Taste Compounds and Polyphenolic Profile of Tomato Varieties Cultivated with Beneficial Microorganisms: A Chemical Investigation on Nutritional Properties and Sensory Qualities
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. Tomato Cultivation and Harvesting
2.3. Sample Preparation
2.4. Polyphenols
2.4.1. LC–MS/MS Analysis of Polyphenols
2.4.2. Isolation of Naringenin Chalcone
2.5. Taste Components
2.5.1. Extraction of Glutamic and Aspartic Acids
2.5.2. HPLC Quantitative Analysis of Glutamic and Aspartic Acids
2.5.3. Extraction of AMP and GMP
2.5.4. HPLC Quantitative Analysis of AMP and GMP
2.6. Statistical Analysis
3. Results and Discussion
3.1. Identification of Polyphenols in SMC3, CO and BW Varieties of Tomato
3.2. Composition Analysis of Polyphenols in SMC3, CO and BW Varieties of Tomato
3.3. Influence of EM Technology on the Umami-Tasting Components of Tomatoes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perveen, R.; Suleria, H.A.R.; Anjum, F.M.; Butt, M.S.; Pasha, I.; Ahmad, S. Tomato (Solanum lycopersicum) Carotenoids and Lycopenes Chemistry; Metabolism, Absorption, Nutrition, and Allied Health Claims—A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 919–929. [Google Scholar] [CrossRef]
- Paolo, D.; Bianchi, G.; Lo Scalzo, R.; Morelli, C.F.; Rabuffetti, M.; Speranza, G. The chemistry behind tomato quality. Nat. Prod. Commun. 2018, 13, 1225–1232. [Google Scholar] [CrossRef] [Green Version]
- Barone, D.; Cito, L.; Tommonaro, G.; Abate, A.A.; Penon, D.; De Prisco, R.; Penon, A.; Forte, I.M.; Benedetti, E.; Cimini, A.; et al. Antitumoral potential, antioxidant activity and carotenoid content of two Southern Italy tomato cultivars extracts: San Marzano and Corbarino. J. Cell. Physiol. 2018, 233, 1266–1277. [Google Scholar] [CrossRef] [PubMed]
- Strazzullo, G.; De Giulio, A.; Tommonaro, G.; La Pastina, C.; Poli, A.; Nicolaus, B.; De Prisco, R.; Saturnino, C. Antioxidative Activity and Lycopene and β-Carotene Contents in Different Cultivars of Tomato (Lycopersicon Esculentum). Int. J. Food Prop. 2007, 10, 321–329. [Google Scholar] [CrossRef] [Green Version]
- Tommonaro, G.; de Prisco, R.; Abbamondi, G.R.; Marzocco, S.; Saturnino, C.; Poli, A.; Nicolaus, B. Evaluation of Antioxidant Properties, Total Phenolic Content, and Biological Activities of New Tomato Hybrids of Industrial Interest. J. Med. Food 2012, 15, 483–489. [Google Scholar] [CrossRef]
- Gonzali, S.; Perata, P. Anthocyanins from Purple Tomatoes as Novel Antioxidants to Promote Human Health. Antioxidants 2020, 9, 1017. [Google Scholar] [CrossRef] [PubMed]
- Martí, R.; Roselló, S.; Cebolla-Cornejo, J. Tomato as a Source of Carotenoids and Polyphenols Targeted to Cancer Prevention. Cancers 2016, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Tommonaro, G.; Abbamondi, G.R.; Nicolaus, B.; Poli, A.; D’Angelo, C.; Iodice, C.; De Prisco, R. Productivity and Nutritional Trait Improvements of Different Tomatoes Cultivated with Effective Microorganisms Technology. Agriculture 2021, 11, 112. [Google Scholar] [CrossRef]
- Tommonaro, G.; Speranza, G.; De Prisco, R.; Iodice, C.; Crudele, E.; Abbamondi, G.R.; Nicolaus, B. Antioxidant activity and bioactive compound contents before and after in vitro digestion of new tomato hybrids. J. Sci. Food Agric. 2017, 97, 5241–5246. [Google Scholar] [CrossRef]
