Linker Length Drives Heterogeneity of Multivalent Complexes of Hub Protein LC8 and Transcription Factor ASCIZ
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cloning, Protein Expression, and Purification
2.2. Isothermal Titration Calorimetry
2.3. Size Exclusion Chromatography Multiangle Light Scattering
2.4. Analytical Ultracentrifugation
2.5. Native Electrospray Ionization Mass Spectrometry (Native ESI-MS)
3. Results
3.1. Interactions of QT2–4 Single Site Variants with LC8
3.2. Interactions of QT2–4 Double Site Variants with LC8
3.3. Complex Formation Monitored by Sedimentation Velocity Analytical Ultracentrifugation (SV-AUC)
3.4. Complex Formation Monitored by Native ESI-MS and EM
3.5. Comparison of the Complex Heterogeneity of LC8 Bound to QT2–4 versus QT4–6
4. Discussion
4.1. Two LC8 Binding Sites Are Cooperative, but a Third Site Is Negatively Cooperative
4.2. QT2,3 Forms Stable Complexes with LC8 More Readily than Do QT3,4 and QT2,4
4.3. Linker Length Is More Important than Motif Specificity for Determining Heterogeneity of LC8 Binding
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeong, H.; Mason, S.P.; Barabási, A.-L.; Oltvai, Z.N. Lethality and Centrality in Protein Networks. Nature 2001, 411, 41–42. [Google Scholar] [CrossRef] [Green Version]
- Dunker, A.K.; Cortese, M.S.; Romero, P.; Iakoucheva, L.M.; Uversky, V.N. Flexible Nets. The Roles of Intrinsic Disorder in Protein Interaction Networks. FEBS J. 2005, 272, 5129–5148. [Google Scholar] [CrossRef]
- Jaspers, P.; Blomster, T.; Brosche, M.; Salojarvi, J.; Ahlfors, R.; Vainonen, J.P.; Reddy, R.A.; Immink, R.; Angenent, G.; Turck, F.; et al. Unequally Redundant RCD1 and SRO1 Mediate Stress and Developmental Responses and Interact with Transcription Factors. Plant J. 2009, 60, 268–279. [Google Scholar] [CrossRef]
- Cino, E.A.; Killoran, R.C.; Karttunen, M.; Choy, W.-Y. Binding of Disordered Proteins to a Protein Hub. Sci. Rep. 2013, 3, 2305. [Google Scholar] [CrossRef] [Green Version]
- Barbar, E. Dynein Light Chain LC8 Is a Dimerization Hub Essential in Diverse Protein Networks. Biochemistry 2008, 47, 503–508. [Google Scholar] [CrossRef]
- Uversky, V.N. Intrinsically Disordered Proteins and Their “Mysterious” (Meta)Physics. Front. Phys. 2019, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Van der Lee, R.; Buljan, M.; Lang, B.; Weatheritt, R.J.; Daughdrill, G.W.; Dunker, A.K.; Fuxreiter, M.; Gough, J.; Gsponer, J.; Jones, D.T.; et al. Classification of Intrinsically Disordered Regions and Proteins. Chem. Rev. 2014, 114, 6589–6631. [Google Scholar] [CrossRef]
- Baines, A.J.; Lu, H.-C.; Bennett, P.M. The Protein 4.1 Family: Hub Proteins in Animals for Organizing Membrane Proteins. Biochimica et Biophysica Acta (BBA)—Biomembranes 2014, 1838, 605–619. [Google Scholar] [CrossRef] [Green Version]
- Newman, R.A.; Van Scyoc, W.S.; Sorensen, B.R.; Jaren, O.R.; Shea, M.A. Interdomain Cooperativity of Calmodulin Bound to Melittin Preferentially Increases Calcium Affinity of Sites I and II. Proteins 2008, 71, 1792–1812. [Google Scholar] [CrossRef]
- Clark, S.; Myers, J.B.; King, A.; Fiala, R.; Novacek, J.; Pearce, G.; Heierhorst, J.; Reichow, S.L.; Barbar, E.J. Multivalency Regulates Activity in an Intrinsically Disordered Transcription Factor. eLife 2018, 7, e36258. [Google Scholar] [CrossRef]
