; Schmitz, K.; Ghai, R.; Sclamberg, J.S.; Buckingham, L.E.; Burgess, K.; Kuzel, T.M.; Usha, L. A durable response to pembrolizumab in a patient with uterine serous carcinoma and lynch syndrome due to the MSH6 germline mutation. Oncologist 2021, 26, 811–817. [Google Scholar] [CrossRef]
- Goodfellow, P.J.; Buttin, B.M.; Herzog, T.J.; Rader, J.S.; Gibb, R.K.; Swisher, E.; Look, K.; Walls, K.C.; Fan, M.-Y.; Mutch, D.G. Prevalence of defective DNA mismatch repair and MSH6 mutation in an unselected series of endometrial cancers. Proc. Natl. Acad. Sci. USA 2003, 100, 5908–5913. [Google Scholar] [CrossRef]
- Billingsley, C.C.; Cohn, D.E.; Mutch, D.G.; Stephens, J.A.; Suarez, A.A.; Goodfellow, P.J. Polymerase ɛ (POLE) mutations in endometrial cancer: Clinical outcomes and implications for Lynch syndrome testing. Cancer 2015, 121, 386–394. [Google Scholar] [CrossRef]
- Walker, R.; Clendenning, M.; Joo, J.E.; Xue, J.; Mahmood, K.; Georgeson, P.; Como, J.; Joseland, S.; Preston, S.G.; Chan, J.M. A mosaic pathogenic variant in MSH6 causes MSH6-deficient colorectal and endometrial cancer in a patient classified as suspected Lynch syndrome: A case report. Fam. Cancer 2023, 22, 423–428. [Google Scholar] [CrossRef]
- Dámaso, E.; González-Acosta, M.; Vargas-Parra, G.; Navarro, M.; Balmaña, J.; Ramon y Cajal, T.; Tuset, N.; Thompson, B.A.; Marín, F.; Fernández, A. Comprehensive constitutional genetic and epigenetic characterization of Lynch-like individuals. Cancers 2020, 12, 1799. [Google Scholar] [CrossRef]
- Berg, H.F.; Engerud, H.; Myrvold, M.; Lien, H.E.; Hjelmeland, M.E.; Halle, M.K.; Woie, K.; Hoivik, E.A.; Haldorsen, I.S.; Vintermyr, O. Mismatch repair markers in preoperative and operative endometrial cancer samples; expression concordance and prognostic value. Br. J. Cancer 2023, 128, 647–655. [Google Scholar] [CrossRef]
- Watanabe, A.; Ikejima, M.; Suzuki, N.; Shimada, T. Genomic organization and expression of the human MSH3 gene. Genomics 1996, 31, 311–318. [Google Scholar] [CrossRef]
- Umar, A.; Risinger, J.I.; Glaab, W.E.; Tindall, K.R.; Barrett, J.C.; Kunkel, T.A. Functional overlap in mismatch repair by human MSH3 and MSH6. Genetics 1998, 148, 1637–1646. [Google Scholar] [CrossRef]
- Duraturo, F.; Liccardo, R.; Cavallo, A.; Rosa, M.D.; Grosso, M.; Izzo, P. Association of low-risk MSH3 and MSH2 variant alleles with Lynch syndrome: Probability of synergistic effects. Int. J. Cancer 2011, 129, 1643–1650. [Google Scholar] [CrossRef]
- Singh, A.K.; Talseth-Palmer, B.; McPhillips, M.; Lavik, L.A.S.; Xavier, A.; Drabløs, F.; Sjursen, W. Targeted sequencing of genes associated with the mismatch repair pathway in patients with endometrial cancer. PLoS ONE 2020, 15, e0235613. [Google Scholar] [CrossRef]
- Huang, R.-L.; Chao, C.-F.; Ding, D.-C.; Yu, C.-P.; Chang, C.-C.; Lai, H.-C.; Yu, M.-H.; Liu, H.-S.; Chu, T.-Y. Multiple epithelial and nonepithelial tumors in hereditary nonpolyposis colorectal cancer: Characterization of germline and somatic mutations of the MSH2 gene and heterogeneity of replication error phenotypes. Cancer Genet. Cytogenet. 2004, 153, 108–114. [Google Scholar] [CrossRef]
- Risinger, J.I.; Umar, A.; Boyd, J.; Berchuck, A.; Kunkel, T.A.; Barrett, J.C. Mutation of MSH3 in endometrial cancer and evidence for its functional role in heteroduplex repair. Nat. Genet. 1996, 14, 102–105. [Google Scholar] [CrossRef]
- Medina-Rivera, M.; Phelps, S.; Sridharan, M.; Becker, J.; Lamb, N.A.; Kumar, C.; Sutton, M.D.; Bielinsky, A.; Balakrishnan, L.; Surtees, J.A. Elevated MSH2 MSH3 expression interferes with DNA metabolism in vivo. Nucleic Acids Res. 2023, 51, 12185–12206. [Google Scholar] [CrossRef]
- Sengodan, S.K.; Hu, X.; Peddibhotla, V.; Balamurugan, K.; Mitrophanov, A.Y.; McKennett, L.; Kharat, S.S.; Sanawar, R.; Singh, V.K.; Albaugh, M.E. Mismatch repair protein MLH1 suppresses replicative stress in BRCA2-deficient breast tumors. J. Clin. Investig. 2024, 134, e173718. [Google Scholar] [CrossRef]
