Oral Microbiota Taxa and Pri-miRNA Expression in Bipolar Disorder: A Case–Control Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. Sampling and Nucleic Acid Extraction
2.3. Microbial Group Evaluation
2.4. Real-Time PCR Reaction
2.5. Pri-microRNA Expression Pattern
2.6. Statistical Analysis
3. Results
3.1. Bacterial Taxonomic Profiles Between Cases and Controls
3.2. miRNA 155 and 146a Expression Patterns
4. Discussion
The Crucial Role of Oral Microbiota
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez, M.; Postolache, T.T.; García-Bueno, B.; Leza, J.C.; Figuero, E.; Lowry, C.A.; Malan-Müller, S. The Role of the Oral Microbiota Related to Periodontal Diseases in Anxiety, Mood and Trauma- and Stress-Related Disorders. Front. Psychiatry 2022, 12, 814177. [Google Scholar] [CrossRef]
- Baek, J.H. Mood Disorder and Oral Health. Psychiatr. Ann. 2024, 54, e226–e229. [Google Scholar] [CrossRef]
- Kisely, S.; Sawyer, E.; Siskind, D.; Lalloo, R. The Oral Health of People with Anxiety and Depressive Disorders—A Systematic Review and Meta-Analysis. J. Affect. Disord. 2016, 200, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Joury, E.; Kisely, S.; Watt, R.G.; Ahmed, N.; Morris, A.J.; Fortune, F.; Bhui, K. Mental Disorders and Oral Diseases: Future Research Directions. J. Dent. Res. 2023, 102, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Rangel, J.P.A.; Borges, A.F.M.; Leão, L.O.; de Mattos de Araujo, B.M.; Stechman Neto, J.; Guariza-Filho, O.; de Oliveira Rosario, M.; de Araujo, C.M.; Taveira, K.V.M. Oral Health of People with Emotional Disorders: A Systematic Review and Meta-Analysis. Clin. Oral Investig. 2024, 28, 274. [Google Scholar] [CrossRef] [PubMed]
- Haag, D.G.; Peres, K.G.; Balasubramanian, M.; Brennan, D.S. Oral Conditions and Health-Related Quality of Life: A Systematic Review. J. Dent. Res. 2017, 96, 864–874. [Google Scholar] [CrossRef]
- Lepri, A. Gut Microbiota and Mood Disorders: How Bottom-Up Techniques Can Improve Mental Health. Psychiatr. Danub. 2024, 36, 83–85. [Google Scholar]
- Minuti, A.; Brufani, F.; Menculini, G.; Moretti, P.; Tortorella, A. The Complex Relationship between Gut Microbiota Dysregulation and Mood Disorders: A Narrative Review. Curr. Res. Neurobiol. 2022, 3, 100044. [Google Scholar] [CrossRef]
- Mangiola, F.; Ianiro, G.; Franceschi, F.; Fagiuoli, S.; Gasbarrini, G.; Gasbarrini, A. Gut Microbiota in Autism and Mood Disorders. World J. Gastroenterol. 2016, 22, 361–368. [Google Scholar] [CrossRef]
- Hyży, A.; Rozenek, H.; Gondek, E.; Jaworski, M. Effect of Antioxidants on the Gut Microbiome Profile and Brain Functions: A Review of Randomized Controlled Trial Studies. Foods 2025, 14, 176. [Google Scholar] [CrossRef]
- Winter, G.; Hart, R.A.; Charlesworth, R.P.G.; Sharpley, C.F. Gut Microbiome and Depression: What We Know and What We Need to Know. Rev. Neurosci. 2018, 29, 629–643. [Google Scholar] [CrossRef]
- Sasaki, H.; Masutomi, H.; Yamauchi, Y.; Ishihara, K.; Fukuda, S. Effectiveness of Personalized Granola Tailored to the Gut Microbiota for Improving Gut Environment and Mood States. Front. Microbiol. 2025, 16, 1607918. [Google Scholar] [CrossRef] [PubMed]
- Skonieczna-Żydecka, K.; Marlicz, W.; Misera, A.; Koulaouzidis, A.; Łoniewski, I. Microbiome—The Missing Link in the Gut-Brain Axis: Focus on Its Role in Gastrointestinal and Mental Health. J. Clin. Med. 2018, 7, 521. [Google Scholar] [CrossRef] [PubMed]
- Appleton, J. The Gut-Brain Axis: Influence of Microbiota on Mood and Mental Health. Integr. Med. 2018, 17, 28–32. [Google Scholar]
- Zhou, H.; Lin, X. Oral Mucosal Diseases and Psychosocial Factors: Progress in Related Neurobiological Mechanisms. J. Int. Med. Res. 2023, 51, 03000605231218619. [Google Scholar] [CrossRef]
- Malan-Müller, S.; Vidal, R.; O’Shea, E.; Montero, E.; Figuero, E.; Zorrilla, I.; de Diego-Adeliño, J.; Cano, M.; García-Portilla, M.P.; González-Pinto, A.; et al. Probing the Oral-Brain Connection: Oral Microbiome Patterns in a Large Community Cohort with Anxiety, Depression, and Trauma Symptoms, and Periodontal Outcomes. Transl. Psychiatry 2024, 14, 419. [Google Scholar] [CrossRef]
