Inflammatory Biomarkers in Addictive Disorders
Abstract
:1. Introduction
2. Methods
3. Cannabinoids
3.1. Endocannabinoid-Mediated Regulation of the Immune System
3.2. Consequences of Cannabis Use on Inflammatory Biomarkers
3.3. C-Reactive Protein (CRP)
4. Alcohol Use Disorder
4.1. Acute Drinking
4.2. Chronic Drinking
4.3. Withdrawal
4.4. Alcoholic Liver Disease
5. Opioid Use Disorder
5.1. Acute Opioid Administration
5.2. Chronic Opioid Administration
5.3. Opioid Withdrawal
6. Conclusions
7. Limitations of the Review
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- De Berardis, D.; Campanella, D.; Gambi, F.; La Rovere, R.; Carano, A.; Conti, C.M.; Sivestrini, C.; Serroni, N.; Piersanti, D.; Di Giuseppe, B.; et al. The role of C-reactive protein in mood disorders. Int. J. Immunopathol. Pharmacol. 2006, 19, 721–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orsolini, L.; Sarchione, F.; Vellante, F.; Fornaro, M.; Matarazzo, I.; Martinotti, G.; Valchera, A.; Di Nicola, M.; Carano, A.; Di Giannantonio, M.; et al. Protein-C Reactive as Biomarker Predictor of Schizophrenia Phases of Illness? A Systematic Review. Curr. Neuropharmacol. 2018, 16, 583–606. [Google Scholar] [CrossRef]
- Hsuchou, H.; Kastin, A.J.; Mishra, P.K.; Pan, W. C-reactive protein increases BBB permeability: Implications for obesity and neuroinflammation. Cell. Physiol. Biochem. 2012, 30, 1109–1119. [Google Scholar] [CrossRef] [Green Version]
- Najjar, S.; Pearlman, D.M.; Alper, K.; Najjar, A.; Devinsky, O. Neuroinflammation and psychiatric illness. J. Neuroinflammation 2013, 10, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, M.E.; Teixeira, A.L. Inflammation in psychiatric disorders: What comes first? Ann. N. Y. Acad. Sci. 2019, 1437, 57–67. [Google Scholar] [CrossRef]
- Erickson, E.K.; Grantham, E.K.; Warden, A.S.; Harris, R.A. Neuroimmune signaling in alcohol use disorder. Pharmacol. Biochem. Behav. 2019, 177, 34–60. [Google Scholar] [CrossRef]
- Churchward, M.A.; Michaud, E.R.; Todd, K.G. Supporting microglial niches for therapeutic benefit in psychiatric disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 94, 109648. [Google Scholar] [CrossRef]
- Jones, K.A.; Thomsen, C. The role of the innate immune system in psychiatric disorders. Mol. Cell. Neurosci. 2013, 53, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Nennig, S.E.; Schank, J.R. The Role of NFkB in Drug Addiction: Beyond Inflammation. Alcohol Alcohol. 2017, 52, 172–179. [Google Scholar] [CrossRef]
- Yang, X.P.; Albrecht, U.; Zakowski, V.; Sobota, R.M.; Haussinger, D.; Heinrich, P.C.; Ludwig, S.; Bode, J.G.; Schaper, F. Dual function of interleukin-1beta for the regulation of interleukin-6-induced suppressor of cytokine signaling 3 expression. J. Biol. Chem. 2004, 279, 45279–45289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilke, C.M.; Wei, S.; Wang, L.; Kryczek, I.; Kao, J.; Zou, W. Dual biological effects of the cytokines interleukin-10 and interferon-gamma. Cancer Immunol. Immunother. 2011, 60, 1529–1541. [Google Scholar] [CrossRef] [PubMed]
- Elwood, E.; Lim, Z.; Naveed, H.; Galea, I. The effect of systemic inflammation on human brain barrier function. Brain Behav. Immun. 2017, 62, 35–40. [Google Scholar] [CrossRef]
- Padovan, G.; Preteroti, R.; Bortolato, B.; Papaioannou, M.M.; Piva, G.; Magnolfi, G. High Sensitivity C-Reactive Protein as a Potential Biomarker of Neuroinflammation in Major Psychiatric Disorders. Curr. Psychiatry Rev. 2018, 14, 105–128. [Google Scholar] [CrossRef]
- Chen, G.Y.; Nunez, G. Sterile inflammation: Sensing and reacting to damage. Nat. Rev. Immunol. 2010, 10, 826–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franklin, T.C.; Xu, C.; Duman, R.S. Depression and sterile inflammation: Essential role of danger associated molecular patterns. Brain Behav. Immun. 2018, 72, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Brubaker, S.W.; Bonham, K.S.; Zanoni, I.; Kagan, J.C. Innate immune pattern recognition: A cell biological perspective. Annu. Rev. Immunol. 2015, 33, 257–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habib, N.; McCabe, C.; Medina, S.; Varshavsky, M.; Kitsberg, D.; Dvir-Szternfeld, R.; Green, G.; Dionne, D.; Nguyen, L.; Marshall, V.; et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Neurosci. 2020, 23, 701–706. [Google Scholar] [CrossRef]
- Keren-Shaul, H.; Spinrad, A.; Weiner, A.; Matcovitch-Natan, O.; Dvir-Szternfeld, R.; Ulland, T.K.; David, E.; Baruch, K.; Lara-Astaiso, D.; Toth, B.; et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. Cell 2017, 169, 1276–1290. [Google Scholar] [CrossRef]
- Schwabe, T.; Srinivasan, K.; Rhinn, H. Shifting paradigms: The central role of microglia in Alzheimer’s disease. Neurobiol. Dis. 2020, 143, 104962. [Google Scholar] [CrossRef]
- Shahidehpour, R.K.; Higdon, R.E.; Crawford, N.G.; Neltner, J.H.; Ighodaro, E.T.; Patel, E.; Price, D.; Nelson, P.T.; Bachstetter, A.D. Dystrophic microglia are associated with neurodegenerative disease and not healthy aging in the human brain. Neurobiol. Aging 2021, 99, 19–27. [Google Scholar] [CrossRef]
- Tancredi, V.; D’Antuono, M.; Café, C.; Giovedi, S.; Bue, M.C.; D’Arcangelo, G.; Onofri, F.; Benfenati, F. The inhibitory effects of interleukin-6 on synaptic plasticity in the rat hippocampus are associated with an inhibition of mitogen-activated protein kinase ERK. J. Neurochem. 2000, 75, 634–643. [Google Scholar] [CrossRef]
- Schneider, H.; Pitossi, F.; Balschun, D.; Wagner, A.; del Rey, A.; Besedovsky, H.O. A neuromodulatory role of interleukin-1 in the hippocampus. Proc. Natl. Acad. Sci. USA 1998, 95, 7778–7783. [Google Scholar] [CrossRef] [Green Version]
- Crews, F.T.; Walter, T.J.; Coleman, L.G., Jr.; Vetreno, R.P. Toll-like receptor signaling and stages of addiction. Psychopharmacology 2017, 234, 1483–1498. [Google Scholar] [CrossRef] [Green Version]
- Namba, M.D.; Leyrer-Jackson, J.M.; Nagy, E.K.; Olive, M.F.; Neisewander, J.L. Neuroimmune Mechanisms as Novel Treatment Targets for Substance Use Disorders and Associated Comorbidities. Front. Neurosci. 2021, 15. [Google Scholar] [CrossRef]
- Pascual, M.; Balino, P.; Alfonso-Loeches, S.; Aragon, C.M.; Guerri, C. Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage. Brain Behav. Immun. 2011, 25 (Suppl. 1), S80–S91. [Google Scholar] [CrossRef]
- Hutchinson, M.R.; Northcutt, A.L.; Hiranita, T.; Wang, X.; Lewis, S.S.; Thomas, J.; van Steeg, K.; Kopajtic, T.A.; Loram, L.C.; Sfregola, C.; et al. Opioid activation of toll-like receptor 4 contributes to drug reinforcement. J. Neurosci. 2012, 32, 11187–11200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, G.M.; Warden, A.S.; Bridges, C.R.; Blednov, Y.A.; Harris, R.A. Chronic ethanol consumption: Role of TLR3/TRIF-dependent signaling. Addict. Biol. 2018, 23, 889–903. [Google Scholar] [CrossRef] [Green Version]
- Coleman, L.G., Jr.; Zou, J.; Crews, F.T. Microglial-derived miRNA let-7 and HMGB1 contribute to ethanol-induced neurotoxicity via TLR7. J. Neuroinflamm. 2017, 14, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfonso-Loeches, S.; Urena-Peralta, J.; Morillo-Bargues, M.J.; Gomez-Pinedo, U.; Guerri, C. Ethanol-Induced TLR4/NLRP3 Neuroinflammatory Response in Microglial Cells Promotes Leukocyte Infiltration Across the BBB. Neurochem. Res. 2016, 41, 193–209. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gutierrez, M.S.; Navarrete, F.; Sala, F.; Gasparyan, A.; Austrich-Olivares, A.; Manzanares, J. Biomarkers in Psychiatry: Concept, Definition, Types and Relevance to the Clinical Reality. Front. Psychiatry 2020, 11, 432. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Baler, R.D.; Compton, W.M.; Weiss, S.R. Adverse health effects of marijuana use. N. Engl. J. Med. 2014, 370, 2219–2227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danovitch, I.; Gorelick, D.A. State of the art treatments for cannabis dependence. Psychiatr. Clin. N. Am. 2012, 35, 309–326. [Google Scholar] [CrossRef] [Green Version]
- UNODC. World Drug Report. 2021.
