Endotrophin Levels Are Associated with Allograft Outcomes in Kidney Transplant Recipients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Cohorts
2.2. Biochemical Analysis
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Cohorts
3.2. Change in Endotrophin over Time
3.3. Effect of Remote Ischemic Conditioning
3.4. Association of Endotrophin with Kidney Graft Function at Different Time Points
3.5. Prognostic Value of Endotrophin for Future Kidney Graft Function
3.6. Prognostic Value of Endotrophin for Delayed Graft Function
3.7. Association with 50% Reduction in Plasma Creatinine
3.8. Validation of the Prognostic Value of Endotrophin for Delayed Graft Function
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schold, J.D.; Kaplan, B. The Elephant in the Room: Failings of Current Clinical Endpoints in Kidney Transplantation. Am. J. Transplant. 2010, 10, 1163–1166. [Google Scholar] [CrossRef] [PubMed]
- Schold, J.D.; Srinivas, T.R.; Howard, R.J.; Jamieson, I.R.; Meier-Kriesche, H.-U. The Association of Candidate Mortality Rates With Kidney Transplant Outcomes and Center Performance Evaluations. Transplantation 2008, 85, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, D.G.K.; Fenton, A.; Jesky, M.; Ferro, C.; Boor, P.; Tepel, M.; Karsdal, M.A.; Genovese, F.; Cockwell, P. Urinary Endotrophin Predicts Disease Progression in Patients with Chronic Kidney Disease. Sci. Rep. 2017, 7, 17328. [Google Scholar] [CrossRef] [PubMed]
- Boor, P.; Floege, J. Renal Allograft Fibrosis: Biology and Therapeutic Targets. Am. J. Transplant. 2015, 15, 863–886. [Google Scholar] [CrossRef]
- Lai, X.; Zheng, X.; Mathew, J.M.; Gallon, L.; Leventhal, J.R.; Zhang, Z.J. Tackling Chronic Kidney Transplant Rejection: Challenges and Promises. Front. Immunol. 2021, 12, 1–13. [Google Scholar] [CrossRef]
- Barbour, S.J.; Reich, H.N. Risk Stratification of Patients with IgA Nephropathy. Am. J. Kidney Dis. 2012, 59, 865–873. [Google Scholar] [CrossRef]
- Sun, K.; Park, J.; Gupta, O.T.; Holland, W.L.; Auerbach, P.; Zhang, N.; Marangoni, R.G.; Nicoloro, S.M.; Czech, M.P.; Varga, J.; et al. Endotrophin Triggers Adipose Tissue Fibrosis and Metabolic Dysfunction. Nat. Commun. 2014, 5, 3485. [Google Scholar] [CrossRef]
- Lee, C.; Kim, M.; Lee, J.H.; Oh, J.; Shin, H.-H.; Lee, S.M.; Scherer, P.E.; Kwon, H.M.; Choi, J.H.; Park, J. COL6A3-Derived Endotrophin Links Reciprocal Interactions among Hepatic Cells in the Pathology of Chronic Liver Disease. J. Pathol. 2019, 247, 99–109. [Google Scholar] [CrossRef]
- Sun, K.; Park, J.; Kim, M.; Scherer, P.E. Endotrophin, a Multifaceted Player in Metabolic Dysregulation and Cancer Progression, Is a Predictive Biomarker for the Response to PPARγ Agonist Treatment. Diabetologia 2017, 60, 24–29. [Google Scholar] [CrossRef]
- Tepel, M.; Alkaff, F.F.; Kremer, D.; Bakker, S.J.L.; Thaunat, O.; Nagarajah, S.; Saleh, Q.; Berger, S.P.; van den Born, J.; Krogstrup, N.V.; et al. Pretransplant Endotrophin Predicts Delayed Graft Function after Kidney Transplantation. Sci. Rep. 2022, 12, 4078. [Google Scholar] [CrossRef]