- Liye, A.; Saichao, Z.; Zhang, X.; Loktionova, M.; Gavrikov, L.K.; Glazachev, O. Influence of Inflammation, Gut Microbiota, and Stress on Cognition and Oral Health Therapies. Curr. Alzheimer Res. 2025, 22, 123–151. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, B.; Gao, H.; He, C.; Hua, R.; Gao, L.; Du, Y.; Xu, J. Insight into the Role of Psychological Factors in Oral Mucosa Diseases. Int. J. Mol. Sci. 2022, 23, 4760. [Google Scholar] [CrossRef]
- Maitre, Y.; Mahalli, R.; Micheneau, P.; Delpierre, A.; Guerin, M.; Amador, G.; Denis, F. Pre and Probiotics Involved in the Modulation of Oral Bacterial Species: New Therapeutic Leads in Mental Disor-ders? Microorganisms 2021, 9, 1450. [Google Scholar] [CrossRef]
- Bowland, G.B.; Weyrich, L.S. The Oral-Microbiome-Brain Axis and Neuropsychiatric Disorders: An Anthropological Perspective. Front. Psychiatry 2022, 13, 810008. [Google Scholar] [CrossRef]
- Levert-Levitt, E.; Shapira, G.; Sragovich, S.; Shomron, N.; Lam, J.C.K.; Li, V.O.K.; Heimesaat, M.M.; Bereswill, S.; Yehuda, A.B.; Sagi-Schwartz, A.; et al. Oral Microbiota Signatures in Post-Traumatic Stress Disorder (PTSD) Veterans. Mol. Psychiatry 2022, 27, 4590–4598. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Li, J.; Hao, M.; Ma, W. Potential Causal Association between the Oral Microbiome and Bipolar Disorder. J. Affect. Disord. 2025, 382, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Mochalski, P.; King, J.; Klieber, M.; Unterkofler, K.; Hinterhuber, H.; Baumann, M.; Amann, A. Blood and Breath Levels of Selected Volatile Organic Compounds in Healthy Volunteers. Analyst 2013, 138, 2134–2145. [Google Scholar] [CrossRef] [PubMed]
- Mochalski, P.; Wzorek, B.; Śliwka, I.; Amann, A. Improved Pre-Concentration and Detection Methods for Volatile Sulphur Breath Constituents. J. Chromatogr. B 2009, 877, 1856–1866. [Google Scholar] [CrossRef]
- Carta, M.G.; Fornaro, M.; Primavera, D.; Nardi, A.E.; Karam, E. Dysregulation of Mood, Energy, and Social Rhythms Syndrome (DYMERS): A Working Hypothesis. J. Public Health Res. 2024, 13, 22799036241248022. [Google Scholar] [CrossRef] [PubMed]
- Carta, M.G.; Ouali, U.; Perra, A.; Ben Cheikh Ahmed, A.; Boe, L.; Aissa, A.; Lorrai, S.; Cossu, G.; Aresti, A.; Preti, A.; et al. Living With Bipolar Disorder in the Time of COVID-19: Biorhythms During the Severe Lockdown in Cagliari, Italy, and the Moderate Lockdown in Tunis, Tunisia. Front. Psychiatry 2021, 12, 634765. [Google Scholar] [CrossRef]
- Carta, M.G.; Aguglia, E.; Caraci, F.; Dell’Osso, L.; Di Sciascio, G.; Drago, F.; Del Giudice, E.; Faravelli, C.; Hardoy, M.C.; Lecca, M.E.; et al. Quality of Life and Urban/Rural Living: Preliminary Results of a Community Survey in Italy. Clin. Pract. Epidemiol. Ment. Health 2012, 8, 169–174. [Google Scholar] [CrossRef]
- Carta, M.G.; Angst, J. Screening for Bipolar Disorders: A Public Health Issue. J. Affect. Disord. 2016, 205, 139–143. [Google Scholar] [CrossRef]
- Hardoy, M.C.; Serra, M.; Carta, M.G.; Contu, P.; Pisu, M.G.; Biggio, G. Increased Neuroactive Steroid Concentrations in Women With Bipolar Disorder or Major Depressive Disorder. J. Clin. Psychopharmacol. 2006, 26, 379. [Google Scholar] [CrossRef]
- Mura, G.; Rocha, N.B.F.; Helmich, I.; Budde, H.; Machado, S.; Wegner, M.; Nardi, A.E.; Arias-Carrión, O.; Vellante, M.; Baum, A.; et al. Physical Activity Interventions in Schools for Improving Lifestyle in European Countries. Clin. Pract. Epidemiol. Ment. Health 2021, 11, 77–101. [Google Scholar] [CrossRef]
- Carta, M.G.; Cossu, G.; Pintus, E.; Zaccheddu, R.; Callia, O.; Conti, G.; Pintus, M.; Aviles Gonzalez, C.I.; Massidda, M.V.; Mura, G.; et al. Moderate Exercise Improves Cognitive Function in Healthy Elderly People: Results of a Randomized Controlled Trial. Clin. Pract. Epidemiol. Ment. Health 2021, 17, 75–80. [Google Scholar] [CrossRef]
- Carta, M.; Preti, A.; Akiskal, H. Coping with the New Era: Noise and Light Pollution, Hperactivity and Steroid Hormones. Towards an Evolutionary View of Bipolar Disorders. Clin. Pract. Epidemiol. Ment. Health 2018, 14, 33–36. [Google Scholar] [CrossRef]
- Kalcev, G.; Scano, A.; Orrù, G.; Primavera, D.; Cossu, G.; Nardi, A.E.; Carta, M.G. Is a Genetic Variant Associated with Bipolar Disorder Frequent in People without Bipolar Disorder but with Characteristics of Hyperactivity and Novelty Seeking? Clin. Pract. Epidemiol. Ment. Health 2023, 19, e174501792303280. [Google Scholar] [CrossRef] [PubMed]