- Degenhardt, L.; Ferrari, A.J.; Calabria, B.; Hall, W.D.; Norman, R.E.; McGrath, J.; Flaxman, A.D.; Engell, R.E.; Freedman, G.D.; Whiteford, H.A.; et al. The global epidemiology and contribution of cannabis use and dependence to the global burden of disease: Results from the GBD 2010 study. PLoS ONE 2013, 8, e76635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munro, S.; Thomas, K.L.; Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993, 365, 61–65. [Google Scholar] [CrossRef]
- Onaivi, E.S.; Chaudhuri, G.; Abaci, A.S.; Parker, M.; Manier, D.H.; Martin, P.R.; Hubbard, J.R. Expression of cannabinoid receptors and their gene transcripts in human blood cells. Prog. Neuropsychopharmacol. Biol. Psychiatry 1999, 23, 1063–1077. [Google Scholar] [CrossRef]
- Almogi-Hazan, O.; Or, R. Cannabis, the Endocannabinoid System and Immunity-the Journey from the Bedside to the Bench and Back. Int. J. Mol. Sci. 2020, 21, 4448. [Google Scholar] [CrossRef]
- Lima, M.G.; Tardelli, V.S.; Brietzke, E.; Fidalgo, T.M. Cannabis and Inflammatory Mediators. Eur. Addict. Res. 2021, 27, 16–24. [Google Scholar] [CrossRef]
- Miller, H.P.; Bonawitz, S.C.; Ostrovsky, O. The effects of delta-9-tetrahydrocannabinol (THC) on inflammation: A review. Cell. Immunol. 2020, 352, 104111. [Google Scholar] [CrossRef]
- Klein, T.W.; Lane, B.; Newton, C.A.; Friedman, H. The cannabinoid system and cytokine network. Proc. Soc. Exp. Biol. Med. 2000, 225, 1–8. [Google Scholar] [CrossRef]
- Verhoeckx, K.C.; Korthout, H.A.; van Meeteren-Kreikamp, A.P.; Ehlert, K.A.; Wang, M.; van der Greef, J.; Rodenburg, J.T.R.; Witkamp, R.F. Unheated Cannabis sativa extracts and its major compound THC-acid have potential immuno-modulating properties not mediated by CB1 and CB2 receptor coupled pathways. Int. Immunopharmacol. 2006, 6, 656–665. [Google Scholar] [CrossRef]
- Klein, T.W. Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat. Rev. Immunol. 2005, 5, 400–411. [Google Scholar] [CrossRef] [PubMed]
- Moretti, S.; Castelli, M.; Franchi, S.; Raggi, M.A.; Mercolini, L.; Protti, M.; Somaini, L.; Panerai, A.E.; Sacerdote, P. Delta(9)-Tetrahydrocannabinol-induced anti-inflammatory responses in adolescent mice switch to proinflammatory in adulthood. J. Leukoc. Biol. 2014, 96, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Moretti, S.; Franchi, S.; Castelli, M.; Amodeo, G.; Somaini, L.; Panerai, A.; Sacerdote, P. Exposure of Adolescent Mice to Delta-9-Tetrahydrocannabinol Induces Long-Lasting Modulation of Pro- and Anti-Inflammatory Cytokines in Hypothalamus and Hippocampus Similar to that Observed for Peripheral Macrophages. J. Neuroimmune Pharmacol. 2015, 10, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Cloak, C.C.; Alicata, D.; Ernst, T.M.; Chang, L. Psychiatric Symptoms, Salivary Cortisol and Cytokine Levels in Young Marijuana Users. J. Neuroimmune Pharmacol. 2015, 10, 380–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayazit, H.; Selek, S.; Karababa, I.F.; Cicek, E.; Aksoy, N. Evaluation of Oxidant/Antioxidant Status and Cytokine Levels in Patients with Cannabis Use Disorder. Clin. Psychopharmacol. Neurosci. 2017, 15, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, T.; Hafizi, S.; Watts, J.J.; Weickert, C.S.; Meyer, J.H.; Houle, S.; Rusjan, P.; Mizrahi, R. In Vivo Imaging of Translocator Protein in Long-term Cannabis Users. JAMA Psychiatry 2019, 76, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Keen, L., 2nd; Turner, A.D. Differential effects of self-reported lifetime marijuana use on interleukin-1 alpha and tumor necrosis factor in African American adults. J. Behav. Med. 2015, 38, 527–534. [Google Scholar] [CrossRef] [Green Version]
- Massi, P.; Sacerdote, P.; Ponti, W.; Fuzio, D.; Manfredi, B.; Viganó, D.; Rubino, T.; Bardotti, M.; Parolaro, D. Immune function alterations in mice tolerant to delta9-tetrahydrocannabinol: Functional and biochemical parameters. J. Neuroimmunol. 1998, 92, 60–66. [Google Scholar] [CrossRef]
- Pacifici, R.; Zuccaro, P.; Farré, M.; Poudevida, S.; Abanades, S.; Pichini, S.; Langohr, K.; Segura, J.; De La Torre, R. Combined immunomodulating properties of 3,4-methylenedioxymethamphetamine (MDMA) and cannabis in humans. Addiction 2007, 102, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, G.C.; Tashkin, D.P.; Buckley, D.M.; Park, A.N.; Dubinett, S.M.; Roth, M.D. Marijuana and cocaine impair alveolar macrophage function and cytokine production. Am. J. Respir. Crit. Care Med. 1997, 156, 1606–1613. [Google Scholar] [CrossRef]
- Bailey, K.L.; Wyatt, T.A.; Katafiasz, D.M.; Taylor, K.W.; Heires, A.J.; Sisson, J.H.; Romberger, D.J.; Burnham, E.L. Alcohol and cannabis use alter pulmonary innate immunity. Alcohol 2019, 80, 131–138. [Google Scholar] [CrossRef]
- Keen, L., 2nd; Pereira, D.; Latimer, W. Self-reported lifetime marijuana use and interleukin-6 levels in middle-aged African Americans. Drug Alcohol Depend. 2014, 140, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, C.B.; Castro, F.D.O.F.D.; Dorneles, G.P.; Barros, J.B.D.S.; Silva, J.M.; Tavares, C.; Carvalho, H.R.; da Cunha, L.C.; Nagib, P.; Hoffmann, C.; et al. The concomitant use of cannabis and cocaine coexists with increased LPS levels and systemic inflammation in male drug users. Cytokine 2021, 141, 155472. [Google Scholar] [CrossRef] [PubMed]
- Keen, L., 2nd; Turner, A.D. Association between interleukin-6 and neurocognitive performance as a function of self-reported lifetime marijuana use in a community based sample of African American adults. J. Int. Neuropsychol. Soc. 2014, 20, 773–783. [Google Scholar] [CrossRef]
- Lisano, J.K.; Kisiolek, J.N.; Smoak, P.; Phillips, K.T.; Stewart, L.K. Chronic cannabis use and circulating biomarkers of neural health, stress, and inflammation in physically active individuals. Appl. Physiol. Nutr. Metab. 2020, 45, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Roth, M.D.; Arora, A.; Barsky, S.H.; Kleerup, E.C.; Simmons, M.; Tashkin, D.P. Airway inflammation in young marijuana and tobacco smokers. Am. J. Respir. Crit. Care Med. 1998, 157, 928–937. [Google Scholar] [CrossRef] [Green Version]
- Zamberletti, E.; Gabaglio, M.; Prini, P.; Rubino, T.; Parolaro, D. Cortical neuroinflammation contributes to long-term cognitive dysfunctions following adolescent delta-9-tetrahydrocannabinol treatment in female rats. Eur. Neuropsychopharmacol. 2015, 25, 2404–2415. [Google Scholar] [CrossRef]
- Fernandez-Egea, E.; Scoriels, L.; Theegala, S.; Giro, M.; Ozanne, S.E.; Burling, K.; Jones, P.B. Cannabis use is associated with increased CCL11 plasma levels in young healthy volunteers. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 46, 25–28. [Google Scholar] [CrossRef]
- Alshaarawy, O.; Sidney, S.; Auer, R.; Green, D.; Soliman, E.Z.; Goff, D.C.; Anthony, J.C. Cannabis Use and Markers of Systemic Inflammation: The Coronary Artery Risk Development in Young Adults Study. Am. J. Med. 2019, 132, 1327–1334.e1. [Google Scholar] [CrossRef]
- Ferguson, E.G.; Mannes, Z.L.; Ennis, N. Is marijuana use associated with lower inflammation? Results from waves III and IV of the national longitudinal study of adolescent to adult health. Drug Alcohol Depend. 2019, 198, 162–167. [Google Scholar] [CrossRef]
- Okafor, C.N.; Li, M.; Paltzer, J. Self-reported cannabis use and biomarkers of inflammation among adults in the United States. Brain Behav. Immun. Health 2020, 7, 100109. [Google Scholar] [CrossRef] [PubMed]
- Rajavashisth, T.B.; Shaheen, M.; Norris, K.C.; Pan, D.; Sinha, S.K.; Ortega, J.; Friedman, T.C. Decreased prevalence of diabetes in marijuana users: Cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) III. BMJ Open 2012, 2, e000494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshaarawy, O.; Anthony, J.C. Cannabis smoking and serum C-reactive protein: A quantile regressions approach based on NHANES 2005-2010. Drug Alcohol Depend. 2015, 147, 203–207. [Google Scholar] [CrossRef] [Green Version]
- Meier, M.H.; Caspi, A.; Cerdá, M.; Hancox, R.J.; Harrington, H.; Houts, R.; Poulton, R.; Ramrakha, S.; Thomson, W.M.; Moffitt, T. Associations Between Cannabis Use and Physical Health Problems in Early Midlife: A Longitudinal Comparison of Persistent Cannabis vs Tobacco Users. JAMA Psychiatry 2016, 73, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Ngueta, G.; Belanger, R.E.; Laouan-Sidi, E.A.; Lucas, M. Cannabis use in relation to obesity and insulin resistance in the Inuit population. Obesity 2015, 23, 290–295. [Google Scholar] [CrossRef]
- Costello, E.J.; Copeland, W.E.; Shanahan, L.; Worthman, C.M.; Angold, A. C-reactive protein and substance use disorders in adolescence and early adulthood: A prospective analysis. Drug Alcohol Depend. 2013, 133, 712–717. [Google Scholar] [CrossRef] [Green Version]
- Lisano, J.K.; Smith, J.D.; Mathias, A.B.; Christensen, M.; Smoak, P.; Phillips, K.T.; Quinn, C.J.; Stewart, L.K. and Health-Related Characteristics of Physically Active Males Using Marijuana. J. Strength Cond. Res. 2019, 33, 1658–1668. [Google Scholar] [CrossRef]
- Ramsay, H.; Surcel, H.M.; Bjornholm, L.; Kerkela, M.; Khandaker, G.M.; Veijola, J. Associations Between Maternal Prenatal C-Reactive Protein and Risk Factors for Psychosis in Adolescent Offspring: Findings From the Northern Finland Birth Cohort 1986. Schizophr. Bull. 2021, 47, 766–775. [Google Scholar] [CrossRef]
- Notter, T.; Schalbetter, S.M.; Clifton, N.E.; Mattei, D.; Richetto, J.; Thomas, K.; Meyer, U.; Hall, J. Neuronal activity increases translocator protein (TSPO) levels. Mol. Psychiatry 2021, 26, 2025–2037. [Google Scholar] [CrossRef]
- Collaborators GBDA. Alcohol use and burden for 195 countries and territories, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2018, 392, 1015–1035. [Google Scholar] [CrossRef] [Green Version]
- American Psychiatric Association; DSM-5 Task Force. Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Connor, J.P.; Haber, P.S.; Hall, W.D. Alcohol use disorders. Lancet 2016, 387, 988–998. [Google Scholar] [CrossRef] [Green Version]
- Saunders, J.B.; Aasland, O.G.; Babor, T.F.; de la Fuente, J.R.; Grant, M. Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO Collaborative Project on Early Detection of Persons with Harmful Alcohol Consumption—II. Addiction 1993, 88, 791–804. [Google Scholar] [CrossRef]
- Torruellas, C.; French, S.W.; Medici, V. Diagnosis of alcoholic liver disease. World J. Gastroenterol. 2014, 20, 11684–11699. [Google Scholar] [CrossRef]
- Pugh, R.N.; Murray-Lyon, I.M.; Dawson, J.L.; Pietroni, M.C.; Williams, R. Transection of the oesophagus for bleeding oesophageal varices. Br. J. Surg. 1973, 60, 646–649. [Google Scholar] [CrossRef] [PubMed]
- Chung, T.; Creswell, K.G.; Bachrach, R.; Clark, D.B.; Martin, C.S. Adolescent Binge Drinking. Alcohol Res. 2018, 39, 5–15. Available online: https://www.ncbi.nlm.nih.gov/pubmed/30557142 (accessed on 24 November 2021).
