Do We Store Packed Red Blood Cells under “Quasi-Diabetic” Conditions?
Abstract
:1. Red Blood Cells Transfusion
2. Red Blood Cells Aging (In Vitro and In Vivo)
2.1. In Vivo Aging
2.2. In Vitro Aging (Cold-Storage)
3. Sugar as a Potential Factor of RBC Lesion
4. Limitation
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Slonim, R.; Wang, C.; Garbarino, E. The Market for Blood. J. Econ. Perspect. 2014, 28, 177–196. [Google Scholar] [CrossRef] [PubMed]
- Hess, J.R. An update on solutions for red cell storage. Vox Sang. 2006, 91, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Zehnder, L.; Schulzki, T.; Goede, J.S.; Hayes, J.; Reinhart, W.H. Erythrocyte storage in hypertonic (SAGM) or isotonic (PAGGSM) conservation medium: Influence on cell properties. Vox Sang. 2008, 95, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Koch, C.G.; Sessler, D.I.; Duncan, A.E.; Mascha, E.J.; Li, L.; Yang, D.; Figueroa, P.; Sabik, J.F., 3rd; Mihaljevic, T.; Svensson, L.G.; et al. Effect of red blood cell storage duration on major postoperative complications in cardiac surgery: A randomized trial. J. Thorac. Cardiovasc. Surg. 2020, 160, 1505–1514.e1503. [Google Scholar] [CrossRef] [PubMed]
- Koch, C.G.; Li, L.; Duncan, A.I.; Mihaljevic, T.; Cosgrove, D.M.; Loop, F.D.; Starr, N.J.; Blackstone, E.H. Morbidity and mortality risk associated with red blood cell and blood-component transfusion in isolated coronary artery bypass grafting. Crit. Care Med. 2006, 34, 1608–1616. [Google Scholar] [CrossRef]
- Koch, C.G.; Li, L.; Duncan, A.I.; Mihaljevic, T.; Loop, F.D.; Starr, N.J.; Blackstone, E.H. Transfusion in coronary artery bypass grafting is associated with reduced long-term survival. Ann. Thorac. Surg. 2006, 81, 1650–1657. [Google Scholar] [CrossRef]
- Kuduvalli, M.; Oo, A.Y.; Newall, N.; Grayson, A.D.; Jackson, M.; Desmond, M.J.; Fabri, B.M.; Rashid, A. Effect of peri-operative red blood cell transfusion on 30-day and 1-year mortality following coronary artery bypass surgery. Eur. J. Cardiothorac. Surg. 2005, 27, 592–598. [Google Scholar] [CrossRef]
- Zuckerman, J.; Coburn, N.; Callum, J.; Mahar, A.L.; Acuna, S.A.; Guttman, M.P.; Zuk, V.; Lin, Y.; Turgeon, A.F.; Martel, G.; et al. Association of perioperative red blood cell transfusions with all-cause and cancer-specific death in patients undergoing surgery for gastrointestinal cancer: Long-term outcomes from a population-based cohort. Surgery 2021. [Google Scholar] [CrossRef]
- Sapiano, M.R.P.; Savinkina, A.A.; Ellingson, K.D.; Haass, K.A.; Baker, M.L.; Henry, R.A.; Berger, J.J.; Kuehnert, M.J.; Basavaraju, S.V. Supplemental findings from the National Blood Collection and Utilization Surveys, 2013 and 2015. Transfusion 2017, 57 (Suppl. S2), 1599–1624. [Google Scholar] [CrossRef]
- Goel, R.; Tobian, A.A.R.; Shaz, B.H. Noninfectious transfusion-associated adverse events and their mitigation strategies. Blood 2019, 133, 1831–1839. [Google Scholar] [CrossRef] [Green Version]
- Rohde, J.M.; Dimcheff, D.E.; Blumberg, N.; Saint, S.; Langa, K.M.; Kuhn, L.; Hickner, A.; Rogers, M.A. Health care-associated infection after red blood cell transfusion: A systematic review and meta-analysis. JAMA 2014, 311, 1317–1326. [Google Scholar] [CrossRef] [PubMed]
- Rother, R.P.; Bell, L.; Hillmen, P.; Gladwin, M.T. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: A novel mechanism of human disease. JAMA 2005, 293, 1653–1662. [Google Scholar] [CrossRef]