- Kovess-Masfety, V.; Pilowsky, D.J.; Goelitz, D.; Kuijpers, R.; Otten, R.; Moro, M.F.; Bitfoi, A.; Koç, C.; Lesinskiene, S.; Mihova, Z.; et al. Suicidal Ideation and Mental Health Disorders in Young School Children across Europe. J. Affect. Disord. 2015, 177, 28–35. [Google Scholar] [CrossRef]
- Carta, M.G.; Kalcev, G.; Scano, A.; Primavera, D.; Orrù, G.; Gureye, O.; Cossu, G.; Nardi, A.E. Is Bipolar Disorder the Consequence of a Genetic Weakness or Not Having Correctly Used a Potential Adaptive Condition? Brain Sci. 2023, 13, 16. [Google Scholar] [CrossRef]
- Sancassiani, F.; Carta, M.G.; Primavera, D.; Tusconi, M.; Urban, A.; Atzori, L.; Ferreli, C.; Cantone, E.; Cuccu, G.V.; Kalcev, G.; et al. The Breathomics Profile of Volatile Sulfur Compounds in the Bipolar Spectrum, Does It Represent a Potential Tool for Early Diagnosis? J. Clin. Med. 2025, 14, 2025. [Google Scholar] [CrossRef] [PubMed]
- Scano, A.; Orrù, G.; Kalcev, G.; Tusconi, M.; Spada, M.; Atzori, L.; Ferreli, C.; Cabitza, F.; Primavera, D.; Sancassiani, F. Adaptive Hyperactivity and Biomarker Exploration: Insights from Elders in the Blue Zone of Sardinia. J. Clin. Med. 2024, 13, 6451. [Google Scholar] [CrossRef]
- Ouali, U.; Aissa, A.; Rejaibi, S.; Zoghlami, N.; Larnaout, A.; Zgueb, Y.; Zid, M.; Skhiri, H.A.; Kalcev, G.; Tusconi, M.; et al. Hyperactivity and Risk for Dysregulation of Mood, Energy, and Social Rhythms Syndrome (DYMERS): Standardization of a Simple One-Item Screener versus the Mood Disorder Questionnaire (MDQ). J. Clin. Med. 2024, 13, 4433. [Google Scholar] [CrossRef]
- Rajpoot, M.; Sharma, A.K.; Sharma, A.; Gupta, G.K. Understanding the Microbiome: Emerging Biomarkers for Exploiting the Microbiota for Personalized Medicine against Cancer. Semin. Cancer Biol. 2018, 52, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.A.; Verdi, S.; Maxan, M.-E.; Shin, C.M.; Zierer, J.; Bowyer, R.C.E.; Martin, T.; Williams, F.M.K.; Menni, C.; Bell, J.T.; et al. Gut Microbiota Associations with Common Diseases and Prescription Medications in a Population-Based Cohort. Nat. Commun. 2018, 9, 2655. [Google Scholar] [CrossRef] [PubMed]
- Zmora, N.; Zeevi, D.; Korem, T.; Segal, E.; Elinav, E. Taking It Personally: Personalized Utilization of the Human Microbiome in Health and Disease. Cell Host Microbe 2016, 19, 12–20. [Google Scholar] [CrossRef]
- Xun, Z.; Zhang, Q.; Xu, T.; Chen, N.; Chen, F. Dysbiosis and Ecotypes of the Salivary Microbiome Associated With Inflammatory Bowel Diseases and the Assistance in Diagnosis of Diseases Using Oral Bacterial Profiles. Front. Microbiol. 2018, 9, 1136. [Google Scholar] [CrossRef]
- Asnicar, F.; Berry, S.E.; Valdes, A.M.; Nguyen, L.H.; Piccinno, G.; Drew, D.A.; Leeming, E.; Gibson, R.; Le Roy, C.; Khatib, H.A.; et al. Microbiome Connections with Host Metabolism and Habitual Diet from 1,098 Deeply Phenotyped Individuals. Nat. Med. 2021, 27, 321–332. [Google Scholar] [CrossRef]
- Jin, L.; Zhao, C.; Li, H.; Wang, R.; Wang, Q.; Wang, H. Clinical Profile, Prognostic Factors, and Outcome Prediction in Hospitalized Patients With Bloodstream Infection: Results From a 10-Year Prospective Multicenter Study. Front. Med. 2021, 8, 629671. [Google Scholar] [CrossRef]
- Lin, M.-F.; Sun, B.; Liu, Z.-Y.; Tang, P.; Zhang, L.-J.; Wang, Y.-Y. Evaluation of the Clinical Diagnostic Value of Traditional Inflammatory Markers and Novel Biomarkers in Intracellular Bacterial Bloodstream Infections. Cytokine 2020, 136, 155238. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.; Yu, W.; Lin, Z.; Chen, D. Infection Biomarkers in Assisting the Judgement of Blood Stream Infection and Patient Prognosis: A Retrospective Study Incorporating Principal Components Analysis. Ann. Transl. Med. 2020, 8, 1581. [Google Scholar] [CrossRef]
- Villéger, R.; Lopès, A.; Veziant, J.; Gagnière, J.; Barnich, N.; Billard, E.; Boucher, D.; Bonnet, M. Microbial Markers in Colorectal Cancer Detection and/or Prognosis. World J. Gastroenterol. 2018, 24, 2327–2347. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Gao, J.; Su, X.; Li, H.; Li, Y.; Qi, W.; Han, X.; Han, J.; Zhao, Y.; Zhang, A.; et al. Unraveling the Immunological Landscape and Gut Microbiome in Sepsis: A Comprehensive Approach to Diagnosis and Prognosis. eBioMedicine 2025, 113, 105586. [Google Scholar] [CrossRef]