- Bala, S.; Marcos, M.; Gattu, A.; Catalano, D.; Szabo, G. Acute binge drinking increases serum endotoxin and bacterial DNA levels in healthy individuals. PLoS ONE 2014, 9, e96864. [Google Scholar] [CrossRef]
- Zhou, C.; Zhao, J.; Li, J.; Wang, H.; Tang, C. Acute ethanol administration inhibits Toll-like receptor 4 signaling pathway in rat intestinal epithelia. Alcohol 2013, 47, 231–239. [Google Scholar] [CrossRef]
- Takeuchi, O.; Akira, S. Pattern recognition receptors and inflammation. Cell 2010, 140, 805–820. [Google Scholar] [CrossRef] [Green Version]
- Amin, P.B.; Diebel, L.N.; Liberati, D.M. Dose-dependent effects of ethanol and E. coli on gut permeability and cytokine production. J. Surg. Res. 2009, 157, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Quintela, A.; Dominguez-Santalla, M.J.; Perez, L.F.; Vidal, C.; Lojo, S.; Barrio, E. Influence of acute alcohol intake and alcohol withdrawal on circulating levels of IL-6, IL-8, IL-10 and IL-12. Cytokine 2000, 12, 1437–1440. [Google Scholar] [CrossRef]
- Li, M.; He, Y.; Zhou, Z.; Ramirez, T.; Gao, Y.; Gao, Y.; Ross, R.A.; Cao, H.; Cai, Y.; Xu, M.; et al. MicroRNA-223 ameliorates alcoholic liver injury by inhibiting the IL-6-p47(phox)-oxidative stress pathway in neutrophils. Gut 2017, 66, 705–715. [Google Scholar] [CrossRef] [Green Version]
- Afshar, M.; Richards, S.; Mann, D.; Cross, A.; Smith, G.B.; Netzer, G.; Kovacs, E.; Hasday, J. Acute immunomodulatory effects of binge alcohol ingestion. Alcohol 2015, 49, 57–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nejad, C.; Stunden, H.J.; Gantier, M.P. A guide to miRNAs in inflammation and innate immune responses. FEBS J. 2018, 285, 3695–3716. [Google Scholar] [CrossRef]
- Matsui, S.; Ogata, Y. Effects of miR-223 on expression of IL-1beta and IL-6 in human gingival fibroblasts. J. Oral Sci. 2016, 58, 101–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibáñez, F.; Ureña-Peralta, J.R.; Costa-Alba, P.; Torres, J.-L.; Laso, F.-J.; Marcos, M.; Guerri, C.; Pascual, M. Circulating MicroRNAs in Extracellular Vesicles as Potential Biomarkers of Alcohol-Induced Neuroinflammation in Adolescence: Gender Differences. Int. J. Mol. Sci. 2020, 21, 6730. [Google Scholar] [CrossRef]
- Glantz, M.D.; Bharat, C.; Degenhardt, L.; Sampson, N.A.; Scott, K.M.; Lim, C.C.; Al-Hamzawi, A.; Alonso, J.; Andrade, L.H.; Cardoso, G.; et al. The epidemiology of alcohol use disorders cross-nationally: Findings from the World Mental Health Surveys. Addict. Behav. 2020, 102, 106128. [Google Scholar] [CrossRef]
- Vancampfort, D.; Hallgren, M.; Mugisha, J.; De Hert, M.; Probst, M.; Monsieur, D.; Stubbs, B. The Prevalence of Metabolic Syndrome in Alcohol Use Disorders: A Systematic Review and Meta-analysis. Alcohol Alcohol. 2016, 51, 515–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vatsalya, V.; Gala, K.S.; Mishra, M.; Schwandt, M.L.; Umhau, J.; Cave, M.C.; Parajuli, D.; Ramchandani, V.A.; McClain, C.J. Lower Serum Magnesium Concentrations are associated With Specific Heavy Drinking Markers, Pro-Inflammatory Response and Early-Stage Alcohol-associated Liver Injury section sign. Alcohol Alcohol. 2020, 55, 164–170. [Google Scholar] [CrossRef]
- Schaefer, L. Complexity of danger: The diverse nature of damage-associated molecular patterns. J. Biol. Chem. 2014, 289, 35237–35245. [Google Scholar] [CrossRef] [Green Version]
- Hietala, J.; Koivisto, H.; Latvala, J.; Anttila, P.; Niemela, O. IgAs against acetaldehyde-modified red cell protein as a marker of ethanol consumption in male alcoholic subjects, moderate drinkers, and abstainers. Alcohol. Clin. Exp. Res. 2006, 30, 1693–1698. [Google Scholar] [CrossRef] [PubMed]
- Steinman, R.M.; Hemmi, H. Dendritic cells: Translating innate to adaptive immunity. Curr. Top. Microbiol. Immunol. 2006, 311, 17–58. [Google Scholar] [CrossRef] [Green Version]
- Laso, F.J.; Vaquero, J.M.; Almeida, J.; Marcos, M.; Orfao, A. Chronic alcohol consumption is associated with changes in the distribution, immunophenotype, and the inflammatory cytokine secretion profile of circulating dendritic cells. Alcohol. Clin. Exp. Res. 2007, 31, 846–854. [Google Scholar] [CrossRef]
- Palmiere, C.; Augsburger, M. The postmortem diagnosis of alcoholic ketoacidosis. Alcohol Alcohol. 2014, 49, 271–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keshavarzian, A.; Farhadi, A.; Forsyth, C.B.; Rangan, J.; Jakate, S.; Shaikh, M.; Banan, A.; Fields, J.Z. Evidence that chronic alcohol exposure promotes intestinal oxidative stress, intestinal hyperpermeability and endotoxemia prior to development of alcoholic steatohepatitis in rats. J. Hepatol. 2009, 50, 538–547. [Google Scholar] [CrossRef] [Green Version]
- Saikia, P.; Bellos, D.; McMullen, M.R.; Pollard, K.A.; de la Motte, C.; Nagy, L.E. MicroRNA 181b-3p and its target importin alpha5 regulate toll-like receptor 4 signaling in Kupffer cells and liver injury in mice in response to ethanol. Hepatology 2017, 66, 602–615. [Google Scholar] [CrossRef] [PubMed]
- Lippai, D.; Bala, S.; Csak, T.; Kurt-Jones, E.A.; Szabo, G. Chronic alcohol-induced microRNA-155 contributes to neuroinflammation in a TLR4-dependent manner in mice. PLoS ONE 2013, 8, e70945. [Google Scholar] [CrossRef] [Green Version]
- Tang, B.; Xiao, B.; Liu, Z.; Li, N.; Zhu, E.-D.; Li, B.-S.; Xie, Q.-H.; Zhuang, Y.; Zou, Q.-M.; Mao, X.-H. Identification of MyD88 as a novel target of miR-155, involved in negative regulation of Helicobacter pylori-induced inflammation. FEBS Lett. 2010, 584, 1481–1486. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Crews, F.T. Increased MCP-1 and microglia in various regions of the human alcoholic brain. Exp. Neurol. 2008, 210, 349–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asatryan, L.; Khoja, S.; Rodgers, K.E.; Alkana, R.L.; Tsukamoto, H.; Davies, D.L. Chronic ethanol exposure combined with high fat diet up-regulates P2X7 receptors that parallels neuroinflammation and neuronal loss in C57BL/6J mice. J. Neuroimmunol. 2015, 285, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Nkpaa, K.W.; Adedara, I.A.; Amadi, B.A.; Wegwu, M.O.; Farombi, E.O. Ethanol via Regulation of NF-kappaB/p53 Signaling Pathway Increases Manganese-Induced Inflammation and Apoptosis in Hypothalamus of Rats. Biol. Trace Elem. Res. 2019, 190, 101–108. [Google Scholar] [CrossRef]
- Kim, S.W.; Wiers, C.E.; Tyler, R.; Shokri-Kojori, E.; Jang, Y.J.; Zehra, A.; Freeman, C.; Ramirez, V.; Lindgren, E.; Miller, G.; et al. Influence of alcoholism and cholesterol on TSPO binding in brain: PET [(11)C]PBR28 studies in humans and rodents. Neuropsychopharmacology 2018, 43, 1832–1839. [Google Scholar] [CrossRef]