- Hitchins, M.P.; Dámaso, E.; Alvarez, R.; Zhou, L.; Hu, Y.; Diniz, M.A.; Pineda, M.; Capella, G.; Pearlman, R.; Hampel, H. Constitutional MLH1 methylation is a major contributor to Mismatch Repair–Deficient, MLH1-Methylated colorectal Cancer in patients aged 55 years and younger. J. Natl. Compr. Cancer Netw. 2023, 21, 743–752.e11. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, D.D.; Rosty, C.; Clendenning, M.; Spurdle, A.B.; Win, A.K. Clinical problems of colorectal cancer and endometrial cancer cases with unknown cause of tumor mismatch repair deficiency (suspected Lynch syndrome). Appl. Clin. Genet. 2014, 7, 183–193. [Google Scholar] [CrossRef]
- Huang, S.-W.; Lin, H.; Huang, C.-C.; Ou, Y.-C.; Fu, H.-C.; Tsai, C.-C.; Changchien, C.-C.; Wu, C.-H. Comprehensive Clinicopathologic Analysis for Mismatch Repair Protein Expression in Unselected Endometrial Carcinoma Patients with an Emphasis on the Role of MLH1 Deficiency. Int. J. Gynecol. Pathol. 2022, 41, 407–416. [Google Scholar] [CrossRef]
- Carnevali, I.W.; Cini, G.; Libera, L.; Sahnane, N.; Facchi, S.; Viel, A.; Sessa, F.; Tibiletti, M.G. MLH1 promoter methylation could be the second hit in Lynch syndrome carcinogenesis. Genes 2023, 14, 2060. [Google Scholar] [CrossRef]
- Esteller, M.; Levine, R.; Baylin, S.B.; Ellenson, L.H.; Herman, J.G. MLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas. Oncogene 1998, 17, 2413–2417. [Google Scholar] [CrossRef]
- Manning-Geist, B.L.; Liu, Y.L.; Devereaux, K.A.; Paula, A.D.C.; Zhou, Q.C.; Ma, W.; Selenica, P.; Ceyhan-Birsoy, O.; Moukarzel, L.A.; Hoang, T. Microsatellite instability–high endometrial cancers with MLH1 promoter hypermethylation have distinct molecular and clinical profiles. Clin. Cancer Res. 2022, 28, 4302–4311. [Google Scholar] [CrossRef] [PubMed]
- Plazzer, J.-P.; Sijmons, R.H.; Woods, M.O.; Peltomäki, P.; Thompson, B.; Den Dunnen, J.T.; Macrae, F. The InSiGHT database: Utilizing 100 years of insights into Lynch syndrome. Fam. Cancer 2013, 12, 175–180. [Google Scholar] [CrossRef]
- Zahary, M.N.; Kaur, G.; Hassan, M.R.A.; Singh, H.; Naik, V.R.; Ankathil, R. Germline mutation analysis of MLH1 and MSH2 in Malaysian Lynch syndrome patients. World J. Gastroenterol. WJG 2012, 18, 814. [Google Scholar] [CrossRef]
- Bonadona, V.; Bonaïti, B.; Olschwang, S.; Grandjouan, S.; Huiart, L.; Longy, M.; Guimbaud, R.; Buecher, B.; Bignon, Y.-J.; Caron, O. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA 2011, 305, 2304–2310. [Google Scholar] [CrossRef]
- Momma, T.; Gonda, K.; Akama, Y.; Endo, E.; Ujiie, D.; Fujita, S.; Maejima, Y.; Horita, S.; Shimomura, K.; Saji, S. MLH1 germline mutation associated with Lynch syndrome in a family followed for more than 45 years. BMC Med. Genet. 2019, 20, 67. [Google Scholar] [CrossRef] [PubMed]
- Rahner, N.; Friedrichs, N.; Steinke, V.; Aretz, S.; Friedl, W.; Buettner, R.; Mangold, E.; Propping, P.; Walldorf, C. Coexisting somatic promoter hypermethylation and pathogenic MLH1 germline mutation in Lynch syndrome. J. Pathol. J. Pathol. Soc. Great Br. Irel. 2008, 214, 10–16. [Google Scholar] [CrossRef]
- Yokoyama, T.; Takehara, K.; Sugimoto, N.; Kaneko, K.; Fujimoto, E.; Okazawa-Sakai, M.; Okame, S.; Shiroyama, Y.; Yokoyama, T.; Teramoto, N. Lynch syndrome-associated endometrial carcinoma with MLH1 germline mutation and MLH1 promoter hypermethylation: A case report and literature review. BMC Cancer 2018, 18, 576. [Google Scholar] [CrossRef] [PubMed]
- Mills, A.M.; Sloan, E.A.; Thomas, M.; Modesitt, S.C.; Stoler, M.H.; Atkins, K.A.; Moskaluk, C.A. Clinicopathologic comparison of Lynch syndrome–associated and “Lynch-like” endometrial carcinomas identified on universal screening using mismatch repair protein immunohistochemistry. Am. J. Surg. Pathol. 2016, 40, 155–165. [Google Scholar] [CrossRef]
- Lipkin, S.M.; Moens, P.B.; Wang, V.; Lenzi, M.; Shanmugarajah, D.; Gilgeous, A.; Thomas, J.; Cheng, J.; Touchman, J.W.; Green, E.D. Meiotic arrest and aneuploidy in MLH3-deficient mice. Nat. Genet. 2002, 31, 385–390. [Google Scholar] [CrossRef]
- Rogacheva, M.V.; Manhart, C.M.; Chen, C.; Guarne, A.; Surtees, J.; Alani, E. Mlh1-Mlh3, a meiotic crossover and DNA mismatch repair factor, is a Msh2-Msh3-stimulated endonuclease. J. Biol. Chem. 2014, 289, 5664–5673. [Google Scholar] [CrossRef]
