Changes in Serum N-Glycome for Risk Drinkers: A Comparison with Standard Markers for Alcohol Abuse in Men and Women
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Ethical Issues
2.3. Assessment of Smoking
2.4. Definition of Alcohol Risk Drinking
2.5. Serum Collection
2.6. Determination of Serum GGT, MCV and CDT
2.7. Serum N-Glycan Analyses
2.8. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Status Report on Alcohol and Health 2018; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Hannuksela, M.L.; Liisanantti, M.K.; Nissinen, A.; Savolainen, M.J. Biochemical markers of alcoholism. Clin. Chem. Lab. Med. (CCLM) 2007, 45, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Niemelä, O. Biomarkers in alcoholism. Clin. Chim. Acta 2007, 377, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Niemelä, O. Biomarker-Based Approaches for Assessing Alcohol Use Disorders. Int. J. Environ. Res. Public Heal. 2016, 13, 166. [Google Scholar] [CrossRef] [PubMed]
- Salaspuro, M. Carbohydrate-Deficient Transferrin as Compared to Other Markers of Alcoholism: A Systematic Review. Alcohol 1999, 19, 261–271. [Google Scholar] [CrossRef]
- Yersin, B.; Nicolet, J.; Decrey, H.; Burnier, M.; van Melle, G.; Pecoud, A. Screening for excessive alcohol drinking: Compa-ra-tive value of carbohydrate-deficient transferrin, γ-glutamyltransferase, and mean corpuscular volume. Arch. Intern. Med. 1995, 155, 1907–1911. [Google Scholar] [CrossRef]
- Reily, C.; Stewart, T.J.; Renfrow, M.B.; Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 2019, 15, 346–366. [Google Scholar] [CrossRef]
- Lauc, G.; Pezer, M.; Rudan, I.; Campbell, H. Mechanisms of disease: The human N-glycome. Biochim. et Biophys. Acta (BBA) - Gen. Subj. 2016, 1860, 1574–1582. [Google Scholar] [CrossRef] [Green Version]
- O’Flaherty, R.; Muniyappa, M.; Walsh, I.; Stöckmann, H.; Hilliard, M.; Hutson, R.; Saldova, R.; Rudd, P.M. A robust and ver-satile automated glycoanalytical technology for serum antibodies and acute phase proteins: Ovarian Cancer Case Study. Mol. Cell Proteomics 2019, 18, 2191–2206. [Google Scholar] [CrossRef]
- Kyselova, Z.; Mechref, Y.; Kang, P.; Goetz, J.A.; Dobrolecki, L.E.; Sledge, G.W.; Schnaper, L.; Hickey, R.J.; Malkas, L.H.; Novotny, M.V. Breast Cancer Diagnosis and Prognosis through Quantitative Measurements of Serum Glycan Profiles. Clin. Chem. 2008, 54, 1166–1175. [Google Scholar] [CrossRef] [Green Version]
- Saldova, R.; Fan, Y.; Fitzpatrick, J.M.; Watson, R.W.G.; Rudd, P.M. Core fucosylation and α2-3 sialylation in serum N-glycome is significantly increased in prostate cancer comparing to benign prostate hyperplasia. Glycobiology 2011, 21, 195–205. [Google Scholar] [CrossRef] [Green Version]