- Georgakilas, G.; Perdikopanis, N.; Hatzigeorgiou, A.G. Identifying Pri-miRNA Transcription Start Sites. In miRNA Biogenesis; Ørom, U.A.V., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2018; Volume 1823, pp. 11–31. ISBN 978-1-4939-8623-1. [Google Scholar]
- Adams, L. Pri-miRNA Processing: Structure Is Key. Nat. Rev. Genet. 2017, 18, 145. [Google Scholar] [CrossRef] [PubMed]
- Agbu, P.; Carthew, R.W. MicroRNA-Mediated Regulation of Glucose and Lipid Metabolism. Nat. Rev. Mol. Cell Biol. 2021, 22, 425–438. [Google Scholar] [CrossRef]
- Mishra, S.; Dey, A.A.; Kesavardhana, S. Z-Nucleic Acid Sensing and Activation of ZBP1 in Cellular Physiology and Disease Pathogenesis. Immunol. Rev. 2025, 329, e13437. [Google Scholar] [CrossRef]
- Tüfekci, K.U.; Öner, M.G.; Meuwissen, R.L.J.; Genç, Ş. The Role of MicroRNAs in Human Diseases. In miRNomics: MicroRNA Biology and Computational Analysis; Yousef, M., Allmer, J., Eds.; Humana Press: Totowa, NJ, USA, 2014; pp. 33–50. ISBN 978-1-62703-748-8. [Google Scholar]
- Hui, Y.; Li, Y.; Jing, Y.; Feng, J.-Q.; Ding, Y. miRNA-101 Acts as a Tumor Suppressor in Oral Squamous Cell Carcinoma by Targeting CX Chemokine Receptor 7. Am. J. Transl. Res. 2016, 8, 4902–4911. [Google Scholar]
- Setién-Olarra, A.; Bediaga, N.; Acha-Sagredo, A.; Marichalar-Mendia, X.; de Pancorbo, M.; Aguirre-Urizar, J. Genomewide miRNA Profiling of Oral Lichenoid Disorders and Oral Squamous Cell Carcinoma. Oral Dis. 2016, 22, 754–760. [Google Scholar] [CrossRef]
- Gombos, K.; Horváth, R.; Szele, E.; Juhász, K.; GőCZE, K.; Somlai, K.; Pajkos, G.; Ember, I.; Olasz, L. miRNA Expression Profiles of Oral Squamous Cell Carcinomas. Anticancer Res. 2013, 33, 1511–1517. [Google Scholar]
- Yang, Y.; Li, Y.; Yang, X.; Jiang, L.; Zhou, Z.; Zhu, Y. Progress Risk Assessment of Oral Premalignant Lesions with Saliva miRNA Analysis. BMC Cancer 2013, 13, 129. [Google Scholar] [CrossRef]
- Hata, A.; Davis, B.N. Regulation of Pri-miRNA Processing Through Smads. In Regulation of MicroRNAs; Großhans, H., Ed.; Springer: New York, NY, USA, 2010; pp. 15–27. ISBN 978-1-4419-7823-3. [Google Scholar]
- Prasad, A.; Sharma, N.; Prasad, M. Noncoding but Coding: Pri-miRNA into the Action. Trends Plant Sci. 2021, 26, 204–206. [Google Scholar] [CrossRef] [PubMed]
- Mendell, J.T. MicroRNAs: Critical Regulators of Development, Cellular Physiology and Malignancy. Cell Cycle 2005, 4, 1179–1184. [Google Scholar] [CrossRef]
- Testa, U.; Pelosi, E.; Castelli, G.; Labbaye, C. miR-146 and miR-155: Two Key Modulators of Immune Response and Tumor Development. Non-Coding RNA 2017, 3, 22. [Google Scholar] [CrossRef]
- Du, C.-T.; Gao, W.; Ma, K.; Yu, S.-X.; Li, N.; Yan, S.-Q.; Zhou, F.-H.; Liu, Z.-Z.; Chen, W.; Lei, L.-C.; et al. MicroRNA-146a Deficiency Protects against Listeria Monocytogenes Infection by Modulating the Gut Microbiota. Int. J. Mol. Sci. 2018, 19, 993. [Google Scholar] [CrossRef]
- He, T.; Ma, J.; Liu, S.; Ma, B.; You, J.; Wang, J.; Li, M.; Wang, W.; Wang, Y.J.; Li, S.; et al. MicroRNA-Microbiota Interactions: Emerging Strategies for Modulating Intestinal Homeostasis and Enhancing Host Health. iMetaOmics 2025, 2, e57. [Google Scholar] [CrossRef]
- Romeo, M.; Dallio, M.; Scognamiglio, F.; Ventriglia, L.; Cipullo, M.; Coppola, A.; Tammaro, C.; Scafuro, G.; Iodice, P.; Federico, A. Role of Non-Coding RNAs in Hepatocellular Carcinoma Progression: From Classic to Novel Clinicopathogenetic Implications. Cancers 2023, 15, 5178. [Google Scholar] [CrossRef]
- Pang, J.; Huang, P.; Huang, H.; Ma, J.; He, L.; Lin, X.; Huang, D.; Nong, S. Molecular Mechanism and Role of miRNA-155 Ribonucleic Acid in Podocyte Apoptosis in Lupus Nephritis: SOCS1 Protein Expression Regulates JAK/STAT Pathway Transduction. Int. J. Biol. Macromol. 2025, 304, 140810. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, T.; Chen, J.; Cai, W.; Shi, R.; Duan, Y.; Yuan, L.; Xing, C. Colon Specific Delivery of miR-155 Inhibitor Alleviates Estrogen Deficiency Related Phenotype via Microbiota Remodeling. Drug Deliv. 2022, 29, 2610–2620. [Google Scholar] [CrossRef]
