Structural Insight into the Mechanism of σ32-Mediated Transcription Initiation of Bacterial RNA Polymerase
Abstract
1. Introduction
2. Materials and Methods
2.1. E. coli σ32 or σ32 Derivatives
2.2. E. coli RNAP Core Enzyme
2.3. Nucleic Acid Scaffolds and E. coli σ32-RPo Assembly
2.4. In Vitro Transcription Assay
2.5. Fluorescence Polarization Assay
2.6. Stopped-Flow Assay
2.7. Cryo-EM Grid Preparation
2.8. Cryo-EM Data Acquisition and Processing
2.9. Cryo-EM Model Building and Refinement
3. Results
3.1. The Cryo-EM Structure of E. coli σ32-RPo
3.2. The Interactions between σ4 Domain and the −35 Element
3.3. The Interactions between σ32 and −35/−10 Spacer
3.4. The Promoter-DNA-Unwinding Function of σ32
3.5. βFTH Adopts a Distinct Conformation to Orchestrate σ32-Promoter Recognition
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruff, E.F.; Record, J.M.T.; Artsimovitch, I. Initial Events in Bacterial Transcription Initiation. Biomolecules 2015, 5, 1035–1062. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Feklistov, A.; Sharon, B.D.; Darst, S.A.; Gross, C.A. Bacterial sigma factors: A historical, structural, and genomic perspective. Annu. Rev. Microbiol. 2014, 68, 357–376. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chen, J.; Boyaci, H.; Campbell, E.A. Diverse and unified mechanisms of transcription initiation in bacteria. Nat. Rev. Genet. 2021, 19, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Gruber, T.M.; Gross, C.A. Multiple Sigma Subunits and the Partitioning of Bacterial Transcription Space. Annu. Rev. Microbiol. 2003, 57, 441–466. [Google Scholar] [CrossRef]
- Shingler, V. Signal sensory systems that impact σ⁵⁴ -dependent transcription. FEMS Microbiol. Rev. 2011, 35, 425–440. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhang, N.; Jovanovic, G.; McDonald, C.; Ces, O.; Zhang, X.; Buck, M. Transcription Regulation and Membrane Stress Management in Enterobacterial Pathogens. Biophys. Infect. 2016, 915, 207–230. [Google Scholar]
- Pletnev, P.; Pupov, D.; Pshanichnaya, L.; Esyunina, D.; Petushkov, I.; Nesterchuk, M.; Osterman, I.; Rubtsova, M.; Mardanov, A.; Ravin, N.; et al. Rewiring of growth-dependent transcription regulation by a point mutation in region 1.1 of the housekeeping sigma factor. Nucleic Acids Res. 2020, 48, 10802–10819. [Google Scholar] [CrossRef] [PubMed]
- Bae, B.; Davis, E.; Brown, D.; Campbell, E.A.; Wigneshweraraj, S.; Darst, S.A. Phage T7 Gp2 inhibition of Escherichia coli RNA polymerase involves misappropriation of sigma70 domain 1.1. Proc. Natl. Acad. Sci. USA 2013, 110, 19772–19777. [Google Scholar] [CrossRef][Green Version]
- Vuthoori, S.; Bowers, C.W.; McCracken, A.; Dombroski, A.J.; Hinton, D.M. Domain 1.1 of the sigma(70) subunit of Escherichia coli RNA polymerase modulates the formation of stable polymerase/promoter complexes. J. Mol. Biol. 2001, 309, 561–572. [Google Scholar] [CrossRef]
- Zenkin, N.; Kulbachinskiy, A.; Yuzenkova, Y.; Mustaev, A.; Bass, I.; Severinov, K.; Brodolin, K. Region 1.2 of the RNA polymerase sigma subunit controls recognition of the -10 promoter element. EMBO J. 2007, 26, 955–964. [Google Scholar] [CrossRef]