- Saba, W.; Goutal, S.; Auvity, S.; Kuhnast, B.; Coulon, C.; Kouyoumdjian, V.; Buvat, I.; Leroy, C.; Tournier, N. Imaging the neuroimmune response to alcohol exposure in adolescent baboons: A TSPO PET study using (18) F-DPA-714. Addict. Biol. 2018, 23, 1000–1009. [Google Scholar] [CrossRef] [PubMed]
- Hillmer, A.T.; Sandiego, C.M.; Hannestad, J.; Angarita, G.A.; Kumar, A.; McGovern, E.M.; Huang, Y.; O’Connor, K.C.; Carson, R.E.; O’Malley, S.S.; et al. In vivo imaging of translocator protein, a marker of activated microglia, in alcohol dependence. Mol. Psychiatry 2017, 22, 1759–1766. [Google Scholar] [CrossRef] [Green Version]
- Kalk, N.; Guo, Q.; Owen, D.; Cherian, R.; Erritzoe, D.; Gilmour, A.; Ribeiro, A.S.; McGonigle, J.; Waldman, A.D.; Matthews, P.; et al. Decreased hippocampal translocator protein (18 kDa) expression in alcohol dependence: A [11C]PBR28 PET study. Transl. Psychiatry 2017, 7, e996. [Google Scholar] [CrossRef] [PubMed]
- Kohno, M.; Link, J.; Dennis, L.E.; McCready, H.; Huckans, M.; Hoffman, W.F.; Loftis, J.M. Neuroinflammation in addiction: A review of neuroimaging studies and potential immunotherapies. Pharmacol. Biochem. Behav. 2019, 179, 34–42. [Google Scholar] [CrossRef]
- Voican, C.S.; Njiké-Nakseu, M.; Boujedidi, H.; Barri-Ova, N.; Bouchet-Delbos, L.; Agostini, H.; Maitre, S.; Prévot, S.; Cassard, A.-M.; Naveau, S.; et al. Alcohol withdrawal alleviates adipose tissue inflammation in patients with alcoholic liver disease. Liver Int. 2014, 35, 967–978. [Google Scholar] [CrossRef]
- Schraufstatter, I.U.; Zhao, M.; Khaldoyanidi, S.K.; Discipio, R.G. The chemokine CCL18 causes maturation of cultured monocytes to macrophages in the M2 spectrum. Immunology 2012, 135, 287–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yunna, C.; Mengru, H.; Lei, W.; Weidong, C. Macrophage M1/M2 polarization. Eur. J. Pharmacol. 2020, 877, 173090. [Google Scholar] [CrossRef]
- Maes, M.; Lin, A.-H.; Bosmans, E.; Vandoolaeghe, E.; Bonnacorso, S.; Kenis, G.; De Jongh, R.; Verkerk, R.; Song, C.; Scharpé, S.; et al. Serotonin-immune interactions in detoxified chronic alcoholic patients without apparent liver disease: Activation of the inflammatory response system and lower plasma total tryptophan. Psychiatry Res. 1998, 78, 151–161. [Google Scholar] [CrossRef]
- Marta, K.; Tomáš, Z.; Petr, P.; Pavel, S.; Martin, B.; Jiřina, S.; Květa, P.; Rosemarie, K.-E. Advanced glycation end-products in patients with chronic alcohol misuse. Alcohol Alcohol. 2004, 39, 316–320. [Google Scholar] [CrossRef] [Green Version]
- Broeckaert, F.; Bernard, A. Clara cell secretory protein (CC16): Characteristics and perspectives as lung peripheral biomarker. Clin. Exp. Allergy 2000, 30, 469–475. [Google Scholar] [CrossRef] [Green Version]
- Qu, B.-G.; Wang, H.; Jia, Y.-G.; Su, J.-L.; Wang, Z.-D.; Wang, Y.-F.; Han, X.-H.; Liu, Y.-X.; Pan, J.-D.; Ren, G.-Y. Changes in Tumor Necrosis Factor-α, Heat Shock Protein 70, Malondialdehyde, and Superoxide Dismutase in Patients with Different Severities of Alcoholic Fatty Liver Disease. Medicine 2015, 94, e643. [Google Scholar] [CrossRef]
- Mortensen, C.; Andersen, O.; Krag, A.; Bendtsen, F.; Moller, S. High-sensitivity C-reactive protein levels predict survival and are related to haemodynamics in alcoholic cirrhosis. Eur. J. Gastroenterol. Hepatol. 2012, 24, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.Y.; Jiang, Z.A.; Zhao, C.Y.; Zhen, Z.; Wang, W.; Nanji, A.A. Long-term binge and escalating ethanol exposure causes necroinflammation and fibrosis in rat liver. Alcohol. Clin. Exp. Res. 2013, 37, 213–222. [Google Scholar] [CrossRef]
- Sun, Z.; Chang, B.; Huang, A.; Hao, S.; Gao, M.; Sun, Y.; Shi, M.; Jin, L.; Zhang, W.; Zhao, J.; et al. Plasma levels of soluble ST2, but not IL-33, correlate with the severity of alcoholic liver disease. J. Cell. Mol. Med. 2018, 23, 887–897. [Google Scholar] [CrossRef]
- Aimo, A.; Januzzi, J.L.; Bayes-Genis, A.; Vergaro, G.; Sciarrone, P.; Passino, C.; Emdin, M. Clinical and Prognostic Significance of sST2 in Heart Failure. J. Am. Coll. Cardiol. 2019, 74, 2193–2203. [Google Scholar] [CrossRef]
- Tran, A.; Benzaken, S.; Saint-Paul, M.-C.; Guzman-Granier, E.; Hastier, P.; Pradier, C.; Barjoan, E.M.; DeMuth, N.; Longo, F.; Rampal, P. Chondrex (YKL-40), a potential new serum fibrosis marker in patients with alcoholic liver disease. Eur. J. Gastroenterol. Hepatol. 2000, 12, 989–993. [Google Scholar] [CrossRef]
- Kasztelan-Szczerbińska, B.; Surdacka, A.; Celiński, K.; Rolinski, J.; Zwolak, A.; Miącz, S.; Szczerbiński, M. Prognostic Significance of the Systemic Inflammatory and Immune Balance in Alcoholic Liver Disease with a Focus on Gender-Related Differences. PLoS ONE 2015, 10, e0128347. [Google Scholar] [CrossRef] [PubMed]
- Rachakonda, V.; Gabbert, C.; Raina, A.; Li, H.; Malik, S.; DeLany, J.; Behari, J. Stratification of Risk of Death in Severe Acute Alcoholic Hepatitis Using a Panel of Adipokines and Cytokines. Alcohol. Clin. Exp. Res. 2014, 38, 2712–2721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Reimers, E.; Sánchez-Pérez, M.; Santolaria-Fernández, F.; Abreu-González, P.; De la Vega-Prieto, M.; Viña-Rodríguez, J.; Alemán-Valls, M.; Rodríguez-Gaspar, M. Changes in cytokine levels during admission and mortality in acute alcoholic hepatitis. Alcohol 2012, 46, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Gustot, T.; Lemmers, A.; Moreno, C.; Nagy, N.; Quertinmont, E.; Nicaise, C.; Franchimont, D.; Louis, H.; Devière, J.; Le Moine, O. Differential liver sensitization to Toll-like receptor pathways in mice with alcoholic fatty liver. Hepatology 2006, 43, 989–1000. [Google Scholar] [CrossRef]
- Dennis, C.V.; Sheahan, P.J.; Graeber, M.B.; Sheedy, D.L.; Kril, J.J.; Sutherland, G.T. Microglial proliferation in the brain of chronic alcoholics with hepatic encephalopathy. Metab. Brain Dis. 2014, 29, 1027–1039. [Google Scholar] [CrossRef] [PubMed]
- Sandahl, T.D.; Grønbæk, H.; Møller, H.J.; Støy, S.; Thomsen, K.L.; Dige, A.K.; Agnholt, J.; Hamilton-Dutoit, S.; Thiel, S.; Vilstrup, H. Hepatic Macrophage Activation and the LPS Pathway in Patients With Alcoholic Hepatitis: A Prospective Cohort Study. Am. J. Gastroenterol. 2014, 109, 1749–1756. [Google Scholar] [CrossRef]
- Zhou, Y.; Vatsalya, V.; Gobejishvili, L.; Lamont, R.J.; McClain, C.J.; Feng, W. Porphyromonas gingivalis as a Possible Risk Factor in the Development/Severity of Acute Alcoholic Hepatitis. Hepatol. Commun. 2019, 3, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Dydyk, A.M.; Jain, N.K.; Gupta, M. Opioid Use Disorder. 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK553166/ (accessed on 17 July 2021).