- Saldova, R.; Asadi Shehni, A.; Haakensen, V.D.; Steinfeld, I.; Hilliard, M.; Kifer, I.; Helland, A.; Yakhini, Z.; Børresen-Dale, A.L.; Rudd, P.M. Association of N-glycosylation with breast carcinoma and systemic features using high-resolution quanti-tative UPLC. J. Proteome Res. 2014, 13, 2314–2327. [Google Scholar] [CrossRef] [PubMed]
- (Saldova), R.F.; Haakensen, V.D.; Rødland, E.; Walsh, I.; Stockmann, H.; Engebraaten, O.; Børresen-Dale, A.-L.; Rudd, P.M. Serum N-glycome alterations in breast cancer during multimodal treatment and follow-up. Mol. Oncol. 2017, 11, 1361–1379. [Google Scholar] [CrossRef] [Green Version]
- Ding, N.; Nie, H.; Sun, X.; Sun, W.; Qu, Y.; Liu, X.; Yao, Y.; Liang, X.; Chen, C.C.; Li, Y. Human serum N-glycan profiles are age and sex dependent. Age Ageing 2011, 40, 568–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knežević, A.; Gornik, O.; Polašek, O.; Pučić, M.; Redžić, I.; Novokmet, M.; Rudd, P.M.; Wright, A.F.; Campbell, H.; Rudan, I.; et al. Effects of aging, body mass index, plasma lipid profiles, and smoking on human plasma N-glycans. Glycobiology 2010, 20, 959–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samraj, A.N.; Pearce, O.; Läubli, H.; Crittenden, A.N.; Bergfeld, A.K.; Banda, K.; Gregg, C.J.; Bingman, A.E.; Secrest, P.; Diaz, S.L.; et al. A red meat-derived glycan promotes inflammation and cancer progression. Proc. Natl. Acad. Sci. 2015, 112, 542–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stibler, H.; Borg, S.; Allgulander, C. Clinical Significance of Abnormal Heterogeneity of Transferrin in Relation to Alcohol Consumption. Acta Medica Scand. 1979, 206, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Clerc, F.; Reiding, K.R.; Jansen, B.C.; Lageveen-Kammeijer, G.; Bondt, A.; Wuhrer, M. Human plasma protein N-glycosylation. Glycoconj. J. 2016, 33, 309–343. [Google Scholar] [CrossRef] [Green Version]
- Helander, A.; Wielders, J.P.; te Stroet, R.; Bergström, J.P. Comparison of HPLC and capillary electrophoresis for confir-ma-tory testing of the alcohol misuse marker carbohydrate-deficient transferrin. Clin. Chem. 2005, 51, 1528–1531. [Google Scholar] [CrossRef] [Green Version]
- Lieber, C.S. Carbohydrate Deficient Transferrin in Alcoholic Liver Disease: Mechanisms and Clinical Implications. Alcohol 1999, 19, 249–254. [Google Scholar] [CrossRef]
- Casey, C.A.; Bhat, G.; Holzapfel, M.S.; Petrosyan, A. Study of Ethanol-Induced Golgi Disorganization Reveals the Potential Mechanism of Alcohol-Impaired N-Glycosylation. Alcohol. Clin. Exp. Res. 2016, 40, 2573–2590. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P.; Liu, Q.-H.; Lakshman, M. Long-term ethanol exposure impairs glycosylation of both N- and O-glycosylated proteins in rat liver. Metabolism 1995, 44, 890–898. [Google Scholar] [CrossRef]
- Gong, M.; Castillo, L.; Redman, R.S.; Garige, M.; Hirsch, K.; Azuine, M.; Amdur, R.L.; Seth, D.; Haber, P.S.; Lakshman, M.R. Down-regulation of liver Galbeta1, 4GlcNAc alpha2, 6-sialyltransferase gene by ethanol significantly correlates with al-co-holic steatosis in humans. Metabolism 2008, 57, 1663–1668. [Google Scholar] [CrossRef] [PubMed]