- Narayanan, A.; Vago, F.S.; Li, K.; Qayyum, M.Z.; Yernool, D.; Jiang, W.; Murakami, K.S. Cryo-EM structure of Escherichia coli sigma(70) RNA polymerase and promoter DNA complex revealed a role of sigma non-conserved region during the open complex formation. J. Biol. Chem. 2018, 293, 7367–7375. [Google Scholar] [CrossRef][Green Version]
- Mitchell, J.E.; Zheng, D.; Busby, S.J.; Minchin, S.D. Identification and analysis of ‘extended -10’ promoters in Escherichia coli. Nucleic Acids Res. 2003, 31, 4689–4695. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kumar, A.; Malloch, R.A.; Fujita, N.; Smillie, D.A.; Ishihama, A.; Hayward, R.S. The Minus 35-Recognition Region of Escherichia coli Sigma 70 is Inessential for Initiation of Transcription at an “Extended Minus 10” Promoter. J. Mol. Biol. 1993, 232, 406–418. [Google Scholar] [CrossRef] [PubMed]
- Oguienko, A.; Petushkov, I.; Pupov, D.; Esyunina, D.; Kulbachinskiy, A. Universal functions of the sigma finger in alternative sigma factors during transcription initiation by bacterial RNA polymerase. RNA Biol. 2021, 18, 2028–2037. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Li, L.; Shen, L.; Shi, J.; Wang, S.; Feng, Y.; Zhang, Y. Structures and mechanism of transcription initiation by bacterial ECF factors. Nucleic Acids Res. 2019, 47, 7094–7104. [Google Scholar] [CrossRef][Green Version]
- Petushkov, I.; Esyunina, D.; Mekler, V.; Severinov, K.; Pupov, D.; Kulbachinskiy, A. Interplay between σ region 3.2 and secondary channel factors during promoter escape by bacterial RNA polymerase. Biochem. J. 2017, 474, 4053–4064. [Google Scholar] [CrossRef]
- Murakami, K.S.; Masuda, S.; Campbell, E.A.; Muzzin, O.; Darst, S.A. Structural Basis of Transcription Initiation: An RNA Polymerase Holoenzyme-DNA Complex. Science 2002, 296, 1285–1290. [Google Scholar] [CrossRef][Green Version]
- Yura, T. Regulation of the heat shock response in Escherichia coli: History and perspectives. Genes Genet. Syst. 2019, 94, 103–108. [Google Scholar] [CrossRef][Green Version]
- Nagai, H.; Yuzawa, H.; Kanemori, M.; Yura, T. A distinct segment of the sigma 32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli. Proc. Natl. Acad. Sci. USA 1994, 91, 10280–10284. [Google Scholar] [CrossRef][Green Version]
- Nagai, H.; Yuzawa, H.; Yura, T. Interplay of two cis-acting mRNA regions in translational control of sigma 32 synthesis during the heat shock response of Escherichia coli. Proc. Natl. Acad. Sci. USA 1991, 88, 10515–10519. [Google Scholar] [CrossRef][Green Version]
- Kamath-Loeb, A.S.; Gross, C.A. Translational regulation of sigma 32 synthesis: Requirement for an internal control element. J. Bacteriol. 1991, 173, 3904–3906. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Guisbert, E.; Herman, C.; Lu, C.Z.; Gross, C.A. A chaperone network controls the heat shock response in E. coli. Genes Dev. 2004, 18, 2812–2821. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Herman, C.; Thévenet, D.; D’Ari, R.; Bouloc, P. Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc. Natl. Acad. Sci. USA 1995, 92, 3516–3520. [Google Scholar] [CrossRef][Green Version]