- Kremer, D.; Alkaff, F.F.; Post, A.; Knobbe, T.J.; Tepel, M.; Thaunat, O.; Berger, S.P.; van den Born, J.; Genovese, F.; Karsdal, M.A.; et al. Plasma Endotrophin, Reflecting Tissue Fibrosis, Is Associated with Graft Failure and Mortality in KTR: Results from Two Prospective Cohort Studies. Nephrol. Dial. Transplant. 2022, 38, 1041–1052. [Google Scholar] [CrossRef]
- Krogstrup, N.V.; Oltean, M.; Nieuwenhuijs-Moeke, G.J.; Dor, F.J.M.F.; Møldrup, U.; Krag, S.P.; Bibby, B.M.; Birn, H.; Jespersen, B. Remote Ischemic Conditioning on Recipients of Deceased Renal Transplants Does Not Improve Early Graft Function: A Multicenter Randomized, Controlled Clinical Trial. Am. J. Transplant. 2017, 17, 1042–1049. [Google Scholar] [CrossRef]
- Nielsen, M.B.; Krogstrup, N.V.; Oltean, M.; Nieuwenhuijs-Moeke, G.J.; Dor, F.J.M.F.; Birn, H.; Jespersen, B. Remote Ischaemic Conditioning and Early Changes in Plasma Creatinine as Markers of One Year Kidney Graft Function-A Follow-up of the CONTEXT Study. PLoS ONE 2019, 14, e0226882. [Google Scholar] [CrossRef] [PubMed]
- Krogstrup, N.V.; Oltean, M.; Bibby, B.M.; Nieuwenhuijs-Moeke, G.J.; Dor, F.J.M.F.; Birn, H.; Jespersen, B. Remote Ischaemic Conditioning on Recipients of Deceased Renal Transplants, Effect on Immediate and Extended Kidney Graft Function: A Multicentre, Randomised Controlled Trial Protocol (CONTEXT). BMJ Open 2015, 5, e007941. [Google Scholar] [CrossRef] [PubMed]
- Borst, C.; Xia, S.; Bistrup, C.; Tepel, M. Interleukin-8 Transcripts in Mononuclear Cells Determine Impaired Graft Function after Kidney Transplantation. PLoS ONE 2015, 10, e0117315. [Google Scholar] [CrossRef]
- Yarlagadda, S.G.; Coca, S.G.; Garg, A.X.; Doshi, M.; Poggio, E.; Marcus, R.J.; Parikh, C.R. Marked Variation in the Definition and Diagnosis of Delayed Graft Function: A Systematic Review. Nephrol. Dial. Transplant. 2008, 23, 2995–3003. [Google Scholar] [CrossRef]
- Sun, S.; Henriksen, K.; Karsdal, M.A.; Byrjalsen, I.; Rittweger, J.; Armbrecht, G.; Belavy, D.L.; Felsenberg, D.; Nedergaard, A.F. Collagen Type III and VI Turnover in Response to Long-Term Immobilization. PLoS ONE 2015, 10, e0144525. [Google Scholar] [CrossRef] [PubMed]
- Krogstrup, N.V.; Bibby, B.M.; Aulbjerg, C.; Jespersen, B.; Birn, H. A New Method of Modelling Early Plasma Creatinine Changes Predicts 1-Year Graft Function after Kidney Transplantation. Scand. J. Clin. Lab. Investig. 2016, 76, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Coresh, J.; Greene, T.; Stevens, L.A.; Zhang, Y.; Hendriksen, S.; Kusek, J.W.; Van Lente, F. Using Standardized Serum Creatinine Values in the Modification of Diet in Renal Disease Study Equation for Estimating Glomerular Filtration Rate. Ann. Intern. Med. 2006, 145, 247–254. [Google Scholar] [CrossRef]
- Fenton, A.; Jesky, M.D.; Ferro, C.J.; Sørensen, J.; Karsdal, M.A.; Cockwell, P.; Genovese, F. Serum Endotrophin, a Type VI Collagen Cleavage Product, Is Associated with Increased Mortality in Chronic Kidney Disease. PLoS ONE 2017, 12, e0175200. [Google Scholar] [CrossRef]