- Fraser, P.D.; Enfissi, E.M.A.; Halket, J.M.; Truesdale, M.R.; Yu, D.; Gerrish, C.; Bramley, P.M. Manipulation of Phytoene Levels in Tomato Fruit: Effects on Isoprenoids, Plastids, and Intermediary Metabolism. Plant Cell 2007, 19, 3194. [Google Scholar] [CrossRef]
- Alexander, L. Ethylene biosynthesis and action in tomato: A model for climacteric fruit ripening. J. Exp. Bot. 2002, 53, 2039–2055. [Google Scholar] [CrossRef] [PubMed]
- Giovannoni, J.J. Genetic Regulation of Fruit Development and Ripening. Plant Cell 2004, 16, S170–S180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbamondi, G.R.; Tommonaro, G.; Weyens, N.; Thijs, S.; Sillen, W.; Gkorezis, P.; Iodice, C.; de Melo Rangel, W.; Nicolaus, B.; Vangronsveld, J. Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chem. Biol. Technol. Agric. 2016, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Hozzein, W.N.; Abuelsoud, W.; Wadaan, M.A.M.; Shuikan, A.M.; Selim, S.; Al Jaouni, S.; AbdElgawad, H. Exploring the potential of actinomycetes in improving soil fertility and grain quality of economically important cereals. Sci. Total Environ. 2019, 651, 2787–2798. [Google Scholar] [CrossRef] [PubMed]
- Helaly, A.A.; Mady, E.; Salem, E.A.; Randhir, T.O. Stimulatory effects of growth-promoting bacteria on growth, nutritional composition, and yield of kale plants. J. Plant Nutr. 2022, 45, 2465–2477. [Google Scholar] [CrossRef]
- Higa, T.; Parr, J.F. Beneficial and effective for a sustainable agriculture. Agriculture 1994, 808, 1–16. [Google Scholar]
- Xu, H.L.; Wang, R.; Mridha, M.A.U. Effects of organic fertilizers and a microbial inoculant on leaf photosynthesis and fruit yield and quality of tomato plants. J. Crop Prod. 2000, 3, 173–182. [Google Scholar] [CrossRef]
- Hu, C.; Qi, Y. Long-term effective microorganisms application promote growth and increase yields and nutrition of wheat in China. Eur. J. Agron. 2013, 46, 63–67. [Google Scholar] [CrossRef]
- Kusznierewicz, B.; Lewandowska, A.; Martysiak-Żurowska, D.; Bartoszek, A. The influence of plant protection by effective microorganisms on the content of bioactive phytochemicals in apples. J. Sci. Food Agric. 2017, 97, 3937–3947. [Google Scholar] [CrossRef]
- Frusciante, L.; Carli, P.; Ercolano, M.R.; Pernice, R.; Di Matteo, A.; Fogliano, V.; Pellegrini, N. Antioxidant nutritional quality of tomato. Mol. Nutr. Food Res. 2007, 51, 609–617. [Google Scholar] [CrossRef]
- Sorrequieta, A.; Ferraro, G.; Boggio, S.B.; Valle, E.M. Free amino acid production during tomato fruit ripening: A focus on L-glutamate. Amino Acids 2010, 38, 1523–1532. [Google Scholar] [CrossRef] [PubMed]
- Ghirri, A.; Bignetti, E. Occurrence and role of umami molecules in foods. Int. J. Food Sci. Nutr. 2012, 63, 871–881. [Google Scholar] [CrossRef] [PubMed]
- Yahia, I.B.H.; Zaouali, Y.; Ciavatta, M.L.; Ligresti, A.; Jaouadi, R.; Boussaid, M.; Cutignano, A. Polyphenolic profiling, quantitative assessment and biological activities of tunisian native Mentha rotundifolia (L.) Huds. Molecules 2019, 24, 2351. [Google Scholar] [CrossRef] [Green Version]
- Tommonaro, G.; Morelli, C.F.; Rabuffetti, M.; Nicolaus, B.; De Prisco, R.; Iodice, C.; Speranza, G. Determination of flavor-potentiating compounds in different Italian tomato varieties. J. Food Biochem. 2021, 45, e13736. [Google Scholar] [CrossRef]