- Liang, X.; Liu, R.; Chen, C.; Ji, F.; Li, T. Opioid System Modulates the Immune Function: A Review. Transl. Perioper. Pain Med. 2016, 1, 5–13. [Google Scholar]
- Hofford, R.S.; Russo, S.J.; Kiraly, D.D. Neuroimmune mechanisms of psychostimulant and opioid use disorders. Eur. J. Neurosci. 2019, 50, 2562–2573. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.M.; Hutchinson, M.R.; Bilbo, S.D. Early-life experience decreases drug-induced reinstatement of morphine CPP in adulthood via microglial-specific epigenetic programming of anti-inflammatory IL-10 expression. J. Neurosci. 2011, 31, 17835–17847. [Google Scholar] [CrossRef]
- Chen, S.-L.; Tao, P.-L.; Chu, C.-H.; Chen, S.-H.; Wu, H.-E.; Tseng, L.F.; Hong, J.-S.; Lu, R.-B. Low-Dose Memantine Attenuated Morphine Addictive Behavior through its Anti-Inflammation and Neurotrophic Effects in Rats. J. Neuroimmune Pharmacol. 2011, 7, 444–453. [Google Scholar] [CrossRef] [Green Version]
- Campbell, L.A.; Avdoshina, V.; Rozzi, S.; Mocchetti, I. CCL5 and cytokine expression in the rat brain: Differential modulation by chronic morphine and morphine withdrawal. Brain Behav. Immun. 2013, 34, 130–140. [Google Scholar] [CrossRef] [Green Version]
- Cahill, C.M.; Taylor, A.M. Neuroinflammation-a co-occurring phenomenon linking chronic pain and opioid dependence. Curr. Opin. Behav. Sci. 2017, 13, 171–177. [Google Scholar] [CrossRef]
- Mohamed, H.M.; Mahmoud, A.M. Chronic exposure to the opioid tramadol induces oxidative damage, inflammation and apoptosis, and alters cerebral monoamine neurotransmitters in rats. Biomed. Pharmacother. 2019, 110, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, J.; Faria, J.; Garcez, F.; Leal, S.; Afonso, L.; Nascimento, A.; Moreira, R.; Pereira, F.; Queirós, O.; Carvalho, F.; et al. Repeated Administration of Clinically Relevant Doses of the Prescription Opioids Tramadol and Tapentadol Causes Lung, Cardiac, and Brain Toxicity in Wistar Rats. Pharmaceuticals 2021, 14, 97. [Google Scholar] [CrossRef] [PubMed]
- Jantzie, L.L.; Maxwell, J.R.; Newville, J.C.; Yellowhair, T.R.; Kitase, Y.; Madurai, N.; Ramachandra, S.; Bakhireva, L.N.; Northington, F.J.; Gerner, G.; et al. Prenatal opioid exposure: The next neonatal neuroinflammatory disease. Brain, Behav. Immun. 2019, 84, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, H.; Li, Y.; Sun, X.; Zhu, M.; Hanley, G.; LeSage, G.; Yin, D. Essential role of toll-like receptor 2 in morphine-induced microglia activation in mice. Neurosci. Lett. 2011, 489, 43–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacagnina, M.J.; Kopec, A.M.; Cox, S.S.; Hanamsagar, R.; Wells, C.; Slade, S.; Grace, P.M.; Watkins, L.R.; Levin, E.D.; Bilbo, S.D. Opioid Self-Administration is Attenuated by Early-Life Experience and Gene Therapy for Anti-Inflammatory IL-10 in the Nucleus Accumbens of Male Rats. Neuropsychopharmacology 2017, 42, 2128–2140. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wei, J.; Liu, M.; Wu, S.; Ma, C.; Liu, C.; Huang, K.; Zhang, X.; Guo, R.; Zhang, K.; et al. Epigenetic upregulation of CXCL12 expression contributes to the acquisition and maintenance of morphine-induced conditioned place preference. Exp. Neurol. 2018, 306, 55–63. [Google Scholar] [CrossRef]
- Piepenbrink, M.S.; Samuel, M.; Zheng, B.; Carter, B.; Fucile, C.; Bunce, C.; Kiebala, M.; Khan, A.; Thakar, J.; Maggirwar, S.B.; et al. Humoral Dysregulation Associated with Increased Systemic Inflammation among Injection Heroin Users. PLoS ONE 2016, 11, e0158641. [Google Scholar] [CrossRef] [Green Version]
- Ghazavi, A.; Mosayebi, G.; Solhi, H.; Rafiei, M.; Moazzeni, S.M. Serum markers of inflammation and oxidative stress in chronic opium (Taryak) smokers. Immunol. Lett. 2013, 153, 22–26. [Google Scholar] [CrossRef]
- Salarian, A.; Kadkhodaee, M.; Zahmatkesh, M.; Seifi, B.; Bakhshi, E.; Akhondzadeh, S.; Adeli, S.; Askari, H.; Arbabi, M. Opioid Use Disorder Induces Oxidative Stress and Inflammation: The Attenuating Effect of Methadone Maintenance Treatment. Iran. J. Psychiatry 2018, 13, 46–54. [Google Scholar]
- Zajícová, A.; Wilczek, H.; Holán, V. The alterations of immunological reactivity in heroin addicts and their normalization in patients maintained on methadone. Folia Biol. 2004, 50, 24–28. [Google Scholar]
- Neri, M.; Panata, L.; Bacci, M.; Fiore, C.; Riezzo, I.; Turillazzi, E.; Fineschi, V. Cytokines, Chaperones and Neuroinflammatory Responses in Heroin-Related Death: What Can We Learn from Different Patterns of Cellular Expression? Int. J. Mol. Sci. 2013, 14, 19831–19845. [Google Scholar] [CrossRef]
- Chen, S.L.; Lee, S.-Y.; Tao, P.-L.; Chang, Y.-H.; Chen, S.-H.; Chu, C.-H.; Chen, P.S.; Lee, I.H.; Yeh, T.L.; Yang, Y.K.; et al. Dextromethorphan Attenuated Inflammation and Combined Opioid Use in Humans Undergoing Methadone Maintenance Treatment. J. Neuroimmune Pharmacol. 2012, 7, 1025–1033. [Google Scholar] [CrossRef]
- Seney, M.L.; Kim, S.-M.; Glausier, J.R.; Hildebrand, M.A.; Xue, X.; Zong, W.; Wang, J.; Shelton, M.A.; Phan, B.N.; Srinivasan, C.; et al. Transcriptional alterations in dorsolateral prefrontal cortex and nucleus accumbens implicate neuroinflammation and synaptic remodeling in opioid use disorder. Biol. Psychiatry 2021. [Google Scholar] [CrossRef] [PubMed]
- Saad, M.H.; Rumschlag, M.; Guerra, M.H.; Savonen, C.L.; Jaster, A.M.; Olson, P.D.; Alazizi, A.; Luca, F.; Pique-Regi, R.; Schmidt, C.J.; et al. Differentially expressed gene networks, biomarkers, long noncoding RNAs, and shared responses with cocaine identified in the midbrains of human opioid abusers. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yu, H.; Bai, R.; Ma, C. Identification and Characterization of Biomarkers and Their Role in Opioid Addiction by Integrated Bioinformatics Analysis. Front. Neurosci. 2020, 14, 608349. [Google Scholar] [CrossRef]
- Catale, C.; Bussone, S.; Iacono, L.L.; Carola, V. Microglial alterations induced by psychoactive drugs: A possible mechanism in substance use disorder? Semin. Cell Dev. Biol. 2019, 94, 164–175. [Google Scholar] [CrossRef]
- Woodcock, E.A.; Hillmer, A.T.; Mason, G.F.; Cosgrove, K.P. Imaging Biomarkers of the Neuroimmune System among Substance Use Disorders: A Systematic Review. Mol. Neuropsychiatry 2019, 5, 125–146. [Google Scholar] [CrossRef]
- Narita, M.; Miyatake, M.; Narita, M.; Shibasaki, M.; Shindo, K.; Nakamura, A.; Kuzumaki, N.; Nagumo, Y.; Suzuki, T. Direct Evidence of Astrocytic Modulation in the Development of Rewarding Effects Induced by Drugs of Abuse. Neuropsychopharmacology 2006, 31, 2476–2488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.-Q.; Cui, Y.; Chen, Y.; Na, X.-D.; Chen, F.-Y.; Wei, X.-H.; Li, Y.-Y.; Liu, X.-G.; Xin, W.-J. Activation of p38 signaling in the microglia in the nucleus accumbens contributes to the acquisition and maintenance of morphine-induced conditioned place preference. Brain Behav. Immun. 2012, 26, 318–325. [Google Scholar] [CrossRef]
- Hutchinson, M.; Northcutt, A.L.; Chao, L.W.; Kearney, J.J.; Zhang, Y.; Berkelhammer, D.L.; Loram, L.C.; Rozeske, R.R.; Bland, S.; Maier, S.F.; et al. Minocycline suppresses morphine-induced respiratory depression, suppresses morphine-induced reward, and enhances systemic morphine-induced analgesia. Brain Behav. Immun. 2008, 22, 1248–1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Liang, Y.; Levran, O.; Randesi, M.; Yuferov, V.; Zhao, C.; Kreek, M.J. Alterations of expression of inflammation/immune-related genes in the dorsal and ventral striatum of adult C57BL/6J mice following chronic oxycodone self-administration: A RNA sequencing study. Psychopharmacology 2017, 234, 2259–2275. [Google Scholar] [CrossRef]
- Xia, W.; Liu, G.; Shao, Z.; Xu, E.; Yuan, H.; Liu, J.; Gao, L. Toxicology of tramadol following chronic exposure based on metabolomics of the cerebrum in mice. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Guzel, D.; Yazici, A.B.; Yazici, E.; Erol, A. Evaluation of Immunomodulatory and Hematologic Cell Outcome in Heroin/Opioid Addicts. J. Addict. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Sullivan, S.J.; Malahias, E.; Park, J.; Srivastava, A.; Reyes, B.A.S.; Gorky, J.; Vadigepalli, R.; Van Bockstaele, E.J.; Schwaber, J.S. Single-Cell Glia and Neuron Gene Expression in the Central Amygdala in Opioid Withdrawal Suggests Inflammation With Correlated Gut Dysbiosis. Front. Neurosci. 2019, 13, 665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motaghinejad, M.; Karimian, S.M.; Motaghinejad, O.; Shabab, B.; Asadighaleni, M.; Fatima, S. The effect of various morphine weaning regimens on the sequelae of opioid tolerance involving physical dependency, anxiety and hippocampus cell neurodegeneration in rats. Fundam. Clin. Pharmacol. 2015, 29, 299–309. [Google Scholar] [CrossRef]