- Lipkin, S.M.; Wang, V.; Jacoby, R.; Banerjee-Basu, S.; Baxevanis, A.D.; Lynch, H.T.; Elliott, R.M.; Collins, F.S. MLH3: A DNA mismatch repair gene associated with mammalian microsatellite instability. Nat. Genet. 2000, 24, 27–35. [Google Scholar] [CrossRef]
- Leclerc, J.; Vermaut, C.; Buisine, M.-P. Diagnosis of Lynch syndrome and strategies to distinguish Lynch-related tumors from sporadic MSI/dMMR tumors. Cancers 2021, 13, 467. [Google Scholar] [CrossRef] [PubMed]
- Xavier, A.; Olsen, M.F.; Lavik, L.A.; Johansen, J.; Singh, A.K.; Sjursen, W.; Scott, R.J.; Talseth-Palmer, B.A. Comprehensive mismatch repair gene panel identifies variants in patients with Lynch-like syndrome. Mol. Genet. Genom. Med. 2019, 7, e850. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, M.K.; Vuorenmaa, E.; Nyström, M. The first functional study of MLH3 mutations found in cancer patients. Genes Chromosomes Cancer 2008, 47, 803–809. [Google Scholar] [CrossRef]
- Lipkin, S.M.; Wang, V.; Stoler, D.L.; Anderson, G.R.; Kirsch, I.; Hadley, D.; Lynch, H.T.; Collins, F.S. Germline and somatic mutation analyses in the DNA mismatch repair gene MLH3: Evidence for somatic mutation in colorectal cancers. Hum. Mutat. 2001, 17, 389–396. [Google Scholar] [CrossRef]
- Chang, Y.E.; Adjei, N.N.; Khadraoui, W.; Altwerger, G. Defective mismatch repair associated mutational signatures, a prognostic and predictive biomarker in endometrial cancer. J. Clin. Oncol. 2021, 39, 5528. [Google Scholar] [CrossRef]
- Borràs, E.; Pineda, M.; Cadiñanos, J.; Del Valle, J.; Brieger, A.; Hinrichsen, I.; Cabanillas, R.; Navarro, M.; Brunet, J.; Sanjuan, X. Refining the role of PMS2 in Lynch syndrome: Germline mutational analysis improved by comprehensive assessment of variants. J. Med. Genet. 2013, 50, 552–563. [Google Scholar] [CrossRef]
- Win, A.K.; Jenkins, M.A.; Dowty, J.G.; Antoniou, A.C.; Lee, A.; Giles, G.G.; Buchanan, D.D.; Clendenning, M.; Rosty, C.; Ahnen, D.J. Prevalence and penetrance of major genes and polygenes for colorectal cancer. Cancer Epidemiol. Biomark. Prev. 2017, 26, 404–412. [Google Scholar] [CrossRef]
- Dudley, B.; Brand, R.E.; Thull, D.; Bahary, N.; Nikiforova, M.N.; Pai, R.K. Germline MLH1 mutations are frequently identified in Lynch syndrome patients with colorectal and endometrial carcinoma demonstrating isolated loss of PMS2 immunohistochemical expression. Am. J. Surg. Pathol. 2015, 39, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, J.P.; Del Giglio, A.; Achatz, M.I.; Carvalho, F.M. Complete clinical response in stage IVB endometrioid endometrial carcinoma after first-line pembrolizumab therapy: Report of a case with isolated loss of PMS2 protein. Case Rep. Oncol. 2021, 13, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.-H.; Zhang, X.-W.; Yu, T.; Huang, D.-W.; Jia, Y. PMS2 germline mutation c. 1577delA (p. Asp526Alafs∗ 69)-induced Lynch syndrome-associated endometrial cancer: A case report. Medicine 2019, 98, e18279. [Google Scholar] [CrossRef]
- Szankasi, P.; Smith, G.R. A DNA exonuclease induced during meiosis of Schizosaccharomyces pombe. J. Biol. Chem. 1992, 267, 3014–3023. [Google Scholar] [CrossRef] [PubMed]
- Keijzers, G.; Bakula, D.; Petr, M.A.; Madsen, N.G.K.; Teklu, A.; Mkrtchyan, G.; Osborne, B.; Scheibye-Knudsen, M. Human exonuclease 1 (EXO1) regulatory functions in DNA replication with putative roles in cancer. Int. J. Mol. Sci. 2018, 20, 74. [Google Scholar] [CrossRef]
- Talseth-Palmer, B.A.; Bauer, D.C.; Sjursen, W.; Evans, T.J.; McPhillips, M.; Proietto, A.; Otton, G.; Spigelman, A.D.; Scott, R.J. Targeted next-generation sequencing of 22 mismatch repair genes identifies Lynch syndrome families. Cancer Med. 2016, 5, 929–941. [Google Scholar] [CrossRef]
- Levan, K.; Partheen, K.; Österberg, L.; Olsson, B.; Delle, U.; Eklind, S.; Horvath, G. Identification of a gene expression signature for survival prediction in type I endometrial carcinoma. Gene Expr. 2018, 14, 361. [Google Scholar] [CrossRef]
- Nevins, J.R. The Rb/E2F pathway and cancer. Hum. Mol. Genet. 2001, 10, 699–703. [Google Scholar] [CrossRef]
- Cohen, S.A.; Pritchard, C.C.; Jarvik, G.P. Lynch syndrome: From screening to diagnosis to treatment in the era of modern molecular oncology. Annu. Rev. Genom. Hum. Genet. 2019, 20, 293–307. [Google Scholar] [CrossRef]