- Cummings, R.D.; Pierce, J.M. The Challenge and Promise of Glycomics. Chem. Biol. 2014, 21, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariño, K.; Bones, J.; Kattla, J.J.; Rudd, P.M. A systematic approach to protein glycosylation analysis: A path through the maze. Nat. Chem. Biol. 2010, 6, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Mariño, K.; Saldova, R.; Adamczyk, B.; Rudd, P.M.; Rauter, A. Changes in serum N-glycosylation profiles: Functional sig-nif-icance and potential for diagnostics. Carbohydr. Chem. 2012, 37, 57–93. [Google Scholar]
- Alende-Castro, V.; Alonso-Sampedro, M.; Vazquez-Temprano, N.; Tuñez, C.; Rey, D.; García-Iglesias, C.; Sopeña, B.; Gude, F.; Gonzalez-Quintela, A. Factors influencing erythrocyte sedimentation rate in adults: New evidence for an old test. Medicine 2019, 98, e16816. [Google Scholar] [CrossRef] [PubMed]
- Gual, A.; Martos, A.R.; Lligoña, A.; Llopis, J.J. Does the concept of a standard drink apply to viticultural societies? Alcohol Alcohol. 1999, 34, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Valladolid, G.R.; Vicedo, J.B.; Sánchez-Serrano, M.C.C.; Carrasco, J.S.-D. [Validation of the Alcohol Use Disorders Identification Test (AUDIT) in primary care]. Revista Clínica Española 1998, 198, 11–14. [Google Scholar]
- Gómez Arnáiz, A.; Conde Martela, A.; Aguiar Bautista, J.A.; Santana Montesdeoca, J.M.; Jorrín Moreno, A.; Betancor León, P. Diagnostic usefulness of Alcohol Use Disorders Identification Test (AUDIT) for detecting hazardous alcohol consumption in primary care settings. Med. Clin. 2001, 116, 121–124. [Google Scholar] [CrossRef]
- Pérula de Torres, L.A.; Fernández-García, J.A.; Arias-Vega, R.; Muriel-Palomino, M.; Márquez-Rebollo, E.; Ruiz-Moral, R. Validation of the AUDIT test for identifying risk consumption and alcohol use disorders in women. Aten. Primaria 2005, 36, 499–506. [Google Scholar] [CrossRef] [Green Version]
- Ashworth, M.; Gerada, C. ABC of mental health: Addiction and dependence II: Alcohol. BMJ 1997, 315, 358–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawson, D.A. Defining Risk Drinking. Alcohol Res. Heal. J. Natl. Inst. Alcohol Abus. Alcohol. 2011, 34, 144–156. [Google Scholar]
- Wood, A.M.; Kaptoge, S.; Butterworth, A.S.; Willeit, P.; Warnakula, S.; Bolton, T.; Paige, E.; Paul, D.S.; Sweeting, M.; Burgess, S.; et al. Risk thresholds for alcohol consumption: Combined analysis of indi-vidu-al-participant data for 599 912 current drinkers in 83 prospective studies. Lancet 2018, 391, 1513–1523. [Google Scholar] [CrossRef] [Green Version]
- Stöckmann, H.; O’Flaherty, R.; Adamczyk, B.; Saldova, R.; Rudd, P.M. Automated, high-throughput serum glycoprofiling platform. Integr. Biol. 2015, 7, 1026–1032. [Google Scholar] [CrossRef]