- Fan, H.; Liu, X.; Ren, Z.; Fei, X.; Luo, J.; Yang, X.; Xue, Y.; Zhang, F.; Liang, B. Gut Microbiota and Cardiac Arrhythmia. Front. Cell. Infect. Microbiol. 2023, 13, 1147687. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Zuo, K.; Liu, Z.; Liu, Y.; Liu, L.; Wang, Y.; Yin, X.; Li, J.; Liu, X.; Chen, M.; et al. Disordered Gut Microbiota Promotes Atrial Fibrillation by Aggravated Conduction Disturbance and Unbalanced Linoleic Acid/SIRT1 Signaling. Biochem. Pharmacol. 2023, 213, 115599. [Google Scholar] [CrossRef]
- Ortega, M.A.; Álvarez-Mon, M.A.; García-Montero, C.; Fraile-Martínez, Ó.; Monserrat, J.; Martinez-Rozas, L.; Rodríguez-Jiménez, R.; Álvarez-Mon, M.; Lahera, G. Microbiota–Gut–Brain Axis Mechanisms in the Complex Network of Bipolar Disorders: Potential Clinical Implications and Translational Opportunities. Mol. Psychiatry 2023, 28, 2645–2673. [Google Scholar] [CrossRef] [PubMed]
- Teodori, L.; Petrignani, I.; Giuliani, A.; Prattichizzo, F.; Gurău, F.; Matacchione, G.; Olivieri, F.; Coppari, S.; Albertini, M.C. Inflamm-Aging microRNAs May Integrate Signals from Food and Gut Microbiota by Modulating Common Signalling Pathways. Mech. Ageing Dev. 2019, 182, 111127. [Google Scholar] [CrossRef]
- Kimura, C.; Miura, K.; Watanabe, Y.; Baba, H.; Ozaki, K.; Hasebe, A.; Ayabe, T.; Nakamura, K.; Nakaoka, S.; Ogasawara, K.; et al. Association between Oral Frailty and Prevotella Percentage in the Oral Microbiota of Community-Dwelling Older Adults Who Participated in the CHEER Iwamizawa Project, Japan. J. Oral Rehabil. 2024, 51, 1721–1729. [Google Scholar] [CrossRef]
- Liu, J.; Cui, L.; Yan, X.; Zhao, X.; Cheng, J.; Zhou, L.; Gao, J.; Cao, Z.; Ye, X.; Hu, S. Analysis of Oral Microbiota Revealed High Abundance of Prevotella Intermedia in Gout Patients. Cell. Physiol. Biochem. 2018, 49, 1804–1812. [Google Scholar] [CrossRef]
- Safour, W.; Hovey, R. Exploring Mental Health Experience in Individuals Living with Temporomandibular Disorders. Patient Exp. J. 2021, 8, 157–165. [Google Scholar] [CrossRef]
- Rana, A.; Katiyar, A.; Arun, A.; Berrios, J.N.; Kumar, G. Natural Sulfur Compounds in Mental Health and Neurological Disorders: Insights from Observational and Intervention Studies. Front. Nutr. 2025, 12, 1534000. [Google Scholar] [CrossRef] [PubMed]
- Hoepner, C.T.; McIntyre, R.S.; Papakostas, G.I. Impact of Supplementation and Nutritional Interventions on Pathogenic Processes of Mood Disorders: A Review of the Evidence. Nutrients 2021, 13, 767. [Google Scholar] [CrossRef]
- Popper, C.W. Single-Micronutrient and Broad-Spectrum Micronutrient Approaches for Treating Mood Disorders in Youth and Adults. Child Adolesc. Psychiatr. Clin. 2014, 23, 591–672. [Google Scholar] [CrossRef]
- Muneer, A. Bipolar Disorder: Role of Inflammation and the Development of Disease Biomarkers. Psychiatry Investig. 2015, 13, 18–33. [Google Scholar] [CrossRef]
- Buj-Acosta, C.; García-Sanz, V.; Hakobyan, L.; Tarazona-Álvarez, B.; Molins-Legua, C.; Campins-Falcó, P.; Paredes-Gallardo, V.; Tortajada-Girbés, M. Volatile Sulfur Compounds in Asthmatic Children and Adolescents: A Cross-Sectional Study in Breath and Saliva. Int. J. Paediatr. Dent. 2024, 34, 782–789. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, R.; Varadwaj, P. Smelling the Disease: Diagnostic Potential of Breath Analysis. Mol. Diagn. Ther. 2023, 27, 321–347. [Google Scholar] [CrossRef]
- Saveliev, M.; Volchek, A.; Lavrenova, G.; Malay, O.; Grevtsev, M.; Jahatspanian, I. Determination of Halitosis by Exhaled Breath Analysis Using Semiconductor Metal Oxide Sensors and Chemometric Methods. J. Chemom. 2025, 39, e70012. [Google Scholar] [CrossRef]
- Calenic, B.; Amann, A. Detection of Volatile Malodorous Compounds in Breath: Current Analytical Techniques and Implications in Human Disease. Bioanalysis 2014, 6, 357–376. [Google Scholar] [CrossRef] [PubMed]
- Zsiska, M.; Schneiderman, E.; Jin, Y.; Farrell, S.; Grender, J. Investigation of Oral Malodor Prevention by Dentifrices as Measured by VSC Reduction. J. Breath Res. 2021, 15, 036001. [Google Scholar] [CrossRef] [PubMed]