- Liu, L.; Coller, J.K.; Watkins, L.R.; Somogyi, A.A.; Hutchinson, M.R. Naloxone-precipitated morphine withdrawal behavior and brain IL-1beta expression: Comparison of different mouse strains. Brain Behav. Immun. 2011, 25, 1223–1232. [Google Scholar] [CrossRef] [Green Version]
- Valentinova, K.; Tchenio, A.; Trusel, M.; Clerke, J.A.; Lalive, A.L.; Tzanoulinou, S.; Matera, A.; Moutkine, I.; Maroteaux, L.; Paolicelli, R.C.; et al. Morphine withdrawal recruits lateral habenula cytokine signaling to reduce synaptic excitation and sociability. Nat. Neurosci. 2019, 22, 1053–1056. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, M.T.; Naghizadeh, B.; Ghorbanzadeh, B.; Amirgholami, N.; Houshmand, G.; Alboghobeish, S. Venlafaxine inhibits naloxone-precipitated morphine withdrawal symptoms: Role of inflammatory cytokines and nitric oxide. Metab. Brain Dis. 2020, 35, 305–313. [Google Scholar] [CrossRef]
- Hutchinson, M.; Lewis, S.S.; Coats, B.D.; Skyba, D.A.; Crysdale, N.Y.; Berkelhammer, D.L.; Brzeski, A.; Northcutt, A.; Vietz, C.M.; Judd, C.M.; et al. Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain Behav. Immun. 2009, 23, 240–250. [Google Scholar] [CrossRef] [Green Version]
- Chan, Y.Y.; Yang, S.N.; Lin, J.C.; Chang, J.L.; Lin, J.G.; Lo, W.Y. Inflammatory response in heroin addicts undergoing methadone maintenance treatment. Psychiatry Res. 2015, 226, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.-Y.; Lee, S.-Y.; Chang, Y.-H.; Chen, S.L.; Chen, P.S.; Chu, C.-H.; Huang, S.-Y.; Tzeng, N.-S.; Lee, I.H.; Chen, K.C.; et al. Correlation of cytokines, BDNF levels, and memory function in patients with opioid use disorder undergoing methadone maintenance treatment. Drug Alcohol Depend. 2018, 191, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.-B.; Wang, T.-Y.; Lee, S.-Y.; Chen, S.-L.; Chang, Y.-H.; Chen, P.S.; Lin, S.-H.; Chu, C.-H.; Huang, S.-Y.; Tzeng, N.-S.; et al. Correlation between interleukin-6 levels and methadone maintenance therapy outcomes. Drug Alcohol Depend. 2019, 204, 107516. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Chen, S.-L.; Chang, Y.-H.; Chu, C.-H.; Chen, P.S.; Huang, S.-Y.; Tzeng, N.-S.; Wang, L.-J.; Lee, I.H.; Wang, T.-Y.; et al. A Placebo-Controlled Trial of Dextromethorphan as an Adjunct in Opioid-Dependent Patients Undergoing Methadone Maintenance Treatment. Int. J. Neuropsychopharmacol. 2015, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samaan, Z.; Samaan, M.C.; Bawor, M.; Paul, J.; Plater, C.; Pare, G.; Worster, A.; Varenbut, M.; Daiter, J.; Marsh, D.C.; et al. Evaluation of clinical and inflammatory profile in opioid addiction patients with comorbid pain: Results from a multicenter investigation. Neuropsychiatr. Dis. Treat. 2014, 10, 2239–2247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Target | Experimental Design | Sample | Major Finding | Species | Method | References |
---|---|---|---|---|---|---|
IL-1β | Sub-chronic THC administration | Peritoneal macrophages stimulated with LPS | ↓ IL-1β just after 10-day THC treatment during adolescence or adulthood | BALB/Cj mice | ELISA Real-time PCR | [43] |
Brain (Hypothalamus and hippocampus) | [44] | |||||
Peritoneal macrophages stimulated with LPS | ↑ IL-1β in adult animals as a long-term effect after 10-day THC treatment during adolescence | BALB/Cj mice | ELISA Real-time PCR | [43] | ||
Brain (Hypothalamus and hippocampus) | [44] | |||||
Chronic cannabis use | Saliva | No significant changes in marijuana users | Human | ELISA | [45] | |
Serum | ↑ IL-1β in patients diagnosed with Cannabis use disorder | Human | ELISA | [46] | ||
Serum | No significant changes in long-term marijuana users | Human | Multiplex immunoassay | [47] | ||
IL-1α | Chronic cannabis use | Serum | No significant changes in marijuana users | Human | ELISA | [48] |
IL-2 | Acute THC administration | Splenocytes | ↓ IL-2 after an acute or sub-chronic (7 days) THC exposure | Swiss mice | ELISA | [49] |
Sub-chronic THC administration | ||||||
Chronic THC administration | No significant changes after chronic (14 days) THC treatment | |||||
Chronic cannabis use | Serum | No significant changes in long-term marijuana users | Human | Multiplex immunoassay | [47] | |
Blood | ↓ IL-2 in marijuana users | Human | ELISA | [50] | ||
IL-6 | Chronic cannabis use | Alveolar macrophages stimulated with LPS | ↓ IL-6 in marijuana users | Human | ELISA | [51] |
Bronchial epithelial cells | ↑ IL-6 in marijuana users | Human | ELISA | [52] | ||
Serum | ↓ IL-6 in marijuana users | Human | ELISA | [53] | ||
Plasma | ↓ IL-6 in marijuana users | Human | ELISA | [54] | ||
Serum | ↓ IL-6 in marijuana users | Human | ELISA | [55] | ||
Saliva | ↑ IL-6 in marijuana users | Human | ELISA | [45] | ||
Serum | ↑ IL-6 in patients diagnosed with cannabis use disorder | Human | ELISA | [46] | ||
Serum | No significant changes in long-term marijuana users | Human | Multiplex immunoassay | [47] | ||
Serum | No significant changes in marijuana users | Human | ELISA | [56] | ||
IL-8 | Chronic cannabis use | Bronchial lavage samples | No significant changes in marijuana users | Human | ELISA | [57] |
↑ IL-8 in marijuana and tobacco users | ||||||
Bronchial epithelial cells | No significant changes in marijuana users | Human | ELISA | [52] | ||
Serum | ↑ IL-8 in patients diagnosed with cannabis use disorder | Human | ELISA | [46] | ||
Serum | No significant changes in long-term marijuana users | Human | Multiplex immunoassay | [47] | ||
IL-10 | Chronic cannabis use | Bronchial epithelial cells | No significant changes in marijuana users | Human | ELISA | [52] |
Plasma | No significant changes in marijuana users | Human | ELISA | [54] | ||
Serum | No significant changes in long-term marijuana users | Human | Multiplex immunoassay | [47] | ||
Sub-chronic THC administration | Peritoneal macrophages stimulated with LPS | ↑ IL-10 after 10-day THC treatment during adolescence or adulthood | BALB/Cj mice | ELISA Real-time PCR | [43] | |
Brain (Hypothalamus and hippocampus) | [44] | |||||
Peritoneal macrophages stimulated with LPS | ↓ IL-10 in adult animals as a long-term effect after 10-day THC treatment during adolescence | BALB/Cj mice | ELISA Real-time PCR | [43] | ||
Brain (Hypothalamus and hippocampus) | [44] | |||||
Prefrontal cortex | ↓ IL-10 in adult animals as a long-term effect after 11-day THC treatment during adolescence | Sprague Dawley rats | ELISA | [58] | ||
IL-12 | Chronic cannabis use | Serum | No significant changes in long-term marijuana users | Human | Multiplex immunoassay | [47] |
TNF-α | Chronic cannabis use | Alveolar macrophages stimulated with LPS | ↓ TNF-α in marijuana users | Human | ELISA | [51] |
Bronchial epithelial cells | No significant changes (1–10 or 21–40 years of cannabis use) | Human | ELISA | [52] | ||
↑ TNF-α (11–20 years of cannabis use) | ||||||
Plasma | ↓ TNF-α in marijuana users | Human | ELISA | [54] | ||
Serum | ↓ TNF-α in marijuana users | Human | ELISA | [48] | ||
Saliva | No significant changes in marijuana users | Human | ELISA | [45] | ||
Serum | ↑ TNF-α in patients diagnosed with cannabis use disorder | Human | ELISA | [46] | ||
Serum | No significant changes in long-term marijuana users | Human | Multiplex immunoassay | [47] | ||
Sub-chronic THC administration | Peritoneal macrophages stimulated with LPS | ↓ TNF-α just after 10-day THC treatment during adolescence or adulthood | BALB/Cj mice | ELISA Real-time PCR | [43] | |
Brain (Hypothalamus and hippocampus) | [44] | |||||
Peritoneal macrophages stimulated with LPS | ↑ TNF-α in adult animals as a long-term effect after 10-day THC treatment during adolescence | BALB/Cj mice | ELISA Real-time PCR | [43] | ||
Brain (Hypothalamus and hippocampus) | [44] | |||||
Prefrontal cortex | ↑ TNF-α in adult animals as a long-term effect after 11-day THC treatment during adolescence | Sprague Dawley rats | ELISA | [58] | ||