- Royle, L.; Campbell, M.P.; Radcliffe, C.M.; White, D.M.; Harvey, D.J.; Abrahams, J.L.; Kim, Y.G.; Henry, G.W.; Shadick, N.A.; Weinblatt, M.E.; et al. HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal. Biochem. 2008, 376, 1–12. [Google Scholar] [CrossRef]
- Cheng, K.; Zhou, Y.; Neelamegham, S. DrawGlycan-SNFG: A robust tool to render glycans and glycopeptides with frag-mentation information. Glycobiology 2016, 27, 200–205. [Google Scholar] [CrossRef] [Green Version]
- Neelamegham, S.; Aoki-Kinoshita, K.; Bolton, E.; Frank, M.; Lisacek, F.; Lütteke, T.; O’Boyle, N.; Packer, N.; Stanley, P.; Toukach, P.; et al. Updates to the Symbol Nomenclature for Glycans guidelines. Glycobiology 2019, 29, 620–624. [Google Scholar] [CrossRef]
- Zhao, S.; Walsh, I.; Abrahams, J.; Royle, L.; Nguyen-Khuong, T.; Spencer, D.; Fernandes, D.L.; Packer, N.; Rudd, P.M.; Campbell, M.P. GlycoStore: A database of retention properties for glycan analysis. Bioinformatics 2018, 34, 3231–3232. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Pinto, J.; Egozcue, J.J.; Pawlowsky-Glahn, V.; Paredes, R.; Noguera-Julian, M.; Calle, M.L. Balances: A New Perspective for Microbiome Analysis. mSystems 2018, 3, e00053-18. [Google Scholar] [CrossRef] [Green Version]
- Susin, A.; Wang, Y.; Cao, K.-A.L.; Calle, M.L. Variable selection in microbiome compositional data analysis. NAR Genom. Bioinform. 2020, 2, lqaa029. [Google Scholar] [CrossRef]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Müller, M. pROC: An open-source package for R and S+ to analyse and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, S.F. Women and alcohol use disorders. Harv. Rev. Psychiatry 2002, 10, 76–85. [Google Scholar] [CrossRef] [PubMed]
- McCrady, B.S.; Epstein, E.E.; Fokas, K.F. Treatment Interventions for women with alcohol use disorder. Alcohol Res. 2020, 40, 08. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Men | Women | ||||
---|---|---|---|---|---|---|
Non-Risk Drinkers (n = 535) | Risk Drinkers (n = 143) | p-Value | Non-Risk Drinkers (n = 788) | Risk Drinkers (n = 50) | p-Value | |
Age (years) | 53 (38–68) | 48 (37–59) | 0.002 | 53 (39–68) | 50 (42–58) | 0.226 |
Alcohol consumption (g/week) | 60 (10–140) | 320 (180–420) | <0.001 | 5 (0–30) | 180 (100–220) | <0.001 |
Smokers (%) | 107 (20.0) | 65 (45.5) | <0.001 | 107 (13.6) | 17 (34.0) | <0.001 |
Body mass index (kg/m2) | 28.2 (25.2–31.3) | 28.0 (25.3–31.3) | 0.723 | 27.3 (23.8–31.3) | 26.4 (23.3–31.5) | 0.498 |
Marker | Men | Women | ||||
---|---|---|---|---|---|---|
Non-Risk Drinkers (n = 535) | Risk Drinkers (n = 143) | p-Value | Non-Risk Drinkers (n = 788) | Risk Drinkers (n = 50) | p-Value | |
Serum GGT (IU/L) | 26 (17–42) | 40 (25–63) | <0.001 | 15 (11–23) | 21 (15–54) | <0.001 |
Increased GGT n (%) | 48 (9.0) | 26 (18.2) | 0.003 | 69 (8.8) | 16 (32.0) | <0.001 |