- Scano, A.; Fais, S.; Ciappina, G.; Genovese, M.; Granata, B.; Montopoli, M.; Consolo, P.; Carroccio, P.; Muscolino, P.; Ottaiano, A.; et al. Oxidative Stress by H2O2 as a Potential Inductor in the Switch from Commensal to Pathogen in Oncogenic Bacterium Fusobacterium Nucleatum. Antioxidants 2025, 14, 323. [Google Scholar] [CrossRef]
- Casu, C.; Orrù, G. Tongue Papillitis and Volatile Sulfur Compounds (VSC) Values in a COVID-19 Patient. Pan Afr. Med. J. 2022, 41, 5. [Google Scholar] [CrossRef]
- Scano, A.; Kalcev, G.; Piras, M.; Fais, S.; Cossu, G.; Gonzalez, C.I.A.; Carta, M.G.; Orrù, G. Usefulness of Salivary Sampling for the Molecular Detection of a Genetic Variant Associated with Bipolar Disorders. J. Public Health Res. 2023, 12, 22799036221146915. [Google Scholar] [CrossRef]
- Bacchetti De Gregoris, T.; Aldred, N.; Clare, A.S.; Burgess, J.G. Improvement of Phylum- and Class-Specific Primers for Real-Time PCR Quantification of Bacterial Taxa. J. Microbiol. Methods 2011, 86, 351–356. [Google Scholar] [CrossRef]
- Arcadu, B.; Orrù, M.; Piga, R.; Orrù, G. Designing of Sequencing Assay Assisted by Capillary Electrophoresis Based on DNA Folding Analysis: An Application to the VCAM1 Gene. Electrophoresis 2012, 33, 1215–1219. [Google Scholar] [CrossRef]
- Maxia, C.; Isola, M.; Grecu, E.; Cuccu, A.; Scano, A.; Orrù, G.; Di Girolamo, N.; Diana, A.; Murtas, D. Synergic Action of Insulin-like Growth Factor-2 and miRNA-483 in Pterygium Pathogenesis. Int. J. Mol. Sci. 2023, 24, 4329. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Conlon, M.A.; Bird, A.R. The Impact of Diet and Lifestyle on Gut Microbiota and Human Health. Nutrients 2015, 7, 17–44. [Google Scholar] [CrossRef] [PubMed]
- Bested, A.C.; Logan, A.C.; Selhub, E.M. Intestinal Microbiota, Probiotics and Mental Health: From Metchnikoff to Modern Advances: Part II—Contemporary Contextual Research. Gut Pathog. 2013, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, A.; Geurts, L.; Hoyles, L.; Iozzo, P.; Kraneveld, A.D.; La Fata, G.; Miani, M.; Patterson, E.; Pot, B.; Shortt, C.; et al. The Microbiota–Gut–Brain Axis: Pathways to Better Brain Health. Perspectives on What We Know, What We Need to Investigate and How to Put Knowledge into Practice. Cell. Mol. Life Sci. 2022, 79, 80. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Pan, X.; Wang, X.; Feenstra, K.A.; Heringa, J.; Huang, Z. Exploring the Microbiota-Gut-Brain Axis for Mental Disorders with Knowledge Graphs. J. Artif. Intell. Med. Sci. 2021, 1, 30–42. [Google Scholar] [CrossRef]
- Verma, A.; Inslicht, S.S.; Bhargava, A. Gut-Brain Axis: Role of Microbiome, Metabolomics, Hormones, and Stress in Mental Health Disorders. Cells 2024, 13, 1436. [Google Scholar] [CrossRef]
- Huang, T.-T.; Lai, J.-B.; Du, Y.-L.; Xu, Y.; Ruan, L.-M.; Hu, S.-H. Current Understanding of Gut Microbiota in Mood Disorders: An Update of Human Studies. Front. Genet. 2019, 10, 98. [Google Scholar] [CrossRef]
- Lewandowska-Pietruszka, Z.; Figlerowicz, M.; Mazur-Melewska, K. The History of the Intestinal Microbiota and the Gut-Brain Axis. Pathogens 2022, 11, 1540. [Google Scholar] [CrossRef]
- Cryan, J.F.; Dinan, T.G. Mind-Altering Microorganisms: The Impact of the Gut Microbiota on Brain and Behaviour. Nat. Rev. Neurosci. 2012, 13, 701–712. [Google Scholar] [CrossRef]
- Hooks, K.B.; Konsman, J.P.; O’Malley, M.A. Microbiota-Gut-Brain Research: A Critical Analysis. Behav. Brain Sci. 2019, 42, e60. [Google Scholar] [CrossRef] [PubMed]
- Karl, J.P.; Hatch, A.M.; Arcidiacono, S.M.; Pearce, S.C.; Pantoja-Feliciano, I.G.; Doherty, L.A.; Soares, J.W. Effects of Psychological, Environmental and Physical Stressors on the Gut Microbiota. Front. Microbiol. 2018, 9, 2013. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Singh, Y.; Singh, S.; Singh, R.B. Gut Microbiome-Mediated Epigenetic Regulation of Brain Disorder and Application of Machine Learning for Multi-Omics Data Analysis. Genome 2021, 64, 355–371. [Google Scholar] [CrossRef]
- Li, Z.; Lai, J.; Zhang, P.; Ding, J.; Jiang, J.; Liu, C.; Huang, H.; Zhen, H.; Xi, C.; Sun, Y.; et al. Multi-Omics Analyses of Serum Metabolome, Gut Microbiome and Brain Function Reveal Dysregulated Microbiota-Gut-Brain Axis in Bipolar Depression. Mol. Psychiatry 2022, 27, 4123–4135. [Google Scholar] [CrossRef]