- Murakami, K.S. X-ray crystal structure of Escherichia coli RNA polymerase sigma70 holoenzyme. J. Biol. Chem. 2013, 288, 9126–9134. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Liu, B.; Zuo, Y.; Steitz, T.A. Structures of E. coli sigmaS-transcription initiation complexes provide new insights into polymerase mechanism. Proc. Natl. Acad. Sci. USA 2016, 113, 4051–4056. [Google Scholar] [CrossRef][Green Version]
- Shi, W.; Zhou, W.; Zhang, B.; Huang, S.; Jiang, Y.; Schammel, A.; Hu, Y.; Liu, B. Structural basis of bacterial σ -mediated transcription reveals roles of the RNA polymerase zinc-binding domain. EMBO J. 2020, 39, e104389. [Google Scholar] [CrossRef]
- Danson, A.E.; Jovanovic, M.; Buck, M.; Zhang, X. Mechanisms of σ(54)-Dependent Transcription Initiation and Regulation. J. Mol. Biol. 2019, 431, 3960–3974. [Google Scholar] [CrossRef] [PubMed]
- Glyde, R.; Ye, F.; Darbari, V.C.; Zhang, N.; Buck, M.; Zhang, X. Structures of RNA Polymerase Closed and Intermediate Complexes Reveal Mechanisms of DNA Opening and Transcription Initiation. Mol. Cell 2017, 67, 106–116.e4. [Google Scholar] [CrossRef][Green Version]
- Yang, Y.; Darbari, V.C.; Zhang, N.; Lu, D.; Glyde, R.; Wang, Y.P.; Winkelman, J.T.; Gourse, R.L.; Murakami, K.S.; Buck, M.; et al. TRANSCRIPTION. Structures of the RNA polymerase-σ54 reveal new and conserved regulatory strategies. Science 2015, 349, 882–885. [Google Scholar] [CrossRef][Green Version]
- Svetlov, V.; Artsimovitch, I. Purification of bacterial RNA polymerase: Tools and protocols. Methods Mol. Biol. 2015, 1276, 13–29. [Google Scholar] [PubMed][Green Version]
- Helmann, J.D.; Chamberlin, M.J. Structure and function of bacterial sigma factors. Annu. Rev. Biochem. 1988, 57, 839–872. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Shi, J.; He, D.; Tong, B.; Zhang, C.; Wen, A.; Zhang, Y.; Feng, Y.; Lin, W. Structural basis for transcription inhibition by E. coli SspA. Nucleic Acids Res. 2020, 48, 9931–9942. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Shi, J.; Shen, L.; Li, L.; Fang, C.; Yu, C.; Cheng, W.; Feng, Y.; Zhang, Y. Structural basis for transcription antitermination at bacterial intrinsic terminator. Nat. Commun. 2019, 10, 3048. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Maziarz, M.; Garcia-Marcos, M. Fluorescence polarization assays to measure interactions between Gα subunits of heterotrimeric G proteins and regulatory motifs. In Methods in Cell Biology; Academic Press: New York, NY, USA, 2017; Volume 142, pp. 133–143. [Google Scholar]
- KKo, J.; Heyduk, T. Kinetics of promoter escape by bacterial RNA polymerase: Effects of promoter contacts and transcription bubble collapse. Biochem. J. 2014, 463, 135–144. [Google Scholar] [CrossRef]
- Mastronarde, D.N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 2005, 152, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.Q.; Palovcak, E.; Armache, J.-P.; Verba, K.A.; Cheng, Y.; Agard, D.A. MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 2017, 14, 331–332. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rohou, A.; Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 2015, 192, 216–221. [Google Scholar] [CrossRef]
- Scheres, S.H. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 2012, 180, 519–530. [Google Scholar] [CrossRef][Green Version]