- Risbano, M.G.; Kanias, T.; Triulzi, D.; Donadee, C.; Barge, S.; Badlam, J.; Jain, S.; Belanger, A.M.; Kim-Shapiro, D.B.; Gladwin, M.T. Effects of Aged Stored Autologous Red Blood Cells on Human Endothelial Function. Am. J. Respir. Crit. Care Med. 2015, 192, 1223–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gladwin, M.T.; Kim-Shapiro, D.B. Storage lesion in banked blood due to hemolysis-dependent disruption of nitric oxide homeostasis. Curr. Opin. Hematol. 2009, 16, 515–523. [Google Scholar] [CrossRef]
- Corwin, H.L.; Gettinger, A.; Pearl, R.G.; Fink, M.P.; Levy, M.M.; Abraham, E.; MacIntyre, N.R.; Shabot, M.M.; Duh, M.S.; Shapiro, M.J. The CRIT Study: Anemia and blood transfusion in the critically ill--current clinical practice in the United States. Crit. Care Med. 2004, 32, 39–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madjdpour, C.; Spahn, D.R. Allogeneic red blood cell transfusions: Efficacy, risks, alternatives and indications. Br. J. Anaesth 2005, 95, 33–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopewell, S.; Omar, O.; Hyde, C.; Yu, L.M.; Doree, C.; Murphy, M.F. A systematic review of the effect of red blood cell transfusion on mortality: Evidence from large-scale observational studies published between 2006 and 2010. BMJ Open 2013, 3, e002154. [Google Scholar] [CrossRef]
- Bernard, A.C.; Davenport, D.L.; Chang, P.K.; Vaughan, T.B.; Zwischenberger, J.B. Intraoperative transfusion of 1 U to 2 U packed red blood cells is associated with increased 30-day mortality, surgical-site infection, pneumonia, and sepsis in general surgery patients. J. Am. Coll. Surg. 2009, 208, 931–937, 937 e931–932; discussion 938–939. [Google Scholar] [CrossRef]
- Isbister, J.P.; Shander, A.; Spahn, D.R.; Erhard, J.; Farmer, S.L.; Hofmann, A. Adverse blood transfusion outcomes: Establishing causation. Transfus. Med. Rev. 2011, 25, 89–101. [Google Scholar] [CrossRef]
- Spieth, P.M.; Zhang, H. Storage injury and blood transfusions in trauma patients. Curr. Opin. Anaesthesiol. 2018, 31, 234–237. [Google Scholar] [CrossRef]
- Sparrow, R.L. Red blood cell storage duration and trauma. Transfus. Med. Rev. 2015, 29, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Aubron, C.; Syres, G.; Nichol, A.; Bailey, M.; Board, J.; Magrin, G.; Murray, L.; Presneill, J.; Sutton, J.; Vallance, S.; et al. A pilot feasibility trial of allocation of freshest available red blood cells versus standard care in critically ill patients. Transfusion 2012, 52, 1196–1202. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, J.; Hebert, P.; Fergusson, D.; Tinmouth, A.; Blajchman, M.A.; Callum, J.; Cook, D.; Marshall, J.C.; McIntyre, L.; Turgeon, A.F.; et al. The Age of Blood Evaluation (ABLE) randomized controlled trial: Study design. Transfus. Med. Rev. 2011, 25, 197–205. [Google Scholar] [CrossRef]
- Shah, A.; Brunskill, S.J.; Desborough, M.J.; Doree, C.; Trivella, M.; Stanworth, S.J. Transfusion of red blood cells stored for shorter versus longer duration for all conditions. Cochrane Database Syst. Rev. 2018, 12, CD010801. [Google Scholar] [CrossRef]
- Koch, C.G.; Duncan, A.I.; Figueroa, P.; Dai, L.; Sessler, D.I.; Frank, S.M.; Ness, P.M.; Mihaljevic, T.; Blackstone, E.H. Real Age: Red Blood Cell Aging During Storage. Ann. Thorac. Surg. 2019, 107, 973–980. [Google Scholar] [CrossRef] [PubMed]
- De Back, D.Z.; Kostova, E.B.; van Kraaij, M.; van den Berg, T.K.; van Bruggen, R. Of macrophages and red blood cells; a complex love story. Front. Physiol. 2014, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- Lutz, H.U.; Bogdanova, A. Mechanisms tagging senescent red blood cells for clearance in healthy humans. Front. Physiol. 2013, 4, 387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosman, G.J. Survival of red blood cells after transfusion: Processes and consequences. Front. Physiol. 2013, 4, 376. [Google Scholar] [CrossRef] [Green Version]