- Ali-Fehmi, R.; Krause, H.B.; Morris, R.T.; Wallbillich, J.J.; Corey, L.; Bandyopadhyay, S.; Kheil, M.; Elbashir, L.; Zaiem, F.; Quddus, M.R. Analysis of concordance between next-generation sequencing assessment of microsatellite instability and immunohistochemistry-mismatch repair from solid tumors. JCO Precis. Oncol. 2024, 8, e2300648. [Google Scholar] [CrossRef]
- Adorisio, R.; Troncone, G.; Barberis, M.; Pepe, F. Molecular Profiling of H-MSI/dMMR/for Endometrial Cancer Patients:“New Challenges in Diagnostic Routine Practice”. J. Mol. Pathol. 2024, 5, 187–198. [Google Scholar] [CrossRef]
- Wang, C.; Kuang, W.; Zeng, J.; Ren, Y.; Liu, Q.; Sun, H.; Feng, M.; Liang, D. A retrospective study of consistency between immunohistochemistry and polymerase chain reaction of microsatellite instability in endometrial cancer. PeerJ 2023, 11, e15920. [Google Scholar] [CrossRef]
- Sobocińska, J.; Kolenda, T.; Teresiak, A.; Badziąg-Leśniak, N.; Kopczyńska, M.; Guglas, K.; Przybyła, A.; Filas, V.; Bogajewska-Ryłko, E.; Lamperska, K.; et al. Diagnostics of Mutations in MMR/EPCAM Genes and Their Role in the Treatment and Care of Patients with Lynch Syndrome. Diagnostics 2020, 10, 786. [Google Scholar] [CrossRef]
- Watkins, J.C.; Yang, E.J.; Muto, M.G.; Feltmate, C.M.; Berkowitz, R.S.; Horowitz, N.S.; Syngal, S.; Yurgelun, M.B.; Chittenden, A.; Hornick, J.L. Universal screening for mismatch-repair deficiency in endometrial cancers to identify patients with Lynch syndrome and Lynch-like syndrome. Int. J. Gynecol. Pathol. 2017, 36, 115–127. [Google Scholar] [CrossRef]
- Kamburova, Z.B.; Dimitrova, P.D.; Dimitrova, D.S.; Kovacheva, K.S.; Popovska, S.L.; Nikolova, S.E. Lynch-like syndrome with germline WRN mutation in Bulgarian patient with synchronous endometrial and ovarian cancer. Hered. Cancer Clin. Pract. 2023, 21, 13. [Google Scholar] [CrossRef] [PubMed]
- Cadoo, K.A.; DeLair, D.; Mandelker, D.; Trottier, M.; Stewart, C.; Tran, C.; Kemel, Y.; Walsh, M.F.; Scharf, F.; Hyman, D.M. Somatic tumor profiling of DNA mismatch repair (MMR) deficient endometrial cancers (EC). J. Clin. Oncol. 2017, 35, e17121. [Google Scholar] [CrossRef]
- Ramchander, N.C.; Ryan, N.A.; Walker, T.D.; Harries, L.; Bolton, J.; Bosse, T.; Evans, D.G.; Crosbie, E.J. Distinct immunological landscapes characterize inherited and sporadic mismatch repair deficient endometrial cancer. Front. Immunol. 2020, 10, 3023. [Google Scholar] [CrossRef]
- Toboni, M.D.; Wu, S.; Farrell, A.; Xiu, J.; Ribeiro, J.R.; Oberley, M.J.; Arend, R.; Erickson, B.K.; Herzog, T.J.; Thaker, P.H.; et al. Differential outcomes and immune checkpoint inhibitor response among endometrial cancer patients with MLH1 hypermethylation versus MLH1 “Lynch-like” mismatch repair gene mutation. Gynecol. Oncol. 2023, 177, 132–141. [Google Scholar] [CrossRef]
- Cheng, H.H.; Sokolova, A.O.; Schaeffer, E.M.; Small, E.J.; Higano, C.S. Germline and somatic mutations in prostate cancer for the clinician. J. Natl. Compr. Cancer Netw. 2019, 17, 515–521. [Google Scholar] [CrossRef]
- Rodolakis, A.; Scambia, G.; Planchamp, F.; Acien, M.; Di Spiezio Sardo, A.; Farrugia, M.; Grynberg, M.; Pakiz, M.; Pavlakis, K.; Vermeulen, N.; et al. ESGO/ESHRE/ESGE Guidelines for the fertility-sparing treatment of patients with endometrial carcinoma. Hum. Reprod. Open 2023, 2023, hoac057. [Google Scholar] [CrossRef]
- Talhouk, A.; McConechy, M.K.; Leung, S.; Yang, W.; Lum, A.; Senz, J.; Boyd, N.; Pike, J.; Anglesio, M.; Kwon, J.S. Confirmation of ProMisE: A simple, genomics-based clinical classifier for endometrial cancer. Cancer 2017, 123, 802–813. [Google Scholar] [CrossRef]
- Giampaolino, P.; Di Spiezio Sardo, A.; Mollo, A.; Raffone, A.; Travaglino, A.; Boccellino, A.; Zizolfi, B.; Insabato, L.; Zullo, F.; De Placido, G.; et al. Hysteroscopic Endometrial Focal Resection followed by Levonorgestrel Intrauterine Device Insertion as a Fertility-Sparing Treatment of Atypical Endometrial Hyperplasia and Early Endometrial Cancer: A Retrospective Study. J. Minim. Invasive Gynecol. 2019, 26, 648–656. [Google Scholar] [CrossRef]