- Rasmussen, D.G.K.; Hansen, T.W.; von Scholten, B.J.; Nielsen, S.H.; Reinhard, H.; Parving, H.-H.; Tepel, M.; Karsdal, M.A.; Jacobsen, P.K.; Genovese, F.; et al. Higher Collagen VI Formation Is Associated With All-Cause Mortality in Patients With Type 2 Diabetes and Microalbuminuria. Diabetes Care 2018, 41, 1493–1500. [Google Scholar] [CrossRef] [PubMed]
- Sparding, N.; Genovese, F.; Rasmussen, D.G.K.; Karsdal, M.A.; Neprasova, M.; Maixnerova, D.; Satrapova, V.; Frausova, D.; Hornum, M.; Bartonova, L.; et al. Endotrophin, a Collagen Type VI-Derived Matrikine, Reflects the Degree of Renal Fibrosis in Patients with IgA Nephropathy and in Patients with ANCA-Associated Vasculitis. Nephrol. Dial. Transplant. 2021, 37, 1099–1108. [Google Scholar] [CrossRef] [PubMed]
- Frimodt-Møller, M.; Hansen, T.W.; Rasmussen, D.G.K.; Theilade, S.; Nielsen, S.H.; Karsdal, M.A.; Genovese, F.; Rossing, P. A Marker of Type VI Collagen Formation (PRO-C6) Is Associated with Higher Arterial Stiffness in Type 1 Diabetes. Acta Diabetol. 2019, 56, 711–712. [Google Scholar] [CrossRef] [PubMed]
- Bu, D.; Crewe, C.; Kusminski, C.M.; Gordillo, R.; Ghaben, A.L.; Kim, M.; Park, J.; Deng, H.; Xiong, W.; Liu, X.-Z.; et al. Human Endotrophin as a Driver of Malignant Tumor Growth. JCI Insight 2019, 5, e125094. [Google Scholar] [CrossRef] [PubMed]
- Jafari, A.; Khatami, M.R.; Dashti-Khavidaki, S.; Lessan-Pezeshki, M.; Abdollahi, A. Plasma Neutrophil Gelatinase-Associated Lipocalin as a Marker for Prediction of 3-Month Graft Survival after Kidney Transplantation. Int. J. organ Transplant. Med. 2017, 8, 17–27. [Google Scholar]
- Nielsen, M.B.; Krogstrup, N.V.; Nieuwenhuijs-Moekeid, G.J.; Oltean, M.; Dor, F.J.M.F.; Jespersen, B.; Birn, H. P-NGAL Day 1 Predicts Early but Not One Year Graft Function Following Deceased Donor Kidney Transplantation—The CONTEXT Study. PLoS ONE 2019, 14, e0212676. [Google Scholar] [CrossRef] [PubMed]
- Pichler, G.; Haller, M.C.; Kainz, A.; Wolf, M.; Redon, J.; Oberbauer, R. Prognostic Value of Bone- and Vascular-Derived Molecular Biomarkers in Hemodialysis and Renal Transplant Patients: A Systematic Review and Meta-Analysis. Nephrol. Dial. Transplant. 2016, 32, gfw387. [Google Scholar] [CrossRef]
- Bienaimé, F.; Dechartres, A.; Anglicheau, D.; Sabbah, L.; Montgermont, P.; Friedlander, G.; Ravaud, P.; Legendre, C.; Prié, D. The Association Between Fibroblast Growth Factor 23 and Renal Transplantation Outcome Is Modified by Follow-up Duration and Glomerular Filtration Rate Assessment Method. Kidney Int. Rep. 2017, 2, 881–892. [Google Scholar] [CrossRef]
- Chen, Y.; Tai, Q.; Hong, S.; Kong, Y.; Shang, Y.; Liang, W.; Guo, Z.; He, X. Pretransplantation Soluble CD30 Level As a Predictor of Acute Rejection in Kidney Transplantation. Transplant. J. 2012, 94, 911–918. [Google Scholar] [CrossRef]