- Kang, J.Y.; Olinares, P.D.; Chen, J.; Campbell, E.A.; Mustaev, A.; Chait, B.T.; Gottesman, M.E.; Darst, S.A. Structural basis of transcription arrest by coliphage HK022 Nun in an Escherichia coli RNA polymerase elongation complex. eLife 2017, 6, e25478. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera? A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef][Green Version]
- Emsley, P.; Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2126–2132. [Google Scholar] [CrossRef][Green Version]
- Adams, P.D.; Afonine, P.V.; Bunkóczi, G.; Chen, V.B.; Davis, I.W.; Echols, N.; Headd, J.J.; Hung, L.W.; Kapral, G.J.; Grosse-Kunstleve, R.W.; et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 213–221. [Google Scholar] [CrossRef][Green Version]
- Xu, J.; Cui, K.; Shen, L.; Shi, J.; Li, L.; You, L.; Fang, C.; Zhao, G.; Feng, Y.; Yang, B.; et al. Crl activates transcription by stabilizing active conformation of the master stress transcription initiation factor. eLife 2019, 8, e50928. [Google Scholar] [CrossRef]
- Qayyum, M.Z.; Molodtsov, V.; Renda, A.; Murakami, K.S. Structural basis of RNA polymerase recycling by the Swi2/Snf2 family of ATPase RapA in Escherichia coli. J. Biol. Chem. 2021, 297, 101404. [Google Scholar] [CrossRef]
- Vishwakarma, R.K.; Cao, A.M.; Morichaud, Z.; Perumal, A.S.; Margeat, E.; Brodolin, K. Single-molecule analysis reveals the mechanism of transcription activation in M. tuberculosis. Sci. Adv. 2018, 4, eaao5498. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Schwartz, E.C.; Shekhtman, A.; Dutta, K.; Pratt, M.R.; Cowburn, D.; Darst, S.; Muir, T.W. A full-length group 1 bacterial sigma factor adopts a compact structure incompatible with DNA binding. Chem. Biol. 2008, 15, 1091–1103. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Koo, B.M.; Rhodius, V.A.; Campbell, E.A.; Gross, C.A. Dissection of recognition determinants of Escherichia coli sigma32 suggests a composite -10 region with an ‘extended -10’ motif and a core -10 element. Mol. Microbiol. 2009, 72, 815–829. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Brodolin, K.; Morichaud, Z. Region 4 of the RNA polymerase sigma subunit counteracts pausing during initial transcription. J. Biol. Chem. 2021, 296, 100253. [Google Scholar] [CrossRef]
- Saecker, R.M.; Chen, J.; Chiu, C.E.; Malone, B.; Sotiris, J.; Ebrahim, M.; Yen, L.Y.; Eng, E.T.; Darst, S.A. Structural origins of Escherichia coli RNA polymerase open promoter complex stability. Proc. Natl. Acad. Sci. USA 2021, 118, e2112877118. [Google Scholar] [CrossRef]
- Campagne, S.; Marsh, M.E.; Capitani, G.; Vorholt, J.A.; Allain, F.H. Structural basis for -10 promoter element melting by environmentally induced sigma factors. Nat. Struct. Mol. Biol. 2014, 21, 269–276. [Google Scholar] [CrossRef]
- Rammohan, J.; Ruiz Manzano, A.; Garner, A.L.; Stallings, C.L.; Galburt, E.A. CarD stabilizes mycobacterial open complexes via a two-tiered kinetic mechanism. Nucleic Acids Res. 2015, 43, 3272–3285. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Österberg, S.; del Peso-Santos, T.; Shingler, V. Regulation of alternative sigma factor use. Annu. Rev. Microbiol. 2011, 65, 37–55. [Google Scholar] [CrossRef] [PubMed]
- Rodrigue, S.; Provvedi, R.; Jacques, P.E.; Gaudreau, L.; Manganelli, R. The sigma factors of Mycobacterium tuberculosis. FEMS Microbiol. Rev. 2006, 30, 926–941. [Google Scholar] [CrossRef][Green Version]