- Pakish, J.B.; Zhang, Q.; Chen, Z.; Liang, H.; Chisholm, G.B.; Yuan, Y.; Mok, S.C.; Broaddus, R.R.; Lu, K.H.; Yates, M.S. Immune microenvironment in microsatellite-instable endometrial cancers: Hereditary or sporadic origin matters. Clin. Cancer Res. 2017, 23, 4473–4481. [Google Scholar] [CrossRef] [PubMed]
- Karpel, H.; Slomovitz, B.; Coleman, R.L.; Pothuri, B. Biomarker-driven therapy in endometrial cancer. Int. J. Gynecol. Cancer 2023, 33, 343–350. [Google Scholar] [CrossRef]
- Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 2008, 26, 677–704. [Google Scholar] [CrossRef]
- Howitt, B.E.; Shukla, S.A.; Sholl, L.M.; Ritterhouse, L.L.; Watkins, J.C.; Rodig, S.; Stover, E.; Strickland, K.C.; D’Andrea, A.D.; Wu, C.J. Association of polymerase e–mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-L1. JAMA Oncol. 2015, 1, 1319–1323. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Balasubramaniam, S.; Zhang, W.; Zhang, L.; Sridhara, R.; Spillman, D.; Mathai, J.P.; Scott, B.; Golding, S.J.; Coory, M. FDA approval summary: Pembrolizumab plus lenvatinib for endometrial carcinoma, a collaborative international review under project orbis. Clin. Cancer Res. 2020, 26, 5062–5067. [Google Scholar] [CrossRef] [PubMed]
- Costa, B.; Vale, N. Dostarlimab: A review. Biomolecules 2022, 12, 1031. [Google Scholar] [CrossRef]
- Bogani, G.; Monk, B.; Powell, M.; Westin, S.; Slomovitz, B.; Moore, K.; Eskander, R.; Raspagliesi, F.; Barretina-Ginesta, M.-P.; Colombo, N. Adding immunotherapy to first-line treatment of advanced and metastatic endometrial cancer. Ann. Oncol. 2024, 35, 414–428. [Google Scholar] [CrossRef]
- David, C.B.; Siegler, Y.; Linder, R.; Amit, A.; Matanes, E. Screening and prevention of gynecologic malignancies in patients with lynch syndrome: Following the guidelines. Front. Oncol. 2025, 15, 1563022. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, S.; Wang, Y.; Peng, J.; Fang, F.; Yang, X. MLH1 enhances the sensitivity of human endometrial carcinoma cells to cisplatin by activating the MLH1/c-Abl apoptosis signaling pathway. BMC Cancer 2018, 18, 1294. [Google Scholar] [CrossRef] [PubMed]
- Ryan, N.; Glaire, M.; Walker, T.; Ter Haar, N.; Ijsselsteijn, M.; Bolton, J.; de Miranda, N.; Evans, G.; Church, D.N.; Bosse, T. Patterns of cytotoxic T-cell densities in immunogenic endometrial cancers reveal a potential mechanism for differences in immunotherapy efficacy. BMJ Oncol. 2024, 3, e000320. [Google Scholar] [CrossRef]
- Sloan, E.A.; Ring, K.L.; Willis, B.C.; Modesitt, S.C.; Mills, A.M. PD-L1 expression in mismatch repair-deficient endometrial carcinomas, including lynch syndrome-associated and MLH1 promoter hypermethylated tumors. Am. J. Surg. Pathol. 2017, 41, 326–333. [Google Scholar] [CrossRef]
- Bellone, S.; Roque, D.; Siegel, E.; Buza, N.; Hui, P.; Bonazzoli, E.; Guglielmi, A.; Zammataro, L.; Nagarkatti, N.; Zaidi, S. A phase II evaluation of pembrolizumab in recurrent microsatellite instability-high (MSI-H) endometrial cancer patients with Lynch-like versus MLH-1 methylated characteristics (NCT02899793). Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2021, 32, 1045. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Luo, F.; Wu, S.; Li, B.; Liu, K. The predictive value of CD3+/CD8+ lymphocyte infiltration and PD-L1 expression in colorectal cancer. Curr. Oncol. 2023, 30, 9647–9659. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kwon, H.J.; Han, Y.B.; Park, S.Y.; Kim, E.S.; Kim, S.H.; Kim, Y.J.; Lee, J.S.; Chung, J.-H. Increased CD3+ T cells with a low FOXP3+/CD8+ T cell ratio can predict anti-PD-1 therapeutic response in non-small cell lung cancer patients. Mod. Pathol. 2019, 32, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, R.; Nishikawa, T.; Yoshida, H.; Shiraishi, K.; Shimoi, T.; Kato, T.; Yonemori, K. Unveiling pembrolizumab effectiveness in diverse subtypes of MSI-high endometrial cancers. J. Gynecol. Oncol. 2024, 35, e103. [Google Scholar] [CrossRef]
- Stelloo, E.; Versluis, M.A.; Nijman, H.W.; de Bruyn, M.; Plat, A.; Osse, E.M.; van Dijk, R.H.; Nout, R.A.; Creutzberg, C.L.; de Bock, G.H. Microsatellite instability derived JAK1 frameshift mutations are associated with tumor immune evasion in endometrioid endometrial cancer. Oncotarget 2016, 7, 39885. [Google Scholar] [CrossRef]