- Forsythe, H.M.; Barbar, E. Chapter Seven—The Role of Dancing Duplexes in Biology and Disease. In Dancing Protein Clouds: Intrinsically Disordered Proteins in the Norm and Pathology, Part C; Uversky, V.N., Ed.; Progress in Molecular Biology and Translational Science; Academic Press: Cambridge, MA, USA, 2021; Volume 183, pp. 249–270. [Google Scholar]
- Barbar, E.; Nyarko, A. Polybivalency and Disordered Proteins in Ordering Macromolecular Assemblies. Semin. Cell Dev. Biol. 2015, 37, 20–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, S.A.; Jespersen, N.; Woodward, C.; Barbar, E. Multivalent IDP Assemblies: Unique Properties of LC8-Associated, IDP Duplex Scaffolds. FEBS Lett. 2015, 589, 2543–2551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jespersen, N.; Barbar, E. Emerging Features of Linear Motif-Binding Hub Proteins. Trends Biochem. Sci. 2020, 45, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Jespersen, N.; Estelle, A.; Waugh, N.; Davey, N.E.; Blikstad, C.; Ammon, Y.-C.; Akhmanova, A.; Ivarsson, Y.; Hendrix, D.A.; Barbar, E. Systematic Identification of Recognition Motifs for the Hub Protein LC8. Life Sci. Alliance 2019, 2, e201900366. [Google Scholar] [CrossRef] [PubMed]
- McGuffin, L.J.; Bryson, K.; Jones, D.T. The PSIPRED Protein Structure Prediction Server. Bioinformatics 2000, 16, 404–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonnell, A.V.; Jiang, T.; Keating, A.E.; Berger, B. Paircoil2: Improved Prediction of Coiled Coils from Sequence. Bioinformatics 2006, 22, 356–358. [Google Scholar] [CrossRef] [Green Version]
- Fejtova, A.; Davydova, D.; Bischof, F.; Lazarevic, V.; Altrock, W.D.; Romorini, S.; Schöne, C.; Zuschratter, W.; Kreutz, M.R.; Garner, C.C.; et al. Dynein Light Chain Regulates Axonal Trafficking and Synaptic Levels of Bassoon. J. Cell Biol. 2009, 185, 341–355. [Google Scholar] [CrossRef]
- Howe, J.; Weeks, A.; Reardon, P.; Barbar, E. Multivalent Binding of the Hub Protein LC8 at a Newly Discovered Site in 53BP1. Biophys. J. 2022, 121, 4433–4442. [Google Scholar] [CrossRef]
- Nyarko, A.; Song, Y.; Nováček, J.; Žídek, L.; Barbar, E. Multiple Recognition Motifs in Nucleoporin Nup159 Provide a Stable and Rigid Nup159-Dyn2 Assembly. J. Biol. Chem. 2013, 288, 2614–2622. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Crespo, I.; Yélamos, B.; Roncal, F.; Albar, J.P.; Ortiz de Montellano, P.R.; Gavilanes, F. Identification of Novel Cellular Proteins That Bind to the LC8 Dynein Light Chain Using a Pepscan Technique. FEBS Lett. 2001, 503, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Rapali, P.; García-Mayoral, M.F.; Martínez-Moreno, M.; Tárnok, K.; Schlett, K.; Albar, J.P.; Bruix, M.; Nyitray, L.; Rodriguez-Crespo, I. LC8 Dynein Light Chain (DYNLL1) Binds to the C-Terminal Domain of ATM-Interacting Protein (ATMIN/ASCIZ) and Regulates Its Subcellular Localization. Biochem. Biophys. Res. Commun. 2011, 414, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Dunsch, A.K.; Hammond, D.; Lloyd, J.; Schermelleh, L.; Gruneberg, U.; Barr, F.A. Dynein Light Chain 1 and a Spindle-Associated Adaptor Promote Dynein Asymmetry and Spindle Orientation. J. Cell Biol. 2012, 198, 1039–1054. [Google Scholar] [CrossRef] [Green Version]