RBC MCV (fL) | 90 (87–93) | 91 (88–95) | <0.001 | 89 (86–92) | 91 (89–95) | 0.001 |
Increased MCV n (%) | 7 (1.3) | 10 (7.1) | <0.001 | 1 (0.1) | 5 (10.0) | <0.001 |
Serum CDT (%) | 0.7 (0.6–0.9) | 0.9 (0.7–1.7) | <0.001 | 0.6 (0.5–0.8) | 0.8 (0.6–0.9) | 0.004 |
Increased CDT n (%) | 30 (5.6) | 37 (25.9) | <0.001 | 4 (0.5) | 4 (8.0) | <0.001 |
Glycan Peak | Men | Women | ||||
---|---|---|---|---|---|---|
Non-Risk Drinkers (n = 535) | Risk Drinkers (n = 143) | p-Value | Non-Risk Drinkers (n = 788) | Risk Drinkers (n = 50) | p-Value | |
GP1 (%) | 0.12 (0.08–0.17) | 0.10 (0.08–0.15) | 0.096 | 0.11 (0.07–0.16) | 0.10 (0.08–0.16) | 0.936 |
GP2 (%) | 0.04 (0.02–0.06) | 0.04 (0.03–0.06) | 0.078 | 0.03 (0.02–0.05) | 0.03 (0.02–0.05) | 0.721 |
GP3 (%) | 0.08 (0.05–0.13) | 0.07 (0.05–0.12) | 0.782 | 0.07 (0.05–0.12) | 0.07 (0.04–0.09) | 0.520 |
GP4 (%) | 0.06 (0.04–0.10) | 0.05 (0.04–0.09) | 0.236 | 0.06 (0.04–0.10) | 0.06 (0.04–0.11) | 0.871 |
GP5 (%) | 2.41 (1.77–3.49) | 2.12 (1.59–2.98) | 0.010 | 2.25 (1.59–3.36) | 2.04 (1.41–3.33) | 0.317 |
GP6 (%) | 1.04 (0.80–1.45) | 0.96 (0.79–1.27) | 0.077 | 1.03 (0.82–1.39) | 1.00 (0.79–1.67) | 0.732 |
GP7 (%) | 0.09 (0.06–0.13) | 0.09 (0.06–0.11) | 0.409 | 0.09 (0.07–0.13) | 0.09 (0.07–0.14) | 0.835 |
GP8 (%) | 1.95 (1.55–2.62) | 1.72 (1.41–2.25) | 0.003 | 1.92 (1.57–2.51) | 1.60 (1.31–2.21) | 0.016 |
GP9 (%) | 1.09 (0.83–1.45) | 0.93 (0.75–1.20) | <0.001 | 1.05 (0.82–1.35) | 0.91 (0.75–1.12) | 0.029 |
GP10 (%) | 0.66 (0.52–0.90) | 0.62 (0.48–0.78) | 0.026 | 0.68 (0.55–0.86) | 0.62 (0.52–0.99) | 0.515 |
GP11 (%) | 0.58 (0.48–0.72) | 0.54 (0.43–0.65) | 0.003 | 0.58 (0.48–0.70) | 0.55 (0.47–0.73) | 0.875 |
GP12 (%) | 0.31 (0.23–0.40) | 0.29 (0.23–0.38) | 0.095 | 0.32 (0.24–0.42) | 0.31 (0.23–0.40) | 0.456 |
GP13 (%) | 0.08 (0.05–0.10) | 0.08 (0.05–0.10) | 0.603 | 0.07 (0.06–0.10) | 0.08 (0.05–0.10) | 0.869 |
GP14 (%) | 2.74 (2.25–3.33) | 2.56 (2.12–3.16) | 0.080 | 2.79 (2.25–3.48) | 2.53 (1.96–3.31) | 0.049 |
GP15 (%) | 0.49 (0.40–0.61) | 0.46 (0.39–0.56) | 0.078 | 0.51 (0.40–0.63) | 0.50 (0.41–0.67) | 0.702 |
GP16 (%) | 1.00 (0.87–1.15) | 0.99 (0.89–1.15) | 0.772 | 1.04 (0.90–1.20) | 1.11 (0.97–1.19) | 0.158 |
GP17 (%) | 1.07 (0.88–1.23) | 1.03 (0.89–1.20) | 0.419 | 1.03 (0.87–1.19) | 1.02 (0.82–1.20) | 0.458 |
GP18 (%) | 0.17 (0.13–0.21) | 0.16 (0.13–0.20) | 0.167 | 0.18 (0.13–0.22) | 0.16 (0.12–0.21) | 0.056 |
GP19 (%) | 7.42 (6.87–8.11) | 7.58 (6.90–8.16) | 0.548 | 7.53 (6.90–8.15) | 7.75 (7.04–8.16) | 0.454 |
GP20 (%) | 0.65 (0.57–0.61) | 0.64 (0.58–0.70) | 0.705 | 0.64 (0.57–0.71) | 0.64 (0.57–0.72) | 0.728 |
GP21 (%) | 1.28 (1.11–1.48) | 1.35 (1.17–1.54) | 0.017 | 1.27 (1.10–1.43) | 1.29 (1.10–1.47) | 0.560 |
GP22 (%) | 6.00 (5.26–6.83) | 5.92 (5.21–6.78) | 0.474 | 5.97 (5.23–7.17) | 5.60 (4.98–6.92) | 0.200 |