- Kalbasi, A.; Tariveranmoshabad, M.; Hakimi, K.; Kremer, S.; Campbell, K.M.; Funes, J.M.; Vega-Crespo, A.; Parisi, G.; Champekar, A.; Nguyen, C. Uncoupling interferon signaling and antigen presentation to overcome immunotherapy resistance due to JAK1 loss in melanoma. Sci. Transl. Med. 2020, 12, eabb0152. [Google Scholar] [CrossRef]
- Meares, G.P.; Liu, Y.; Rajbhandari, R.; Qin, H.; Nozell, S.E.; Mobley, J.A.; Corbett, J.A.; Benveniste, E.N. PERK-dependent activation of JAK1 and STAT3 contributes to endoplasmic reticulum stress-induced inflammation. Mol. Cell. Biol. 2014, 34, 3911–3925. [Google Scholar] [CrossRef]
- Walkowska, J.; Kallemose, T.; Jönsson, G.; Jönsson, M.; Andersen, O.; Andersen, M.H.; Svane, I.M.; Langkilde, A.; Nilbert, M.; Therkildsen, C. Immunoprofiles of colorectal cancer from Lynch syndrome. Oncoimmunology 2019, 8, e1515612. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhong, F.; Wu, H.; Che, K.; Shi, J.; Wu, N.; Fu, Y.; Wang, Y.; Hu, J.; Qian, X. Prevalence and associations of beta2-microglobulin mutations in MSI-H/dMMR cancers. Oncologist 2023, 28, e136–e144. [Google Scholar] [CrossRef]
- Pavelescu, L.A.; Enache, R.M.; Roşu, O.A.; Profir, M.; Creţoiu, S.M.; Gaspar, B.S. Predictive biomarkers and resistance mechanisms of checkpoint inhibitors in malignant solid tumors. Int. J. Mol. Sci. 2024, 25, 9659. [Google Scholar] [CrossRef] [PubMed]
- Gougousis, S.; Petanidis, S.; Poutoglidis, A.; Tsetsos, N.; Vrochidis, P.; Skoumpas, I.; Argyriou, N.; Katopodi, T.; Domvri, K. Epigenetic editing and tumor-dependent immunosuppressive signaling in head and neck malignancies. Oncol. Lett. 2022, 23, 196. [Google Scholar] [CrossRef]
- Lu, J.; Luo, Y.; Rao, D.; Wang, T.; Lei, Z.; Chen, X.; Zhang, B.; Li, Y.; Liu, B.; Xia, L. Myeloid-derived suppressor cells in cancer: Therapeutic targets to overcome tumor immune evasion. Exp. Hematol. Oncol. 2024, 13, 39. [Google Scholar] [CrossRef] [PubMed]
- Poynter, J.N.; Siegmund, K.D.; Weisenberger, D.J.; Long, T.I.; Thibodeau, S.N.; Lindor, N.; Young, J.; Jenkins, M.A.; Hopper, J.L.; Baron, J.A. Molecular characterization of MSI-H colorectal cancer by MLH1 promoter methylation, immunohistochemistry, and mismatch repair germline mutation screening. Cancer Epidemiol. Biomark. Prev. 2008, 17, 3208–3215. [Google Scholar] [CrossRef]
- Heregger, R.; Huemer, F.; Steiner, M.; Gonzalez-Martinez, A.; Greil, R.; Weiss, L. Unraveling resistance to immunotherapy in MSI-high colorectal cancer. Cancers 2023, 15, 5090. [Google Scholar] [CrossRef]
- Haist, M.; Stege, H.; Grabbe, S.; Bros, M. The functional crosstalk between myeloid-derived suppressor cells and regulatory T cells within the immunosuppressive tumor microenvironment. Cancers 2021, 13, 210. [Google Scholar] [CrossRef]
- Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 2012, 12, 253–268. [Google Scholar] [CrossRef]
- Ugel, S.; De Sanctis, F.; Mandruzzato, S.; Bronte, V. Tumor-induced myeloid deviation: When myeloid-derived suppressor cells meet tumor-associated macrophages. J. Clin. Investig. 2015, 125, 3365–3376. [Google Scholar] [CrossRef]
- Li, C.; Jiang, P.; Wei, S.; Xu, X.; Wang, J. Regulatory T cells in tumor microenvironment: New mechanisms, potential therapeutic strategies and future prospects. Mol. Cancer 2020, 19, 116. [Google Scholar] [CrossRef]
- Chanmee, T.; Ontong, P.; Konno, K.; Itano, N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers 2014, 6, 1670–1690. [Google Scholar] [CrossRef]
- Svensson, M.C.; Svensson, M.; Nodin, B.; Borg, D.; Hedner, C.; Hjalmarsson, C.; Leandersson, K.; Jirström, K. High Infiltration of CD68+/CD163− Macrophages Is an Adverse Prognostic Factor after Neoadjuvant Chemotherapy in Esophageal and Gastric Adenocarcinoma. J. Innate Immun. 2022, 14, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Edin, S.; Wikberg, M.L.; Dahlin, A.M.; Rutegård, J.; Öberg, Å.; Oldenborg, P.-A.; Palmqvist, R. The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS ONE 2012, 7, e47045. [Google Scholar] [CrossRef]