- Uceda, S.; Echeverry-Alzate, V.; Reiriz-Rojas, M.; Martínez-Miguel, E.; Pérez-Curiel, A.; Gómez-Senent, S.; Beltrán-Velasco, A.I. Gut Microbial Metabolome and Dysbiosis in Neurodegenerative Diseases: Psychobiotics and Fecal Microbiota Transplantation as a Therapeutic Approach—A Comprehensive Narrative Review. Int. J. Mol. Sci. 2023, 24, 13294. [Google Scholar] [CrossRef]
- Hatami, M.; Abdolahi, M.; Soveyd, N.; Djalali, M.; Togha, M.; Honarvar, N.M. Molecular Mechanisms of Curcumin in Neuroinflammatory Disorders: A Mini Review of Current Evidences. Endocr. Metab. Immune Disord. Drug Targets 2019, 19, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Skrzypczak-Wiercioch, A.; Sałat, K. Lipopolysaccharide-Induced Model of Neuroinflammation: Mechanisms of Action, Research Application and Future Directions for Its Use. Molecules 2022, 27, 5481. [Google Scholar] [CrossRef]
- Swaminathan, A.; Kumar, M.; Halder Sinha, S.; Schneider-Anthony, A.; Boutillier, A.-L.; Kundu, T.K. Modulation of Neurogenesis by Targeting Epigenetic Enzymes Using Small Molecules: An Overview. ACS Chem. Neurosci. 2014, 5, 1164–1177. [Google Scholar] [CrossRef] [PubMed]
- Longo, F.M.; Yang, T.; Xie, Y.; Massa, S.M. Small Molecule Approaches for Promoting Neurogenesis. Curr. Alzheimer Res. 2006, 3, 5–10. [Google Scholar] [CrossRef]
- Ciranna, L. Serotonin as a Modulator of Glutamate- and GABA-Mediated Neurotransmission: Implications in Physiological Functions and in Pathology. Curr. Neuropharmacol. 2006, 4, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Teleanu, R.I.; Niculescu, A.-G.; Roza, E.; Vladâcenco, O.; Grumezescu, A.M.; Teleanu, D.M. Neurotransmitters—Key Factors in Neurological and Neurodegenerative Disorders of the Central Nervous System. Int. J. Mol. Sci. 2022, 23, 5954. [Google Scholar] [CrossRef]
- Mitrea, L.; Nemeş, S.-A.; Szabo, K.; Teleky, B.-E.; Vodnar, D.-C. Guts Imbalance Imbalances the Brain: A Review of Gut Microbiota Association With Neurological and Psychiatric Disorders. Front. Med. 2022, 9, 813204. [Google Scholar] [CrossRef]
- Ortega, M.A.; Alvarez-Mon, M.A.; García-Montero, C.; Fraile-Martinez, O.; Guijarro, L.G.; Lahera, G.; Monserrat, J.; Valls, P.; Mora, F.; Rodríguez-Jiménez, R.; et al. Gut Microbiota Metabolites in Major Depressive Disorder—Deep Insights into Their Pathophysiological Role and Potential Translational Applications. Metabolites 2022, 12, 50. [Google Scholar] [CrossRef]
- Bhalla, D.; Dinesh, S.; Sharma, S.; Sathisha, G.J. Gut-Brain Axis Modulation of Metabolic Disorders: Exploring the Intertwined Neurohumoral Pathways and Therapeutic Prospects. Neurochem. Res. 2024, 49, 847–871. [Google Scholar] [CrossRef]
- Montagnani, M.; Bottalico, L.; Potenza, M.A.; Charitos, I.A.; Topi, S.; Colella, M.; Santacroce, L. The Crosstalk between Gut Microbiota and Nervous System: A Bidirectional Interaction between Microorganisms and Metabolome. Int. J. Mol. Sci. 2023, 24, 10322. [Google Scholar] [CrossRef]
- Ceccarani, C.; Bassanini, G.; Montanari, C.; Casiraghi, M.C.; Ottaviano, E.; Morace, G.; Biasucci, G.; Paci, S.; Borghi, E.; Verduci, E. Proteobacteria Overgrowth and Butyrate-Producing Taxa Depletion in the Gut Microbiota of Glycogen Storage Disease Type 1 Patients. Metabolites 2020, 10, 133. [Google Scholar] [CrossRef]
- Fusco, W.; Lorenzo, M.B.; Cintoni, M.; Porcari, S.; Rinninella, E.; Kaitsas, F.; Lener, E.; Mele, M.C.; Gasbarrini, A.; Collado, M.C.; et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023, 15, 2211. [Google Scholar] [CrossRef] [PubMed]
- Martin-Gallausiaux, C.; Marinelli, L.; Blottière, H.M.; Larraufie, P.; Lapaque, N. SCFA: Mechanisms and Functional Importance in the Gut. Proc. Nutr. Soc. 2021, 80, 37–49. [Google Scholar] [CrossRef]
- Markowiak-Kopeć, P.; Śliżewska, K. The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients 2020, 12, 1107. [Google Scholar] [CrossRef]
- Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The Role of Short-Chain Fatty Acids in Microbiota–Gut–Brain Communication. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 461–478. [Google Scholar] [CrossRef]