GP23 (%) | 2.65 (2.16–3.29) | 2.61 (2.24–3.40) | 0.724 | 2.81 (2.33–3.52) | 3.06 (2.60–3.92) | 0.023 |
GP24 (%) | 4.38 (3.92–4.92) | 4.54 (4.03–4.96) | 0.230 | 4.50 (4.02–4.99) | 4.41 (3.99–5.03) | 0.639 |
GP25 (%) | 31.8 (29.2–33.8) | 31.3 (29.0–33.7) | 0.259 | 31.3 (29.2–33.2) | 31.5 (28.2–32.9) | 0.482 |
GP26 (%) | 1.39 (1.22–1.59) | 1.43 (1.27–1.63) | 0.113 | 1.41 (1.23–1.59) | 1.41 (1.22–1.58) | 0.735 |
GP27 (%) | 5.55 (4.77–6.36) | 5.41 (4.63–6.21) | 0.234 | 5.29 (4.62–5.97) | 5.17 (4.53–5.58) | 0.196 |
GP28 (%) | 3.19 (2.66–3.81) | 3.26 (2.87–4.16) | 0.035 | 3.11 (2.65–3.64) | 3.36 (2.77–4.03) | 0.049 |
GP29 (%) | 1.69 (1.42–1.94) | 1.82 (1.53–2.06) | 0.005 | 1.88 (1.62–2.09) | 1.95 (1.69–2.31) | 0.043 |
GP30 (%) | 0.27 (0.22–0.34) | 0.30 (0.25–0.35) | 0.008 | 0.31 (0.25–0.36) | 0.33 (0.24–0.37) | 0.945 |
GP31 (%) | 0.96 (0.83–1.14) | 1.07 (0.89–1.25) | <0.001 | 1.10 (0.94–1.26) | 1.14 (0.91–1.31) | 0.674 |
GP32 (%) | 0.65 (0.54–0.75) | 0.70 (0.57–0.85) | 0.007 | 0.58 (0.47–0.69) | 0.59 (0.47–0.73) | 0.590 |
GP33 (%) | 0.88 (0.74–1.04) | 0.97 (0.83–1.14) | <0.001 | 0.98 (0.84–1.14) | 1.02 (0.90–1.20) | 0.187 |
GP34 (%) | 5.38 (4.34–6.52) | 5.93 (4.90–7.17) | 0.001 | 6.54 (5.44–7.59) | 6.53 (5.67–7.42) | 0.970 |
GP35 (%) | 0.46 (0.37–0.55) | 0.48 (0.38–0.58) | 0.126 | 0.42 (0.34–0.51) | 0.47 (0.36–0.56) | 0.099 |
GP36 (%) | 0.50 (0.40–0.61) | 0.51 (0.44–0.61) | 0.405 | 0.62 (0.50–0.78) | 0.62 (0.48–0.77) | 0.606 |
GP37 (%) | 1.66 (1.39–2.04) | 1.70 (1.41 (2.08) | 0.384 | 1.81 (1.49–2.19) | 1.77 (1.39–2.21) | 0.491 |
GP38 (%) | 3.76 (2.94–4.71) | 3.95 (2.94–5.18) | 0.260 | 2.70 (1.96–3.70) | 3.23 (2.15–4.17) | 0.070 |
GP39 (%) | 0.44 (0.37–0.51) | 0.45 (0.38–0.54) | 0.309 | 0.45 (0.38–0.55) | 0.46 (0.39–0.55) | 0.797 |
GP40 (%) | 0.44 (0.34–0.56) | 0.43 (0.33–0.60) | 0.494 | 0.38 (0.30–0.49) | 0.43 (0.29–0.53) | 0.273 |
GP41 (%) | 0.44 (0.37–0.51) | 0.46 (0.38–0.52) | 0.131 | 0.45 (0.37–0.53) | 0.44 (0.39–0.54) | 0.751 |
GP42 (%) | 0.25 (0.20–0.33) | 0.28 (0.22–0.35) | 0.016 | 0.29 (0.23–0.37) | 0.29 (0.22–0.38) | 0.984 |
GP43 (%) | 0.39 (0.33–0.47) | 0.41 (0.36–0.46) | 0.166 | 0.43 (0.36–0.50) | 0.42 (0.38–0.51) | 0.939 |
GP44 (%) | 0.22 (0.18–0.27) | 0.23 (0.18–0.28) | 0.262 | 0.21 (0.17–0.26) | 0.22 (0.17–0.28) | 0.939 |
GP45 (%) | 0.27 (0.22–0.33) | 0.27 (0.21–0.33) | 0.890 | 0.22 (0.17–0.28) | 0.23 (0.17–0.31) | 0.506 |
GP46 (%) | 0.17 (0.12–0.24) | 0.17 (0.13–0.24) | 0.526 | 0.15 (0.10–0.20) | 0.17 (0.12–0.23) | 0.155 |
Glycan Group | Men | Women | ||||
---|---|---|---|---|---|---|
Non-Risk Drinkers (n = 535) | Risk Drinkers (n = 143) | p-Value | Non-Risk Drinkers (n = 788) | Risk Drinkers (n = 50) | p-Value | |
G0 (%) | 3.32 (2.54–4.66) | 2.95 (2.30–3.98) | 0.014 | 3.15 (2.39–4.49) | 2.89 (2.07–4.73) | 0.337 |
G1 (%) | 7.06 (6.02–8.53) | 6.54 (5.82–7.75) | 0.010 | 6.99 (6.15–8.18) | 6.63 (5.65–7.81) | 0.126 |