TGF- β | Chronic cannabis use | Alveolar macrophages stimulated with LPS | No significant changes in marijuana users | Human | ELISA | [51] |
Blood | No significant changes in marijuana users | Human | ELISA | [50] | ||
↑ TGF- β in marijuana and MDMA users | ||||||
IFN-γ | Subchronic THC administration | Splenocytes | ↓ IFN-γ after subchronic (7 days) THC treatment | Swiss mice | ELISA | [49] |
Chronic THC administration | ↓ IFN-γ after chronic (14 days) THC treatment | |||||
Chronic cannabis use | Serum | No significant changes in patients diagnosed with cannabis use disorder | Human | ELISA | [46] | |
Serum | No significant changes in long-term marijuana users | Human | Multiplex immunoassay | [47] | ||
TLR | Chronic cannabis use | Bronchial epithelial cells | ↑ TLR2, TLR5, TLR6, TLR9 in marijuana users | Human | ELISA | [52] |
CCL11 | Plasma | ↑ CCL11 in current cannabis users | Human | ELISA | [59] | |
COX-2 | Sub-chronic THC administration | Prefrontal cortex | ↑ COX-2 in adult animals as a long-term effect after 11-day THC treatment during adolescence | Sprague Dawley rats | ELISA | [58] |
CRP | Acute cannabis use | Serum | No significant changes in marijuana users after recent consumption (after adjusting for covariables) | Human | Nephelometry-based high throughput assay | [60] |
Serum | No significant changes in marijuana users after recent consumption (after adjusting for covariables) | Human | Highly sensitive CRP assay | [61] | ||
Serum/Plasma | No significant changes in marijuana users after recent consumption (after adjusting for covariables) | Human | Cardiac C-reactive Protein (Latex) Sensitive immunoturbidimetric assay | [62] | ||
Chronic cannabis use | Plasma | No significant changes in marijuana users | Human | Turbidimetric assay | [54] | |
Serum | ↑ prevalence of <0.5 mg/dl CRP levels in marijuana users | Human | Latex-enhanced nephelometry | [63] | ||
↓ CRP in past marijuana users | ||||||
No significant changes in current marijuana users | ||||||
Serum | ↓ CRP in current marijuana users | Human | Latex-enhanced nephelometry | [64] | ||
No significant changes in past marijuana users | ||||||
Serum | No significant changes in marijuana users | Human | Immunoturbidimetric assay | [65] | ||
Plasma | No significant changes in marijuana users | Human | Highly sensitive CRP assay | [66] | ||
Whole-blood spots | ↑ CRP in marijuana users | Human | Biotin-streptavidin based immunofluorometric system | [67] | ||
Serum | ↑ CRP in long-term marijuana users (associated with ↑ TSPO) | Human | High-sensitivity enzyme-linked immunosorbent assay | [47] | ||
Serum | ↑ CRP in marijuana users (associated with ↑ CVD) | Human | ELISA | [68] | ||
Serum | ↑ CRP in marijuana users (associated with ↑ CVD) | Human | ELISA | [56] |
Target | Experimental Design | Sample | Major Finding | Species | Method | References |
---|---|---|---|---|---|---|
Mir-223 | Acute Drinking | serum | ↓neutrophils of alcoholics with recent excessive drinking | Human | Real-time PCR | [83] |
Endotoxin | ↑ in acute binge drinking in healthy individuals | Endotoxin Kit | [78] | |||
16 rDNA (Bacterial DNA) | ↑ in acute binge drinking in healthy individuals | Real-time PCR | ||||
IL-8 | ↑ in acute binge drinking in healthy individuals | ELISA | [82] | |||
LPS | Plasma | ↑ levels in plasma | Wistar Rats | Limulus Amebocyte lysate kit | [79] | |
Extravesicles miRNA | ↓ levels of mir-146a-5p, mir-21-5p, mir-182-5p in females adolescent humans and mice. | Human/C57/BL6 mice | Real-time PCR | [87] | ||
PBMC | Whole Blood | Circulating peripheral blood mononuclear cells ↑ after 20 min of binge drinking and ↓ between 2 and 5 h after ingestion. | Human | Flow Cytometry | [84] | |
Neutrophils | ↑ in alcoholics with recent excessive drinking | [83] | ||||
Bacterial composition | Intestinal | ↑ Ratio E. Coli/lactobacilli | Wistar Rats | Cell Cultured | [79] |
Target | Experimental Design | Sample | Major Finding | Species | Method | References |
---|---|---|---|---|---|---|
Magnesium | Chronic Drinking | Serum | ↓ magnesium level in heavy drinking AUD patients who exhibited mild liver injury | Human | N.A. | [90] |
IgAs against acetaldehyde | Correlation with abstainers, moderate drinkers (1 to 40 g/day), and heavy drinkers (40 to 540 g/day) | ELISA | [92] | |||
Endotoxin | The endotoxemia preceded steatohepatitis | Sprague-Dawley rats | Endotoxin Kit | [96] | ||
C-reactive protein (CRP), IL-6 IL-10 | Serum (postmortem) | ↑ levels in serum femoral blood obtained from postmortem alcoholic ketoacidosis | Human | ELISA | [95] | |
IL1β, IL6, IL12, and TNFα (DC) | Whole blood | ↑ liberation from peripheral dendritic cells (DC) in patients without liver disease | Flow Cytometry | [94] | ||
TNF-α, IL-1β, NF-κB | Brain Tissue | ↑ in hypothalamus | Wistar rats | ELISA | [102] | |
mRNA Toll-Like Receptors TLR2, TLR3, TLR4 | Measure just after ethanol consumption or 24 h. Nucleus accumbens: ↑TLR3 24 h after. And ↓ in the amygdala. TLR4 ↓ in amygdala 24 h after. | C57BL/6 mice | Real-time PCR | [27] | ||
mRNA expression IL-1β and CXCL10 | Measure just after ethanol consumption or 24 h. ↑IL-1β in the amygdala and nucleus accumbens just after. CXCL10 ↑ 24 after | |||||
Microglial activation | ↑ microglial activation in the cortex | Immunohistochemistry | [29] | |||
mRNA Caspase-1 | ↑ expression in cortex | Real-time PCR | ||||
NLRP3 | ↑ protein levels | Western Blot | ||||
Leukocyte | ↑ numbers of leukocyte | Flow Cytometry | ||||
IL-1 β, IL-18, IFN-γ, IL-33 | ↑ level in the whole brain | ELISA | ||||
mRNA CXCL2 (MIP2-α), CX3CL1 (Fractalkine) | ↑ mRNA levels | Real-time PCR | ||||
mRNA CCL4 (MIP-1β) | ↓ mRNA levels | |||||
TNFα, MCP1, and IL-1β | ↑ in cerebellum | ELISA | [98] | |||
miR-155 | ↑ in cerebellum | Real-time PCR | ||||
mRNA IL-1β, IL-6, MCP-1 | ↑ whole brain expression mRNA levels | [101] | ||||
MCP-1 | Brain Tissue (Postmortem) | ↑ Level in VTA, SN, Hippocampus, and Amygdala | Human | ELISA | [100] | |
Iba-1+, Glut5 | ↑ microglial, iba-1+ and glut5+ cells, in cingulated cortex | Immunohistochemistry | ||||
Glut5 | ↑ microglial, Glut5 positive cells, in midbrain and VTA | |||||
mRNA TLR7 | ↑ expression in hippocampus | Real-time PCR | [28] | |||
TLR7, HMGB1, CD11b | ↑ in hippocampus | Western Blot | ||||
miR181b-3p | Liver | ↓ miRNA level in liver | C57BL/6J | RNA Next-Generation Sequencing | [97] | |
oral sugar test | Urine | ↑ gut permeability before the development of alcoholic liver disease | Sprague-Dawley rats | Gas chromatography | [96] | |
TSPO activity | Neuroimaging | ↑ Binding with F-DPA-714 during and 7 months after exposure | Non-human primates | PET | [104] | |
↑ Binding with (11C)PBR28 | Wistar rats | [103] | ||||
↓ Binding with (11C)PBR28 in alcoholic patients admitted in rehabilitation | Human | [103] [105] [106] |
Target | Experimental Design | Sample | Major Finding | Species | Method | References |
---|---|---|---|---|---|---|
IL-6, IL-8, IL-10 | Withdrawal | Serum | ↓ levels after a few days of abstinence in patients with an alcohol withdrawal syndrome | Human | ELISA | [82] |
Advanced glycation end products (AGE) | ↑ In patients with at least one month of abstinence compared to control. | Spectrophotometric | [112] | |||
IL-1RA, Il-8, Il-6 | ↑ Alcoholic patients without liver disease one month of detoxification, compared with control. | ELISA | [111] | |||
Clara cell secretory protein (CC16) | ↓ Alcoholic patients without liver disease one month of detoxification | |||||
CCL18 | Subcutaneous Adipocyte tissue | ↑ after one week of withdrawal in ALD patients | Real-time PCR | [108] |
Target | Experimental Design | Sample | Major Finding | Species | Method | References |
---|---|---|---|---|---|---|
sST2 | Alcoholic Liver Disease (ALD) | Plasma | It was positively correlated with Maddrey discriminant function (MDF), Child–Pugh scale, IL-6 Il1B, and ALD severity. | Human | ELISA | [117] |
High-sensitivity C-reactive protein (hsCRP) | It was correlated with the liver dysfunction marker and hepatic venous pressure. On the contrary, it had a negative correlation with survivability. | [115] | ||||
YKL40 | ↑ hit the severity of fibrosis and hepatic inflammation | [119] | ||||
IL-1β, IL-6, and TNF-α | Serum | Binge and escalating alcohol exposure ↑ serum levels. | Wistar rats | [116] | ||
IL-10 | Binge and escalating alcohol exposure ↑ at the end of 4 and 8 weeks but ↓ after that and was significantly decreased at 12 and 16 weeks. | |||||