- Wang, J.; Wang, F.; Huang, H. EXO1 as a potential biomarker for prognosis, immune infiltration, and immunotherapy in pan-cancer analysis. Funct. Integr. Genom. 2025, 25, 87. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Zhang, Y.; Yan, Z.; Wang, Y.; Li, Y.; Qiu, Q.; Du, Y.; Chen, Z.; Liu, X. Identification of disulfidptosis related subtypes, characterization of tumor microenvironment infiltration, and development of DRG prognostic prediction model in RCC, in which MSH3 is a key gene during disulfidptosis. Front. Immunol. 2023, 14, 1205250. [Google Scholar] [CrossRef] [PubMed]
- Desoize, B.; Madoulet, C. Particular aspects of platinum compounds used at present in cancer treatment. Crit. Rev. Oncol./Hematol. 2002, 42, 317–325. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Dasari, S.; Noubissi, F.K.; Ray, P.; Kumar, S. Advances in our understanding of the molecular mechanisms of action of cisplatin in cancer therapy. J. Exp. Pharmacol. 2021, 13, 303–328. [Google Scholar] [CrossRef]
- Li, N.; Xu, Y.; Chen, H.; Chen, L.; Zhang, Y.; Yu, T.; Yao, R.; Chen, J.; Fu, Q.; Zhou, J. NEIL3 contributes to the Fanconi anemia/BRCA pathway by promoting the downstream double-strand break repair step. Cell Rep. 2022, 41, 111600. [Google Scholar] [CrossRef] [PubMed]
- Md, M.R. Genetic Evidence for the Involvement of Mismatch Repair Proteins, PMS2 and MLH3, in a Late Step of Homologous Recombination. J. Biol. Chem. 2021, 295, 17460–17475. [Google Scholar]
- Tran, L.; Allen, C.T.; Xiao, R.; Moore, E.; Davis, R.; Park, S.-J.; Spielbauer, K.; Van Waes, C.; Schmitt, N.C. Cisplatin alters antitumor immunity and synergizes with PD-1/PD-L1 inhibition in head and neck squamous cell carcinoma. Cancer Immunol. Res. 2017, 5, 1141–1151. [Google Scholar] [CrossRef]
- Chen, D.; Milacic, V.; Frezza, M.; Dou, Q.P. Metal complexes, their cellular targets and potential for cancer therapy. Curr. Pharm. Des. 2009, 15, 777–791. [Google Scholar] [CrossRef]
- Florea, A.-M.; Büsselberg, D. Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers 2011, 3, 1351–1371. [Google Scholar] [CrossRef]
- Yeh, Y.; Ou-Yang, F.; Chen, I.; Yang, S.; Su, J.; Hou, M.; Yuan, S. Altered p-JAK1 expression is associated with estrogen receptor status in breast infiltrating ductal carcinoma. Oncol. Rep. 2007, 17, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Fu, J.; Gu, Y.; Wei, Y.; Ma, P.; Wu, J. JAK2/STAT3 regulates estrogen-related senescence of bone marrow stem cells. J. Endocrinol. 2020, 245, 141–153. [Google Scholar] [CrossRef]
- Chen, Q.; Sun, T.; Cheng, J.; Mei, Y.; Liu, B.; Li, Y. 17β-estradiol (E2) alleviates depressive-like behaviors by inhibiting gp130/JAK1/STAT3 signaling pathway through estrogen receptor-β. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Garg, K.; Shih, K.; Barakat, R.; Zhou, Q.; Iasonos, A.; Soslow, R.A. Endometrial carcinomas in women aged 40 years and younger: Tumors associated with loss of DNA mismatch repair proteins comprise a distinct clinicopathologic subset. Am. J. Surg. Pathol. 2009, 33, 1869–1877. [Google Scholar] [CrossRef]
- Walsh, M.D.; Cummings, M.C.; Buchanan, D.D.; Dambacher, W.M.; Arnold, S.; McKeone, D.; Byrnes, R.; Barker, M.A.; Leggett, B.A.; Gattas, M.; et al. Molecular, pathologic, and clinical features of early-onset endometrial cancer: Identifying presumptive Lynch syndrome patients. Clin. Cancer Res. 2008, 14, 1692–1700. [Google Scholar] [CrossRef] [PubMed]
- Matthews, K.S.; Estes, J.M.; Conner, M.G.; Manne, U.; Whitworth, J.M.; Huh, W.K.; Alvarez, R.D.; Straughn Jr, J.M.; Barnes, M.N.; Rocconi, R.P. Lynch syndrome in women less than 50 years of age with endometrial cancer. Obstet. Gynecol. 2008, 111, 1161–1166. [Google Scholar] [CrossRef]
- Zakhour, M.; Cohen, J.; Gibson, A.; Walts, A.; Karimian, B.; Baltayan, A.; Aoyama, C.; Garcia, L.; Dhaliwal, S.; Elashoff, D. Abnormal mismatch repair and other clinicopathologic predictors of poor response to progestin treatment in young women with endometrial complex atypical hyperplasia and well-differentiated endometrial adenocarcinoma: A consecutive case series. BJOG Int. J. Obstet. Gynaecol. 2017, 124, 1576–1583. [Google Scholar] [CrossRef]