- Oruna-Concha, M.-J.; Methven, L.; Blumenthal, H.; Young, C.; Mottram, D.S. Differences in Glutamic Acid and 5‘-Ribonucleotide Contents between Flesh and Pulp of Tomatoes and the Relationship with Umami Taste. J. Agric. Food Chem. 2007, 55, 5776–5780. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Romero, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Metabolite profiling and quantification of phenolic compounds in methanol extracts of tomato fruit. Phytochemistry 2010, 71, 1848–1864. [Google Scholar] [CrossRef] [PubMed]
- Vallverdú-Queralt, A.; Jáuregui, O.; Di Lecce, G.; Andrés-Lacueva, C.; Lamuela-Raventós, R.M. Screening of the polyphenol content of tomato-based products through accurate-mass spectrometry (HPLC–ESI-QTOF). Food Chem. 2011, 129, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Moco, S.; Bino, R.J.; Vorst, O.; Verhoeven, H.A.; De Groot, J.; Van Beek, T.A.; Vervoort, J.; Ric De Vos, C.H. A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol. 2006, 141, 1205–1218. [Google Scholar] [CrossRef] [Green Version]
- Anton, D.; Bender, I.; Kaart, T.; Roasto, M.; Heinonen, M.; Luik, A.; Püssa, T. Changes in Polyphenols Contents and Antioxidant Capacities of Organically and Conventionally Cultivated Tomato (Solanum lycopersicum L.) Fruits during Ripening. Int. J. Anal. Chem. 2017, 2017, 2367453. [Google Scholar] [CrossRef] [Green Version]
- Alarcón-Flores, M.I.; Romero-González, R.; Martínez Vidal, J.L.; Garrido Frenich, A. Multiclass Determination of Phenolic Compounds in Different Varieties of Tomato and Lettuce by Ultra High Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry. Int. J. Food Prop. 2016, 19, 494–507. [Google Scholar] [CrossRef]
- Hirai, S.; Kim, Y.I.; Goto, T.; Kang, M.S.; Yoshimura, M.; Obata, A.; Yu, R.; Kawada, T. Inhibitory effect of naringenin chalcone on inflammatory changes in the interaction between adipocytes and macrophages. Life Sci. 2007, 81, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- Escribano-Ferrer, E.; Queralt Regué, J.; Garcia-Sala, X.; Boix Montañés, A.; Lamuela-Raventos, R.M. In Vivo Anti-inflammatory and Antiallergic Activity of Pure Naringenin, Naringenin Chalcone, and Quercetin in Mice. J. Nat. Prod. 2019, 82, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Loa, J.; Chow, P.; Zhang, K. Studies of structure–activity relationship on plant polyphenol-induced suppression of human liver cancer cells. Cancer Chemother. Pharmacol. 2009, 63, 1007–1016. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Saluja, A.K. The Pharmacological Potential of Rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehelean, C.A.; Coricovac, D.; Pinzaru, I.; Marcovici, I.; Macasoi, I.G.; Semenescu, A.; Lazar, G.; Cinta Pinzaru, S.; Radulov, I.; Alexa, E.; et al. Rutin bioconjugates as potential nutraceutical prodrugs: An in vitro and in ovo toxicological screening. Front. Pharmacol. 2022, 13, 1000608. [Google Scholar] [CrossRef]
Compound | tR (min) | Measured m/z [M-H]− | Molecular Ion Formula | Calculated m/z [M-H]− | MS2 | SMC3 | SMC3 + EM | CO | CO + EM | BW | BW + EM |
---|---|---|---|---|---|---|---|---|---|---|---|
Caffeic acid hexoside I | 0.55 | 341.0868 | C15H17O9− | 341.0878 | 179,135 | 1.7 | 0.8 | 4.4 | 2.7 | 6.3 | 1.6 |
Caffeic acid hexoside II | 0.61 | 341.0868 | C15H17O9− | 341.0878 | 179,135 | 2.3 | 1.2 | 4.9 | 2.6 | 6.0 | 2.0 |
Caffeic acid hexoside III | 0.79 | 341.0868 | C15H17O9− | 341.0878 | 179,135 | 3.4 | 1.8 | 7.2 | 4.0 | 5.3 | 2.4 |
Chlorogenic acid * | 0.86 | 353.0869 | C16H17O9− | 353.0878 | 191, 173, 135 | 3.7 | 2.6 | 11.5 | 8.2 | 8.8 | 2.5 |