HSP70, TNFα | Depending on the severity of the Alcoholic Fatty Liver Disease | Human | [114] | |||
IL-17A, IL-1beta, IL-6 | ↑ IL-6 highest diagnostic and prognostic biomarker to the fatal ALD course | [120] | ||||
Th17/Treg | Whole Blood | ↑ Th17 and ↓Treg frequencies were observed in non-survivors | Flow Cytometry | |||
mRNA expression of Toll-Like Receptors | Liver | Upregulated TLR1, 2, 4, 6, 7, 8, and 9 (TLR10, TLR11 Not tested) | C57Bl6/J | Real-time PCR | [123] | |
Microglia | Brain Tissue (Postmortem) | ↑ in the subventricular zone (SVZ) in an alcoholic with cirrhosis and hepatic encephalopathy | Human | Immunohistochemistry | [124] | |
IL-6 | ↑ in superior frontal gyrus (SFG), the precentral gyrus (PCG) in an alcoholic with cirrhosis and hepatic encephalopathy | ELISA | ||||
Acute Alcoholic Hepatitis | ||||||
sCD163 | Plasma | Positive correlation with severity and mortality of Acute Alcoholic Hepatitis (AAH) | Human | ELISA | [125] | |
IgM, IgA, IgG against p. gingivalis 33277 and w83 | Progression and severity of Acute Alcoholic Hepatitis (AAH) | [126] | ||||
IFN-γ | Serum | Negative association with low levels of IFN-γ at admission and long-term mortality in patients with Acute Alcoholic Hepatitis (AAH) | [122] | |||
Il-6 | Patients with IL-6 ≥ 38.66 pg/mL had significantly decreased mean survival than those with lower levels in Acute Alcoholic Hepatitis. | [121] | ||||
CD163 | Liver | ↑ in patients with Acute Alcoholic Hepatitis (AAH) | [125] |
Target | Experimental Design | Sample | Major Finding | Specie | Method | References |
---|---|---|---|---|---|---|
IL-1β, IL-10 | Acute Opioid Administration | Serum | ↑IL-10 | Sprague Dawley rats | ELISA | [130] |
CRP, IFN-γ, CXCL9, CCL11, CCL12, CCL25, CCL17, CCL4, CCR4, CX3CL1, IL-10 | Brain Tissue | ↑ CRP, IFN-γ, CXCL9, CCL11, CCL12, CCL25, CCL17, CCL4, CCR4, IL-10 ↓ CX3CL1 Increased levels of IL-10 in Nacc are correlated with reduced risk of opioid-dependence | Real-time PCR | |||
CCL5, IL-1β, TNFα | ↑ IL-1β in cortex, hippocampus, and striatum ↑ TNFα | Sprague Dawley rats | ELISA | [132] | ||
IL-6, IL-1β | Serum | No change | Sprague Dawley rats | ELISA | [131] |
Target | Experimental Design | Sample | Major Finding | Species | Method | References |
---|---|---|---|---|---|---|
IL-6, IL-1β | Chronic opioid exposure | Serum | ↑ IL-6, IL-1β after 6 days of morphine administration. | Sprague Dawley rats | ELISA | [131] |
IL-6, IL-1β | Brain Tissue | ↑ IL-6, IL-1β mRNA in NAcc and mPFC, after 6 days of morphine administration. | Real-time PCR | |||
IL-6, IL-1β | ↑ IL-6, IL-1β level in NAcc and mPFC, after 6 days of morphine administration. | ELISA | ||||
IL6, TNFα, NF-kB, iNOS | ↑ NF-kB, iNOS, TNFα, IL-6, after 8 weeks of tramadol administration. | Albino rats | Real-time PCR, WB | [134] | ||
IL6, TNFα | Serum | ↑ IL-6, TNFα, after 8 weeks of tramadol administration. | Real-time PCR | |||
CRP, TNF-α, IL-17A | ↑ IL-6, TNFα, after 14 days of 50 mg/kg treatment of tramadol or tapentadol. ↓ IL-17A only at 50mg/kg of tapentadol | Wistar rats | ELISA | [135] | ||
IL-1β, TNF, IL-6, CXCL1 | ↑ IL-1β, IL-6, TNFα, CXCL1 in a model of perinatal methadone exposure | Sprague Dawley rats | Multiplex Electrochemiluminescent Immunoassay (MECI) | [136] | ||
IL-1β, TNF, IL-6 | Peripheral blood mononuclear cells | ↑ Basal TNFα ↑ TNFα, IL-1β after LPS stimulation, in a model of perinatal methadone exposure. | MECI | |||
IL-1β, CXCL1, TNF, IL-6 | Brain Tissue | ↑ TLR4, MyD88, IL-1 β, CXCL1 in the cortex, in a model of perinatal methadone exposure. | Real-time PCR, MECI | |||
IL6, TNFα, TLR2, CD11b | ↑ IL-6, TNFα, TLR2, CD11b in NAcc after 3 days of morphine administration. | C57BL/6 mice | Real-time PCR | [137] | ||
TLR4 | ↑ TLR4 mRNA in NAcc, after prolonged remifentanil self-administration. | Sprague Dawley rats | Real-time PCR | [138] | ||
CCL5, IL-1β, TNFα | ↑ CCL5 in cortex and striatum ↓ IL-1β in the cortex, after scaling morphine administration for 5 days. | Sprague Dawley rats | ELISA | [132] | ||
CXCL12 | ↑ CXCL12 in VTA, after 6 days of morphine administration. | Sprague Dawley rats | Real-time PCR, WB | [139] | ||
Adaptive immunity markers | Serum | ↑ Total B cells ↑ IgG3, IgG4, IgM ↑ sCD40l, TNFα, TGFα, IL-8, endotoxin. In active heroin injection drug users. | Human | Flow cytometry, ELISA, LAL | [140] | |
CRP, C3 and C4, IgM, IgA, antioxidant capacity (TAC) | ↑ CRP, C3, C4, IgA, TAC in chronic opium smokers. | ELISA, FRAP | [141] | |||
TNFα | Plasma | ↑ TNFα in OUD patients. | ELISA | [142] | ||
Immunological parameters | Serum | ↑ white blood cell, neutrophil count, and neutrophil percentage were ↓ lymphocyte percentage, and basophils count ↑ inflammatory indexes. In OUD patients. | N.D. | [141] | ||
PBL proliferation, IL-2, IL-4, IL-6, IL-10, IFNγ | Whole blood | ↑ Peripheral Blood Leukocytes (PBL) proliferation ↑ Basal IL-6 ↑ IL-10 release after stimulation. In heroin addicts. | ELISA | [143] | ||
IL-1β, IL-15, CD15, CD68, IL-8, IL-10, TNFα, IL-6, COX-2, HSP-70, IRP-150 | Brain Tissue (Postmortem) | ↑ IL-15, CD68, TNF-a, IL-6; COX-2, HSP-70, ORP-150, in heroin-related deaths. | Immunohistochemistry, WB | [144] | ||
TNFα, IL-8 | Plasma | ↑ TNFα, IL-8 in heroin-dependent patients. TNFα, IL-8 were correlated to years using heroin | ELISA | [145] | ||
Dysregulated gene expression | Brain Tissue (Postmortem) | OUD patients exhibit an enhanced expression of transcripts related to neuroinflammation. Top activated upstream regulators were identified to be TNFα, IL-1β, NFkB in DLPFC and IL-1β in NAcc. | RNA Next-Generation sequencing | [146] | ||
↑ Gene module firebrick3 (associated with immune responses) in opioid abuse group. | [147] | |||||
IL4 and PECAM1 are identified as critical genes for opioid addiction. | [148] |
Target | Experimental Design | Sample | Major Finding | Species | Method | References |
---|---|---|---|---|---|---|
IL-1β, TNFα | Withdrawal | Brain Tissue | ↑ IL-1β, TNFα Related with withdrawal behavior in hippocampus | Wistar rats | ELISA | [158] |
IL-1β | ↑ IL-1β Related with withdrawal behavior in hippocampus | C57BL/6 mice | [159] | |||
TNFα | TNFα is required for withdrawal behavior in Lateral Habenula | C57BL/6J mice | N.A. | [160] | ||
↑ TNF-α, IL-6, IL-1β, IL-10 | ↑ TNF-α, IL-6, IL-1β, IL-10 | Swiss mice | ELISA | [161] | ||
CCL5, IL-1β, TNFα | ↑ TNF-α in striatum ↑IL-1β in hippocampus and striatum ↓ IL-1β in cortex ↓ CCL5 in cortex | Sprague Dawley rats | [132] | |||
Differentially expressed genes in neurons, microglia and astrocytes | ↑ TNF-α in the three cell types ↑ Shift in astrocytes in CeA | Sprague Dawley rats | Real-time PCR | [157] | ||
IL1-B, IL-6, IL-8, IL-10, TNFα | Plasma | ↑ IL-1β, IL-6, IL-8 | Human | Flow Cytometry | [163] | |
IL-6, CRP, TNFα, TGF-1B | Serum | ↓ TNF-α, CRP, IL-6, TGF-β1 after MMT | Antibody pair assay system | [164] | ||
TNFα | ↑ TNFα at baseline ↓ TNFα after MMT | ELISA | [142] | |||
Plasma TNFα, CRP, IL-6, TGF-1β | Serum, Urine | ↓ CRP, TGF-β1 after MMT Higher IL-6 levels were associated with poor MMT outcomes. | Antibody pair assay system | [165] | ||
TNF, IL-1, IL-1ra, IL-6, IL-8, IL-10, IFN-, CCL2, in relation with chronic pain | Serum | ↑ IFN-γ ↑ Positive opioid urine screen | Bio-Plex assay | [167] | ||
TNFα, IL-8 | Plasma | ↓ TNFα, IL-8 in MMT-Dextromethorphan, not in MMT-Placebo | ELISA | [145] | ||
TNFα, IL-8, IL-6, TGFα, CRP | ↓ TNFα in MMT-DM compared to MMT-Placebo | Antibody pair assay system | [166] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morcuende, A.; Navarrete, F.; Nieto, E.; Manzanares, J.; Femenía, T. Inflammatory Biomarkers in Addictive Disorders. Biomolecules 2021, 11, 1824. https://doi.org/10.3390/biom11121824
Morcuende A, Navarrete F, Nieto E, Manzanares J, Femenía T. Inflammatory Biomarkers in Addictive Disorders. Biomolecules. 2021; 11(12):1824. https://doi.org/10.3390/biom11121824
Chicago/Turabian StyleMorcuende, Alvaro, Francisco Navarrete, Elena Nieto, Jorge Manzanares, and Teresa Femenía. 2021. "Inflammatory Biomarkers in Addictive Disorders" Biomolecules 11, no. 12: 1824. https://doi.org/10.3390/biom11121824
APA StyleMorcuende, A., Navarrete, F., Nieto, E., Manzanares, J., & Femenía, T. (2021). Inflammatory Biomarkers in Addictive Disorders. Biomolecules, 11(12), 1824. https://doi.org/10.3390/biom11121824