- Rajakariar, R.; Jivanji, N.; Varagunam, M.; Rafiq, M.; Gupta, A.; Sheaff, M.; Sinnott, P.; Yaqoob, M. High Pre-Transplant Soluble CD30 Levels Are Predictive of the Grade of Rejection. Am. J. Transplant. 2005, 5, 1922–1925. [Google Scholar] [CrossRef]
- Smedbråten, J.; Sagedal, S.; Åsberg, A.; Hartmann, A.; Rollag, H.; Mjøen, G.; Fagerland, M.W.; Hansen, S.W.K.; Mollnes, T.E.; Thiel, S. Collectin Liver 1 and Collectin Kidney 1 of the Lectin Complement Pathway Are Associated With Mortality After Kidney Transplantation. Am. J. Transplant. 2017, 17, 265–271. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Parameter | CONTEXT | MoMoTx | Comparison of Cohorts | ||
---|---|---|---|---|---|---|
n | Median (IQR) | n | Median (IQR) | p-Value | ||
Recipient | Age (years) | 218 | 59 (49–66) | 146 | 49 (40–59) | <0.0001 |
Sex (female), n (%) | 218 | 84 (39) | 146 | 50 (34) | ||
BMI (kg/m2) | 193 | 25.1 (23.0–27.6) | 146 | 26.3 (23.8–29.1) | 0.012 | |
BL U-ACR (mg/g) | 152 | 687 (276–1875) | NA | NA | ||
BL P-Cr (µmol/L) | 216 | 638 (498–756) | NA | NA | ||
BL P-ETP (ng/mL) | 211 | 50.7 (36.6–65.5) | NA | NA | ||
BL U-ETP (ng/mg) | 111 | 207.1 (115.5–278.8) | NA | NA | ||
D1 P-Cr (µmol/L) | 216 | 523 (348–675) | 146 | 363 (257–545) | <0.0001 | |
D1 P-ETP (ng/mL) | 193 | 34.8 (21.3–52.5) | 146 | 17.3 (11.7–26.0) | <0.0001 | |
D1 U-ETP/Cr (ng/mg) | 163 | 104.4 (40.6–196.6) | 146 | 48.6 (11.7–97.4) | <0.0001 | |
Transplant | Donor age (years) | 218 | 58 (52–65) | 146 | 53 (45–60) | <0.0001 |
Donor female, n (%) | 218 | 99 (45) | 146 | 80 (56) | ||
Number of HLA mismatches | 218 | 3 (3–4) | 146 | 3 (2–4) | ||
Kidney from, n (%): | 218 | 146 | ||||
| 197 (90) | 54 (37) | ||||
| 21 (10) | - | ||||
| - | 25 (17) | ||||
| - | 67 (46) | ||||
Center, n (%): | 218 | 146 | ||||
| 130 (60) | - | ||||
| 44 (20) | - | ||||
| 23 (10) | - | ||||
| 21 (10) | - | ||||
| - | 146 (100) |
D1 | D5 | M3 | M12 | ||||||
---|---|---|---|---|---|---|---|---|---|
Treatment | n | Median (95% CI) | n | Median (95% CI) | n | Median (95% CI) | n | Median (95% CI) | |
P-ETP (ng/mL) | RIC | 94 | 35.2 (30.4–39.7) | 98 | 23.8 (19.5–27.3) | 86 | 13.6 (12.4–14.9) | 79 | 13.0 (11.9–14.5) |
Sham-RIC | 97 | 33.6 (29.1–40.0) | 97 | 20.9 (17.4–25.3) | 89 | 14.8 (13.4–16.6) | 76 | 13.7 (12.8–15.3) | |
p-value | 0.77 | 0.35 | 0.09 | 0.31 | |||||
U-ETP/Cr (ng/mg) | RIC | 80 | 102.8 (72.9–129.4) | 83 | 66.1 (46.7–83.8) | 83 | 8.8 (5.4–13.8) | 82 | 4.2 (3.2–5.8) |
Sham-RIC | 80 | 100.3 (78.8–136.0) | 87 | 66.5 (47.1–84.7) | 84 | 8.4 (5.6–13.3) | 79 | 5.1 (3.9–7.7) | |
p-value | 0.83 | 0.96 | 0.87 | 0.30 |
ETP | |||||||
---|---|---|---|---|---|---|---|
D1 | M3 | M12 | |||||
rho | p-Value | rho | p-Value | rho | p-Value | ||
P-ETP | P-Cr | 0.669 | <0.0001 | 0.549 | <0.0001 | 0.477 | <0.0001 |
U-ACR | 0.468 | <0.0001 | NA | NA | 0.145 | 0.10 | |
eGFR | NA | NA | −0.584 | <0.0001 | −0.520 | <0.0001 | |
U-ETP/Cr | P-Cr | 0.254 | 0.001 | 0.285 | 0.0002 | 0.332 | <0.0001 |
U-ACR | 0.236 | 0.003 | NA | NA | 0.332 | 0.0001 | |
eGFR | NA | NA | −0.318 | <0.0001 | −0.385 | <0.0001 | |
P-ETP | 0.377 | <0.0001 | 0.355 | <0.0001 | 0.338 | <0.0001 |