G2 (%) | 68.3 (65.8–70.0) | 67.6 (65.4–69.8) | 0.185 | 67.7 (65.1–69.8) | 67.5 (64.1–70.6) | 0.951 |
G3 (%) | 12.2 (10.5–14.3) | 13.5 (11.9–15.2) | <0.001 | 14.1 (12.3–15.9) | 14.2 (12.5–15.5) | 0.736 |
G4 (%) | 6.72 (5.68–7.96) | 6.93 (5.61–8.74) | 0.162 | 5.81 (4.71–6.93) | 6.30 (4.96–7.61) | 0.141 |
S0 (%) | 12.0 (9.78–15.2) | 10.7 (9.07–13.0) | 0.002 | 11.8 (10.0–14.5) | 10.4 (9.91–13.9) | 0.069 |
S1 (%) | 21.0 (19.1–22.5) | 20.9 (19.4–22.5) | 0.936 | 21.2 (19.6–23.0) | 21.7 (19.7–23.2) | 0.625 |
S2 (%) | 49.7 (47.4–51.7) | 50.0 (47.5–50.0) | 0.865 | 49.2 (47.0–51.0) | 49.7 (46.6–51.0) | 0.723 |
S3 (%) | 14.5 (12.8–16.2) | 15.5 (13.8–17.2) | <0.001 | 14.9 (13.2–16.6) | 14.8 (13.7–17.3) | 0.484 |
S4 (%) | 1.80 (1.51–2.13) | 1.85 (1.61–2.19) | 0.112 | 1.82 (1.48–2.12) | 1.87 (1.59–2.22) | 0.556 |
A1 (%) | 1.08 (0.94–1.23) | 1.10 (0.98–1.22) | 0.159 | 1.06 (0.94–1.20) | 1.04 (0.90–1.35) | 0.913 |
A2 (%) | 78.2 (76.1–80.0) | 76.9 (75.3–79.2) | <0.001 | 77.5 (75.6–79.5) | 77.0 (74.2–79.2) | 0.196 |
A3 (%) | 11.0 (9.51–12.8) | 12.1 (10.5–13.5) | <0.001 | 12.7 (11.0–14.4) | 12.7 (11.4–13.8) | 0.986 |
A4 (%) | 6.72 (5.68–7.96) | 6.93 (5.61–8.74) | 0.162 | 5.81 (4.71–6.94) | 6.30 (4.96–7.61) | 0.141 |
OM (%) | 1.11 (0.92–1.44) | 1.02 (0.85–1.24) | 0.006 | 1.09 (0.92–1.39) | 1.04 (0.88–1.54) | 0.594 |
CF (%) | 30.7 (27.4–34.3) | 29.5 (26.4–33.2) | 0.071 | 30.4 (27.2–33.7) | 29.6 (26.8–33.2) | 0.557 |
OF (%) | 2.64 (2.26–3.06) | 2.72 (2.33–3.16) | 0.236 | 2.67 (2.28–3.13) | 2.63 (2.15–3.12) | 0.821 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Flaherty, R.; Simon, Á.; Alonso-Sampedro, M.; Sánchez-Batán, S.; Fernández-Merino, C.; Gude, F.; Saldova, R.; González-Quintela, A. Changes in Serum N-Glycome for Risk Drinkers: A Comparison with Standard Markers for Alcohol Abuse in Men and Women. Biomolecules 2022, 12, 241. https://doi.org/10.3390/biom12020241
O’Flaherty R, Simon Á, Alonso-Sampedro M, Sánchez-Batán S, Fernández-Merino C, Gude F, Saldova R, González-Quintela A. Changes in Serum N-Glycome for Risk Drinkers: A Comparison with Standard Markers for Alcohol Abuse in Men and Women. Biomolecules. 2022; 12(2):241. https://doi.org/10.3390/biom12020241
Chicago/Turabian StyleO’Flaherty, Róisín, Ádám Simon, Manuela Alonso-Sampedro, Sonia Sánchez-Batán, Carmen Fernández-Merino, Francisco Gude, Radka Saldova, and Arturo González-Quintela. 2022. "Changes in Serum N-Glycome for Risk Drinkers: A Comparison with Standard Markers for Alcohol Abuse in Men and Women" Biomolecules 12, no. 2: 241. https://doi.org/10.3390/biom12020241
APA StyleO’Flaherty, R., Simon, Á., Alonso-Sampedro, M., Sánchez-Batán, S., Fernández-Merino, C., Gude, F., Saldova, R., & González-Quintela, A. (2022). Changes in Serum N-Glycome for Risk Drinkers: A Comparison with Standard Markers for Alcohol Abuse in Men and Women. Biomolecules, 12(2), 241. https://doi.org/10.3390/biom12020241