- Gaal, T.; Ross, W.; Estrem, S.T.; Nguyen, L.H.; Burgess, R.R.; Gourse, R.L. Promoter recognition and discrimination by EsigmaS RNA polymerase. Mol. Microbiol. 2001, 42, 939–954. [Google Scholar] [CrossRef] [PubMed]
- Klein, G.; Dartigalongue, C.; Raina, S. Phosphorylation-mediated regulation of heat shock response in Escherichia coli. Mol. Microbiol. 2003, 48, 269–285. [Google Scholar] [CrossRef][Green Version]
- Lim, B.; Miyazaki, R.; Neher, S.; Siegele, D.A.; Ito, K.; Walter, P.; Akiyama, Y.; Yura, T.; Gross, C.A. Heat shock transcription factor σ32 co-opts the signal recognition particle to regulate protein homeostasis in E. coli. PLoS Biol. 2013, 11, e1001735. [Google Scholar] [CrossRef][Green Version]
- Yura, T.; Guisbert, E.; Poritz, M.; Lu, C.Z.; Campbell, E.; Gross, C.A. Analysis of sigma32 mutants defective in chaperone-mediated feedback control reveals unexpected complexity of the heat shock response. Proc. Natl. Acad. Sci. USA 2007, 104, 17638–17643. [Google Scholar] [CrossRef][Green Version]
- Horikoshi, M.; Yura, T.; Tsuchimoto, S.; Fukumori, Y.; Kanemori, M. Conserved region 2.1 of Escherichia coli heat shock transcription factor sigma32 is required for modulating both metabolic stability and transcriptional activity. J. Bacteriol. 2004, 186, 7474–7480. [Google Scholar] [CrossRef][Green Version]
- Suzuki, H.; Ikeda, A.; Tsuchimoto, S.; Adachi, K.; Noguchi, A.; Fukumori, Y.; Kanemori, M. Synergistic binding of DnaJ and DnaK chaperones to heat shock transcription factor σ32 ensures its characteristic high metabolic instability: Implications for heat shock protein 70 (Hsp70)-Hsp40 mode of function. J. Biol. Chem. 2012, 287, 19275–19283. [Google Scholar] [CrossRef][Green Version]
- Rodriguez, F.; Arsène-Ploetze, F.; Rist, W.; Rüdiger, S.; Schneider-Mergener, J.; Mayer, M.; Bukau, B. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Molecular Cell 2008, 32, 347–358. [Google Scholar] [CrossRef]
- Arsene, F.; Tomoyasu, T.; Mogk, A.; Schirra, C.; Schulze-Specking, A.; Bukau, B. Role of region C in regulation of the heat shock gene-specific sigma factor of Escherichia coli, sigma32. J. Bacteriol. 1999, 181, 3552–3561. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tomoyasu, T.; Arsene, F.; Ogura, T.; Bukau, B. The C terminus of sigma(32) is not essential for degradation by FtsH. J. Bacteriol. 2001, 183, 5911–5917. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chen, J.; Chiu, C.; Gopalkrishnan, S.; Chen, A.Y.; Olinares PD, B.; Saecker, R.M.; Winkelman, J.T.; Maloney, M.F.; Chait, B.T.; Ross, W.; et al. Stepwise Promoter Melting by Bacterial RNA Polymerase. Mol. Cell 2020, 78, 275–288.e276. [Google Scholar] [CrossRef] [PubMed]
- Bae, B.; Feklistov, A.; Lass-Napiorkowska, A.; Landick, R.; Darst, S.A. Structure of a bacterial RNA polymerase holoenzyme open promoter complex. eLife 2015, 4, e08504. [Google Scholar] [CrossRef]
- Gruber, T.M.; Bryant, D.A. Molecular systematic studies of eubacteria, using sigma70-type sigma factors of group 1 and group 2. J. Bacteriol. 1997, 179, 1734–1747. [Google Scholar] [CrossRef][Green Version]
- Lonetto, M.; Gribskov, M.; Gross, C.A. The sigma 70 family: Sequence conservation and evolutionary relationships. J. Bacteriol. 1992, 174, 3843–3849. [Google Scholar] [CrossRef][Green Version]