- Eastwood, E.L.; Jara, K.A.; Bornelöv, S.; Munafò, M.; Frantzis, V.; Kneuss, E.; Barbar, E.J.; Czech, B.; Hannon, G.J. Dimerisation of the PICTS Complex via LC8/Cut-up Drives Co-Transcriptional Transposon Silencing in Drosophila. eLife 2021, 10, e65557. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.; Karplus, P.A.; Barbar, E. Multivalency in the Assembly of Intrinsically Disordered Dynein Intermediate Chain. J. Biol. Chem. 2009, 284, 33115–33121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.; Diener, D.R.; Sivadas, P.; Rosenbaum, J.L.; Yang, P. The Versatile Molecular Complex Component LC8 Promotes Several Distinct Steps of Flagellar Assembly. J. Cell Biol. 2012, 198, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Zaytseva, O.; Tenis, N.; Mitchell, N.; Kanno, S.; Yasui, A.; Heierhorst, J.; Quinn, L.M. The Novel Zinc Finger Protein DASCIZ Regulates Mitosis in Drosophila via an Essential Role in Dynein Light-Chain Expression. Genetics 2014, 196, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Clark, S.; Nyarko, A.; Löhr, F.; Karplus, P.A.; Barbar, E. The Anchored Flexibility Model in LC8 Motif Recognition: Insights from the Chica Complex. Biochemistry 2016, 55, 199–209. [Google Scholar] [CrossRef]
- Reardon, P.N.; Jara, K.A.; Rolland, A.D.; Smith, D.A.; Hoang, H.T.M.; Prell, J.S.; Barbar, E.J. The Dynein Light Chain 8 (LC8) Binds Predominantly “in-Register” to a Multivalent Intrinsically Disordered Partner. J. Biol. Chem. 2020, 295, 4912–4922. [Google Scholar] [CrossRef]
- Nyarko, A.; Hare, M.; Hays, T.S.; Barbar, E. The Intermediate Chain of Cytoplasmic Dynein Is Partially Disordered and Gains Structure upon Binding to Light-Chain LC8. Biochemistry 2004, 43, 15595–15603. [Google Scholar] [CrossRef]
- Petryszak, R.; Keays, M.; Tang, Y.A.; Fonseca, N.A.; Barrera, E.; Burdett, T.; Füllgrabe, A.; Fuentes, A.M.-P.; Jupp, S.; Koskinen, S.; et al. Expression Atlas Update—an Integrated Database of Gene and Protein Expression in Humans, Animals and Plants. Nucleic Acids Res. 2016, 44, D746–D752. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-M.; Gerwin, C.; Sheng, Z.-H. Dynein Light Chain LC8 Regulates Syntaphilin-Mediated Mitochondrial Docking in Axons. J. Neurosci. 2009, 29, 9429–9438. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Olson, J.R.; Rasoloson, D.; Ellenbecker, M.; Bailey, J.; Voronina, E. LC8 Dynein Light Chain Promotes Localization and Function of PUF Protein FBF-2 in Germline Progenitor Cells. Development 2016, dev.140921. [Google Scholar] [CrossRef] [Green Version]
- Makokha, M.; Hare, M.; Li, M.; Hays, T.; Barbar, E. Interactions of Cytoplasmic Dynein Light Chains Tctex-1 and LC8 with the Intermediate Chain IC74. Biochemistry 2002, 41, 4302–4311. [Google Scholar] [CrossRef] [Green Version]
- Nyarko, A.; Barbar, E. Light Chain-Dependent Self-Association of Dynein Intermediate Chain. J. Biol. Chem. 2011, 286, 1556–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raux, H.; Flamand, A.; Blondel, D. Interaction of the Rabies Virus P Protein with the LC8 Dynein Light Chain. J. Virol. 2000, 74, 10212–10216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jespersen, N.E.; Leyrat, C.; Gérard, F.C.; Bourhis, J.-M.; Blondel, D.; Jamin, M.; Barbar, E. The LC8-RavP Ensemble Structure Evinces A Role for LC8 in Regulating Lyssavirus Polymerase Functionality. J. Mol. Biol. 2019, 431, 4959–4977. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez Galvan, J.; Donner, B.; Veseley, C.H.; Reardon, P.; Forsythe, H.M.; Howe, J.; Fujimura, G.; Barbar, E. Human Parainfluenza Virus 3 Phosphoprotein Is a Tetramer and Shares Structural and Interaction Features with Ebola Phosphoprotein VP35. Biomolecules 2021, 11, 1603. [Google Scholar] [CrossRef] [PubMed]