Multivariate Linear Regression | ETP | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
D1 | M3 | M12 | ||||||||
Variables | Outcome | n | rpartial | p-Value | n | rpartial | p-Value | n | rpartial | p-Value |
P-ETP, P-Cr | eGFR M3 | 179 | 0.04 | 0.56 | 171 | −0.17 | 0.028 | |||
eGFR M12 | 172 | 0.05 | 0.54 | 165 | −0.15 | 0.054 | 154 | −0.08 | 0.36 | |
Delta eGFR(M3 to M12) | 165 | −0.01 | 0.86 | |||||||
U-ETP/Cr, P-Cr | eGFR M3 | 152 | −0.01 | 0.88 | 166 | −0.07 | 0.37 | |||
eGFR M12 | 147 | −0.05 | 0.58 | 160 | −0.21 | 0.007 | 159 | 0.03 | 0.67 | |
Delta eGFR(M3 to M12) | 160 | 0.21 | 0.008 |
AUROC Analysis | Logistic Regression | |||||||
---|---|---|---|---|---|---|---|---|
Univariate | Multivariate | |||||||
n (% DGF) | AUC (95% CI) | p-Value | Comparison of ROC Curves | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
D1 P-ETP | 190 (31.1) | 0.86 (0.80–0.91) | <0.0001 | D1 P-Cr: p = 0.006 | 7.7 (4.0–14.7) | <0.0001 | 6.3 (3.0–13.1) | <0.0001 |
D1 U-ETP/Cr | 160 (26.3) | 0.70 (0.62–0.77) | 0.0002 | D1 P-Cr: p = 0.15 | 1.4 (1.1–1.8) | 0.002 | 1.5 (1.1–1.9) | 0.006 |
D1 P-Cr | 215 (32.1) | 0.80 (0.74–0.85) | <0.0001 | |||||
D1 U-ACR | 172 (26.7) | 0.83 (0.76–0.88) | <0.0001 | D1 P-Cr: p = 0.67 | ||||
Quartiles of D1 P-ETP, median (IQR) | 190 (31.1) | 0.83 (0.77–0.88) | <0.0001 | |||||
Q1: 15.0 (13.2–17.6) | 47 (2.1) | |||||||
Q2: 29.2 (26.1–31.3) | 48 (14.6) | |||||||
Q3: 40.5 (37.1–45.3) | 47 (36.2) | |||||||
Q4: 64.6 (57.6–81.7) | 48 (70.8) | |||||||
Quartiles of D1 U-ETP/Cr, median (IQR) | 160 (26.3) | 0.68 (0.60–0.75) | 0.0003 | |||||
Q1: 14.6 (5.2–29.9) | 41 (17.5) | |||||||
Q2: 70.2 (53.9–87.7) | 41 (10.0) | |||||||
Q3: 139.9 (124.9–156.4) | 40 (30.0) | |||||||
Q4: 278.5 (229.5–572.6) | 41 (47.5) |
Univariate | Multivariate | |||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
D1 P-ETP | 0.66 (0.55–0.79) | <0.0001 | 0.75 (0.60–0.95) | 0.01 |
D1 U-ETP/Cr | 0.94 (0.87–1.00) | 0.06 | 0.96 (0.89–1.03) | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sparding, N.; Genovese, F.; Rasmussen, D.G.K.; Karsdal, M.A.; Krogstrup, N.V.; Nielsen, M.B.; Hornum, M.; Nagarajah, S.; Birn, H.; The CONTEXT Study Group; et al. Endotrophin Levels Are Associated with Allograft Outcomes in Kidney Transplant Recipients. Biomolecules 2023, 13, 792. https://doi.org/10.3390/biom13050792
Sparding N, Genovese F, Rasmussen DGK, Karsdal MA, Krogstrup NV, Nielsen MB, Hornum M, Nagarajah S, Birn H, The CONTEXT Study Group, et al. Endotrophin Levels Are Associated with Allograft Outcomes in Kidney Transplant Recipients. Biomolecules. 2023; 13(5):792. https://doi.org/10.3390/biom13050792
Chicago/Turabian StyleSparding, Nadja, Federica Genovese, Daniel Guldager Kring Rasmussen, Morten A. Karsdal, Nicoline V. Krogstrup, Marie Bodilsen Nielsen, Mads Hornum, Subagini Nagarajah, Henrik Birn, The CONTEXT Study Group, and et al. 2023. "Endotrophin Levels Are Associated with Allograft Outcomes in Kidney Transplant Recipients" Biomolecules 13, no. 5: 792. https://doi.org/10.3390/biom13050792