Caffeic acid * | 1.02 | 179.0335 | C9H7O4− | 179.0344 | 135 | 1.0 | 0.4 | 1.1 | 0.6 | 1.8 | 0.6 |
Rutin pentoside | 1.39 | 741.1904 | C32H37O20− | 741.1884 | 300 | 4.8 | 3.1 | 6.5 | 3.7 | 4.4 | 2.3 |
p-Coumaric acid * | 1.41 | 163.0385 | C9H7O3− | 163.0395 | 119 | 0.1 | 0.1 | 0.0 | 0.0 | 0.4 | 0.1 |
Rutin * | 1.53 | 609.1457 | C27H29O16− | 609.1461 | 300 | 25.1 | 20.5 | 25.1 | 21.0 | 43.6 | 56.4 |
Quercetin-3-O-glucoside * | 1.65 | 463.0874 | C21H19O12− | 463.0882 | 300 | 0.1 | 0.0 | 0.1 | 0.1 | 0.1 | 0.6 |
Dicaffeoyl-quinic acid I | 1.75 | 515.1184 | C25H23O12− | 515.1195 | 353, 173, 179 | 0.6 | 0.5 | 2.1 | 1.5 | 0.6 | 0.3 |
Kaempferol-rutinoside | 1.77 | 593.1501 | C27H29O15− | 593.1512 | 285 | 1.0 | 0.7 | 0.6 | 0.5 | 0.9 | 2.1 |
Dicaffeoyl-quinic acid II | 1.88 | 515.1184 | C25H23O12− | 515.1195 | 353, 191, 179 | 0.8 | 0.3 | 1.4 | 1.3 | 0.7 | 0.3 |
Dicaffeoyl-quinic acid III | 2.10 | 515.1184 | C25H23O12− | 515.1195 | 353, 173, 179 | 0.8 | 1.0 | 5.9 | 7.8 | 2.5 | 0.7 |
Naringenin hexoside | 2.33 | 433.1130 | C21H21O10− | 433.1140 | 271, 151, 119 | 3.2 | 1.4 | 1.4 | 1.1 | 1.1 | 1.8 |
Eriodictyol * | 2.70 | 287.0568 | C15H11O6− | 287.0561 | 151 | 3.2 | 2.0 | 0.8 | 0.4 | 0.3 | 0.5 |
Eriodictyol isomer | 2.87 | 287.0568 | C15H11O6− | 287.0561 | 151 | 0.9 | 1.5 | 0.3 | 0.3 | 0.1 | 0.3 |
Dicaffeoyl-quinic acid IV | 3.22 | 515.1184 | C25H23O12− | 515.1195 | 353, 173, 179 | 0.1 | 0.1 | 0.4 | 0.4 | 0.1 | 0.1 |
Tricaffeoyl-quinic acid | 3.23 | 677.1498 | C34H29O15− | 677.1512 | 515, 353, 191, 179, 173 | 3.1 | 2.1 | 8.7 | 9.6 | 2.5 | 1.4 |
Naringenin * | 3.53 | 271.0605 | C15H11O5− | 271.0612 | 151, 119 | 6.0 | 3.4 | 3.6 | 1.7 | 7.8 | 2.2 |
Naringenin calchone * | 3.63 | 271.0605 | C15H11O5− | 271.0612 | 151, 119 | 39.4 | 57.2 | 26.3 | 38.5 | 19.9 | 23.7 |
Hesperetin | 3.69 | 301.0707 | C16H13O6− | 301.0718 | 151 | 5.9 | 2.9 | 4.3 | 3.2 | 4.5 | 4.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morelli, C.F.; Cutignano, A.; Speranza, G.; Abbamondi, G.R.; Rabuffetti, M.; Iodice, C.; De Prisco, R.; Tommonaro, G. Taste Compounds and Polyphenolic Profile of Tomato Varieties Cultivated with Beneficial Microorganisms: A Chemical Investigation on Nutritional Properties and Sensory Qualities. Biomolecules 2023, 13, 117. https://doi.org/10.3390/biom13010117
Morelli CF, Cutignano A, Speranza G, Abbamondi GR, Rabuffetti M, Iodice C, De Prisco R, Tommonaro G. Taste Compounds and Polyphenolic Profile of Tomato Varieties Cultivated with Beneficial Microorganisms: A Chemical Investigation on Nutritional Properties and Sensory Qualities. Biomolecules. 2023; 13(1):117. https://doi.org/10.3390/biom13010117
Chicago/Turabian StyleMorelli, Carlo Francesco, Adele Cutignano, Giovanna Speranza, Gennaro Roberto Abbamondi, Marco Rabuffetti, Carmine Iodice, Rocco De Prisco, and Giuseppina Tommonaro. 2023. "Taste Compounds and Polyphenolic Profile of Tomato Varieties Cultivated with Beneficial Microorganisms: A Chemical Investigation on Nutritional Properties and Sensory Qualities" Biomolecules 13, no. 1: 117. https://doi.org/10.3390/biom13010117
APA StyleMorelli, C. F., Cutignano, A., Speranza, G., Abbamondi, G. R., Rabuffetti, M., Iodice, C., De Prisco, R., & Tommonaro, G. (2023). Taste Compounds and Polyphenolic Profile of Tomato Varieties Cultivated with Beneficial Microorganisms: A Chemical Investigation on Nutritional Properties and Sensory Qualities. Biomolecules, 13(1), 117. https://doi.org/10.3390/biom13010117