- Koo, B.M.; Rhodius, V.A.; Nonaka, G.; deHaseth, P.L.; Gross, C.A. Reduced capacity of alternative sigmas to melt promoters ensures stringent promoter recognition. Genes Dev. 2009, 23, 2426–2436. [Google Scholar] [CrossRef][Green Version]
- Geszvain, K.; Gruber, T.M.; Mooney, R.A.; Gross, C.A.; Landick, R. A hydrophobic patch on the flap-tip helix of E. coli RNA polymerase mediates sigma(70) region 4 function. J. Mol. Biol. 2004, 343, 569–587. [Google Scholar] [CrossRef]
- Fang, C.; Philips, S.J.; Wu, X.; Chen, K.; Shi, J.; Shen, L.; Xu, J.; Feng, Y.; O’Halloran, T.V.; Zhang, Y. CueR activates transcription through a DNA distortion mechanism. Nat. Chem. Biol. 2021, 17, 57–64. [Google Scholar] [CrossRef]
- Fang, C.; Li, L.; Zhao, Y.; Wu, X.; Philips, S.; You, L.; Zhong, M.; Shi, X.; O’Halloran, T.; Li, Q.; et al. The bacterial multidrug resistance regulator BmrR distorts promoter DNA to activate transcription. Nat. Commun. 2020, 11, 6284. [Google Scholar] [CrossRef]
- Zuo, Y.; Steitz, T.A. Crystal structures of the E. coli transcription initiation complexes with a complete bubble. Mol. Cell 2015, 58, 534–540. [Google Scholar] [CrossRef] [PubMed][Green Version]
Data Collection and Processing | RPo |
---|---|
Magnification | 105,000 |
Voltage (kV) | 300 |
Electron exposure (e−/Å2) | 54 |
Defocus range (μm) | −1.0~−1.5 |
Pixel size (Å) | 0.851 |
Symmetry Imposed | C1 |
Number of micrographs | 8557 |
Initial particle projections (no.) | 3,854,813 |
Final particle projections (no.) | 641,734 |
Map resolution (Å) | 2.49 |
FSC threshold | 0.143 |
Map resolution range | 2.3–7.0 |
Refinement | |
Initial model used | PDB 7MKP |
Model resolution (Å) | 2.64 |
FSC threshold | 0.143 |
Map sharpening B factor (Å2) | −10 |
Model composition | |
Nonhydrogen atoms | 28,255 |
Protein residues | 3386 |
Nucleotides | 83 |
B factors (Å2) | |
Protein | 8.12/205.39/64.84 |
Nucleic acids | 94.01/275.47/208.74 |
Validation | |
MolProbity score | 1.54 |
Clashscore | 6.05 |
Poor rotamers (%) | 0.03 |
Ramachandran plot | 0.00 |
Favored (%) | 96.67 |
Allowed (%) | 3.33 |
Model to Map | |
Map CC | 0.8358 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Q.; Chen, T.; Wang, J.; Wang, F.; Ye, W.; Ma, L.; Wu, S. Structural Insight into the Mechanism of σ32-Mediated Transcription Initiation of Bacterial RNA Polymerase. Biomolecules 2023, 13, 738. https://doi.org/10.3390/biom13050738
Lu Q, Chen T, Wang J, Wang F, Ye W, Ma L, Wu S. Structural Insight into the Mechanism of σ32-Mediated Transcription Initiation of Bacterial RNA Polymerase. Biomolecules. 2023; 13(5):738. https://doi.org/10.3390/biom13050738
Chicago/Turabian StyleLu, Qiang, Taiyu Chen, Jiening Wang, Feng Wang, Wenlong Ye, Lixin Ma, and Shan Wu. 2023. "Structural Insight into the Mechanism of σ32-Mediated Transcription Initiation of Bacterial RNA Polymerase" Biomolecules 13, no. 5: 738. https://doi.org/10.3390/biom13050738
APA StyleLu, Q., Chen, T., Wang, J., Wang, F., Ye, W., Ma, L., & Wu, S. (2023). Structural Insight into the Mechanism of σ32-Mediated Transcription Initiation of Bacterial RNA Polymerase. Biomolecules, 13(5), 738. https://doi.org/10.3390/biom13050738