- Chung, Y.S.; Woo, H.Y.; Lee, J.Y.; Park, E.; Nam, E.J.; Kim, S.; Kim, S.W.; Kim, Y.T. Mismatch repair status influences response to fertility-sparing treatment of endometrial cancer. Am. J. Obstet. Gynecol. 2021, 224, 370.e1–370.e13. [Google Scholar] [CrossRef]
- Giampaolino, P.; Cafasso, V.; Boccia, D.; Ascione, M.; Mercorio, A.; Viciglione, F.; Palumbo, M.; Serafino, P.; Buonfantino, C.; De Angelis, M.C.; et al. Fertility-Sparing Approach in Patients with Endometrioid Endometrial Cancer Grade 2 Stage IA (FIGO): A Qualitative Systematic Review. BioMed Res. Int. 2022, 2022, 4070368. [Google Scholar] [CrossRef] [PubMed]
- Obermair, A.; Gebski, V.; Goh, J.; Kuchel, A.; Brand, A.; Mak, B.; McNally, O.; Baxter, E.; Jobling, T.; Mileshkin, L. Phase 2b, open-label, single-arm, multicenter pilot study of the efficacy, safety, and tolerability of dostarlimab in women with early-stage mismatch repair-deficient endometrioid endometrial adenocarcinoma. Int. J. Gynecol. Cancer 2025, 35, 101644. [Google Scholar] [CrossRef] [PubMed]
Gene | Location | Protein Function | EC Correlation Anomaly | EC Linked Data | Clinical Features |
---|---|---|---|---|---|
MSH2 | 2p21-p16.3 | It interacts with MSH6 to form the MutSα complex, which is responsible for recognizing smaller mismatched bases and initiating the MMR process [35]. | Germline mutation Somatic mutation | Germline mutations contribute to approximately 32% of LS [46]. | Germline mutation: CCEC, USC, uterine carcinosarcoma [48] Somatic mutation: atypical hyperplasia/endometrial intraepithelial neoplasia, EEC, USC [49,50] |
MSH6 | 2p15-16 | It forms a complex with MSH2, known as MutSα, to recognize subtle base pair mismatches and initiate the MMR process [35]. | Germline mutation Somatic mutation | Germline mutations contribute to approximately 19.4% of LS [53]. | Germline mutation: USC [57] Somatic mutation: EEC [58,60] |
MSH3 | 5q14.1 | It forms a complex with MSH2, known as MutSβ, to recognize large, mismatched bases and has overlapping functions with MSH6 [35,63,64]. | Germline mutation Somatic mutation | - | Germline/somatic mutation: EEC, USC [25] Somatic mutation: endometrial hyperplasia [67] |
MLH1 | 3p22.2 | The MutLα and MutLγ complexes are formed through their association with PMS2 and MLH3, respectively [70]. | Germline mutation Somatic mutation Methylation | Germline mutations contribute to approximately 42% of LS [77]. Methylation contributes to approximately 70% of dMMR EC [71,72,73]. | Germline mutation: EEC [48] |
MLH3 | 14q24.3 | It interacts with MLH1 to form the MLH1-MLH3 (MutLγ) complex, which primarily functions during meiosis. Additionally, it serves a complementary role alongside PMS2 in the process of MMR [85,86]. | Germline mutation Somatic mutation | - | Germline/somatic mutation: EEC, CCEC, USC [24,25,26] |
PMS2 | 7p22.1 | It interacts with MLH1 to form a complex known as MutLα, which possesses endonuclease activity [36]. | Germline mutation | Germline mutations contribute to approximately 6% of LS [92]. | Germline mutation: EEC [94,95,96] |
EXO1 | 1q43 | Participate in the MMR resection step to promote the formation of mismatched directional gap [39]. | Germline mutation | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Ping, H.; Yao, M.; Li, X.; Li, Q.; Hu, R.; Xu, Y.; Meng, K.; Gao, F.; Meng, K. Traditional and New Views on MSI-H/dMMR Endometrial Cancer. Biomolecules 2025, 15, 1370. https://doi.org/10.3390/biom15101370
Liu C, Ping H, Yao M, Li X, Li Q, Hu R, Xu Y, Meng K, Gao F, Meng K. Traditional and New Views on MSI-H/dMMR Endometrial Cancer. Biomolecules. 2025; 15(10):1370. https://doi.org/10.3390/biom15101370
Chicago/Turabian StyleLiu, Chuqi, Huiyu Ping, Mengmeng Yao, Xinru Li, Qingxin Li, Ruotong Hu, Yawen Xu, Kaidi Meng, Fei Gao, and Kai Meng. 2025. "Traditional and New Views on MSI-H/dMMR Endometrial Cancer" Biomolecules 15, no. 10: 1370. https://doi.org/10.3390/biom15101370
APA StyleLiu, C., Ping, H., Yao, M., Li, X., Li, Q., Hu, R., Xu, Y., Meng, K., Gao, F., & Meng, K. (2025). Traditional and New Views on MSI-H/dMMR Endometrial Cancer. Biomolecules, 15(10), 1370. https://doi.org/10.3390/biom15101370