- Gill, P.A.; van Zelm, M.C.; Muir, J.G.; Gibson, P.R. Review Article: Short Chain Fatty Acids as Potential Therapeutic Agents in Human Gastrointestinal and Inflammatory Disorders. Aliment. Pharmacol. Ther. 2018, 48, 15–34. [Google Scholar] [CrossRef]
- Sugrue, I.; O’Connor, P.M.; Hill, C.; Stanton, C.; Ross, R.P. Actinomyces Produces Defensin-Like Bacteriocins (Actifensins) with a Highly Degenerate Structure and Broad Antimicrobial Activity. J. Bacteriol. 2020, 202, e00529-19. [Google Scholar] [CrossRef]
- Case, R.J.; Labbate, M.; Kjelleberg, S. AHL-Driven Quorum-Sensing Circuits: Their Frequency and Function among the Proteobacteria. ISME J. 2008, 2, 345–349. [Google Scholar] [CrossRef]
- Haworth, J.J.; Pitcher, C.K.; Ferrandino, G.; Hobson, A.R.; Pappan, K.L.; Lawson, J.L.D. Breathing New Life into Clinical Testing and Diagnostics: Perspectives on Volatile Biomarkers from Breath. Crit. Rev. Clin. Lab. Sci. 2022, 59, 353–372. [Google Scholar] [CrossRef] [PubMed]
- Krishnamoorthy, A.; Chandrapalan, S.; Bosch, S.; Bannaga, A.; De Boer, N.K.H.; De Meij, T.G.J.; Leja, M.; Hanna, G.B.; De Vietro, N.; Altomare, D.; et al. The Influence of Mechanical Bowel Preparation on Volatile Organic Compounds for the Detection of Gastrointestinal Disease—A Systematic Review. Sensors 2023, 23, 1377. [Google Scholar] [CrossRef]
- Kurowska, A.; Ziemichód, W.; Herbet, M.; Piątkowska-Chmiel, I. The Role of Diet as a Modulator of the Inflammatory Process in the Neurological Diseases. Nutrients 2023, 15, 1436. [Google Scholar] [CrossRef] [PubMed]
Name | Sequence 5′-------------------------3′ | Phylum/Genus | Accession No. | bp ** |
---|---|---|---|---|
OG1001F | AAACTCAAAKGAATTGACGG | Universal * | NR_024570.1 | 175 |
OG1002R | YTCACRRCACGAGCTGAC | |||
OG1003F | CKAGTGTAGAGGTGAAATT | α-Proteobacteria * | U11021.1 | 247 |
OG1004R | CCCCGTCAATTCCTTTGAGTT | |||
OG1005F | TCGTCAGCTCGTGTYGTGA | γ-Proteobacteria * | NR_026078.1 | 154 |
OG1006R | CGTAAGGGCCATGATG | |||
OG1007F | CRAACAGGATTAGATACCCT | Bacteroidetes * | NR_074784.2 | 203 |
OG1008R | GGTAAGGTTCCTCGCGTAT | |||
OG1009F | TGAAACTYAAAGGAATTGACG | Firmicutes * | NR_042772.1 | 152 |
OG1010R | ACCATGCACCACCTGTC | |||
OG1011F | TACGCTGGGCTACACACGTGC | Fusobacterium | NR_074412.1 | 213 |
OG1012R | AACCAACTCTCGTGGTGTGAC | |||
OG1013F | TACGGCCGCAAGGCTA | Actinobacteria * | NR_181378.1 | 303 |
OG1014R | TCRTCCCCACCTTCCTCCG | |||
OG1015F | AAGCTCGTAGTTGAACCTTG | Candida spp. | NG_070791.1 | 216 |
OG1016R | ATGGTCCTAGAAACCAACAA | |||
OG33-2 | CCAGCAGCCGCGGTA | E. coli | NR_024570.1 | 286 |
OG123-2 | GACTACCRGGGTATCTAATC |
Name | Sequence 5′-------------------------3′ | Gene | Accession No. | bp * |
---|---|---|---|---|
OG 650F | GCATGGGTCAGAAGG | ACTB | PQ040393.1 | 297 |
OG 650R | AGGCGTACAGGGATAG | |||
OG1017F | TTTACAGGGCTGGGACAG | MHH2 (146a) | LC685969.1 | 191 |
OG1017R | TCAGGATCTACTCTCTCCAGG | |||
OG1018F | AGGAAGGGGAAATCTGTG | MIR155HG (155) | NR_001458.3 | 210 |
OG1018R | TCATGCTTCTTTGTCATCCT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Primavera, D.; Carta, M.G.; Tusconi, M.; Kalcev, G.; Atzori, L.; Ferreli, C.; Romero Ramirez, R.; Peddio, L.; Casu, C.; Fais, S.; et al. Oral Microbiota Taxa and Pri-miRNA Expression in Bipolar Disorder: A Case–Control Study. Biomolecules 2025, 15, 1355. https://doi.org/10.3390/biom15101355
Primavera D, Carta MG, Tusconi M, Kalcev G, Atzori L, Ferreli C, Romero Ramirez R, Peddio L, Casu C, Fais S, et al. Oral Microbiota Taxa and Pri-miRNA Expression in Bipolar Disorder: A Case–Control Study. Biomolecules. 2025; 15(10):1355. https://doi.org/10.3390/biom15101355
Chicago/Turabian StylePrimavera, Diego, Mauro Giovanni Carta, Massimo Tusconi, Goce Kalcev, Laura Atzori, Caterina Ferreli, Rober Romero Ramirez, Letizia Peddio, Cinzia Casu, Sara Fais, and et al. 2025. "Oral Microbiota Taxa and Pri-miRNA Expression in Bipolar Disorder: A Case–Control Study" Biomolecules 15, no. 10: 1355. https://doi.org/10.3390/biom15101355
APA StylePrimavera, D., Carta, M. G., Tusconi, M., Kalcev, G., Atzori, L., Ferreli, C., Romero Ramirez, R., Peddio, L., Casu, C., Fais, S., Orrù, G., & Scano, A. (2025). Oral Microbiota Taxa and Pri-miRNA Expression in Bipolar Disorder: A Case–Control Study. Biomolecules, 15(10), 1355. https://doi.org/10.3390/biom15101355