- Jurado, S.; Gleeson, K.; O’Donnell, K.; Izon, D.J.; Walkley, C.R.; Strasser, A.; Tarlinton, D.M.; Heierhorst, J. The Zinc-Finger Protein ASCIZ Regulates B Cell Development via DYNLL1 and Bim. J. Exp. Med. 2012, 209, 1629–1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurado, S.; Conlan, L.A.; Baker, E.K.; Ng, J.-L.; Tenis, N.; Hoch, N.C.; Gleeson, K.; Smeets, M.; Izon, D.; Heierhorst, J. ATM Substrate Chk2-Interacting Zn2+ Finger (ASCIZ) Is a Bi-Functional Transcriptional Activator and Feedback Sensor in the Regulation of Dynein Light Chain (DYNLL1) Expression. J. Biol. Chem. 2012, 287, 3156–3164. [Google Scholar] [CrossRef] [Green Version]
- Rapali, P.; Radnai, L.; Süveges, D.; Harmat, V.; Tölgyesi, F.; Wahlgren, W.Y.; Katona, G.; Nyitray, L.; Pál, G. Directed Evolution Reveals the Binding Motif Preference of the LC8/DYNLL Hub Protein and Predicts Large Numbers of Novel Binders in the Human Proteome. PLoS ONE 2011, 6, e18818. [Google Scholar] [CrossRef] [Green Version]
- King, A.; Hoch, N.C.; McGregor, N.E.; Sims, N.A.; Smyth, I.M.; Heierhorst, J. Dynll1 Is Essential for Development and Promotes Endochondral Bone Formation by Regulating Intraflagellar Dynein Function in Primary Cilia. Hum. Mol. Genet. 2019, 28, 2573–2588. [Google Scholar] [CrossRef] [PubMed]
- Jurado, S.; Smyth, I.; van Denderen, B.; Tenis, N.; Hammet, A.; Hewitt, K.; Ng, J.-L.; McNees, C.J.; Kozlov, S.V.; Oka, H.; et al. Dual Functions of ASCIZ in the DNA Base Damage Response and Pulmonary Organogenesis. PLoS Genet 2010, 6, e1001170. [Google Scholar] [CrossRef]
- Schuck, P. Size-Distribution Analysis of Macromolecules by Sedimentation Velocity Ultracentrifugation and Lamm Equation Modeling. Biophys. J. 2000, 78, 1606–1619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harding, S.E.; Rowe, A.J.; Horton, J.C. Analytical Ultracentrifugation in Biochemistry and Polymer Science. 1992. Available online: https://www.sciencedirect.com/science/article/abs/pii/0003267095904018?via%3Dihub (accessed on 15 January 2023).
- MicroCal. ITC Data Analysis in Origin: Tutorial Guide; MicroCal, LLC: Northampton, MS, USA, 2004. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walker, D.R.; Jara, K.A.; Rolland, A.D.; Brooks, C.; Hare, W.; Swansiger, A.K.; Reardon, P.N.; Prell, J.S.; Barbar, E.J. Linker Length Drives Heterogeneity of Multivalent Complexes of Hub Protein LC8 and Transcription Factor ASCIZ. Biomolecules 2023, 13, 404. https://doi.org/10.3390/biom13030404
Walker DR, Jara KA, Rolland AD, Brooks C, Hare W, Swansiger AK, Reardon PN, Prell JS, Barbar EJ. Linker Length Drives Heterogeneity of Multivalent Complexes of Hub Protein LC8 and Transcription Factor ASCIZ. Biomolecules. 2023; 13(3):404. https://doi.org/10.3390/biom13030404
Chicago/Turabian StyleWalker, Douglas R., Kayla A. Jara, Amber D. Rolland, Coban Brooks, Wendy Hare, Andrew K. Swansiger, Patrick N. Reardon, James S. Prell, and Elisar J. Barbar. 2023. "Linker Length Drives Heterogeneity of Multivalent Complexes of Hub Protein LC8 and Transcription Factor ASCIZ" Biomolecules 13, no. 3: 404. https://doi.org/10.3390/biom13030404
APA StyleWalker, D. R., Jara, K. A., Rolland, A. D., Brooks, C., Hare, W., Swansiger, A. K., Reardon, P. N., Prell, J. S., & Barbar, E. J. (2023). Linker Length Drives Heterogeneity of Multivalent Complexes of Hub Protein LC8 and Transcription Factor ASCIZ. Biomolecules, 13(3), 404. https://doi.org/10.3390/biom13030404