- Lang, E.; Pozdeev, V.I.; Xu, H.C.; Shinde, P.V.; Behnke, K.; Hamdam, J.M.; Lehnert, E.; Scharf, R.E.; Lang, F.; Haussinger, D.; et al. Storage of Erythrocytes Induces Suicidal Erythrocyte Death. Cell Physiol. Biochem. 2016, 39, 668–676. [Google Scholar] [CrossRef]
- Bordin, L.; Fiore, C.; Bragadin, M.; Brunati, A.M.; Clari, G. Regulation of membrane band 3 Tyr-phosphorylation by proteolysis of p72(Syk) and possible involvement in senescence process. Acta Biochim. Biophys. Sin. 2009, 41, 846–851. [Google Scholar] [CrossRef] [Green Version]
- Lutz, H.U. Naturally occurring autoantibodies in mediating clearance of senescent red blood cells. Adv. Exp. Med. Biol. 2012, 750, 76–90. [Google Scholar] [CrossRef] [PubMed]
- Hess, J.R. RBC storage lesions. Blood 2016, 128, 1544–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hess, J.R. Measures of stored red blood cell quality. Vox Sang. 2014, 107, 1–9. [Google Scholar] [CrossRef]
- Antonelou, M.H.; Kriebardis, A.G.; Stamoulis, K.E.; Economou-Petersen, E.; Margaritis, L.H.; Papassideri, I.S. Red blood cell aging markers during storage in citrate-phosphate-dextrose-saline-adenine-glucose-mannitol. Transfusion 2010, 50, 376–389. [Google Scholar] [CrossRef]
- Bogdanova, A.; Makhro, A.; Wang, J.; Lipp, P.; Kaestner, L. Calcium in red blood cells-a perilous balance. Int. J. Mol. Sci. 2013, 14, 9848–9872. [Google Scholar] [CrossRef] [Green Version]
- Brugnara, C.; de Franceschi, L.; Alper, S.L. Inhibition of Ca(2+)-dependent K+ transport and cell dehydration in sickle erythrocytes by clotrimazole and other imidazole derivatives. J. Clin. Investig. 1993, 92, 520–526. [Google Scholar] [CrossRef] [Green Version]
- Foller, M.; Huber, S.M.; Lang, F. Erythrocyte programmed cell death. IUBMB Life 2008, 60, 661–668. [Google Scholar] [CrossRef]
- McGoron, A.J.; Joiner, C.H.; Palascak, M.B.; Claussen, W.J.; Franco, R.S. Dehydration of mature and immature sickle red blood cells during fast oxygenation/deoxygenation cycles: Role of KCl cotransport and extracellular calcium. Blood 2000, 95, 2164–2168. [Google Scholar] [CrossRef]
- Bosman, G.J.; Lasonder, E.; Groenen-Dopp, Y.A.; Willekens, F.L.; Werre, J.M.; Novotny, V.M. Comparative proteomics of erythrocyte aging in vivo and in vitro. J. Proteom. 2010, 73, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Lee, S.; Ji, M.; Kim, K.; Son, Y.; Jang, S.; Park, Y. Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging. Sci. Rep. 2016, 6, 34257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kampf, S.; Seiler, E.; Bujok, J.; Hofmann-Lehmann, R.; Riond, B.; Makhro, A.; Bogdanova, A. Aging Markers in Equine Red Blood Cells. Front. Physiol. 2019, 10, 893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mykhailova, O.; Olafson, C.; Turner, T.R.; D’Alessandro, A.; Acker, J.P. Donor-dependent aging of young and old red blood cell subpopulations: Metabolic and functional heterogeneity. Transfusion 2020, 60, 2633–2646. [Google Scholar] [CrossRef] [PubMed]
- Kaestner, L.; Bogdanova, A.; Egee, S. Calcium Channels and Calcium-Regulated Channels in Human Red Blood Cells. Adv. Exp. Med. Biol. 2020, 1131, 625–648. [Google Scholar] [CrossRef]
- Bernhardt, I.; Nguyen, D.B.; Wesseling, M.C.; Kaestner, L. Intracellular Ca(2+) Concentration and Phosphatidylserine Exposure in Healthy Human Erythrocytes in Dependence on in vivo Cell Age. Front. Physiol. 2019, 10, 1629. [Google Scholar] [CrossRef]
- Carruthers, A.; DeZutter, J.; Ganguly, A.; Devaskar, S.U. Will the original glucose transporter isoform please stand up! Am. J. Physiol. Endocrinol. Metab. 2009, 297, E836–E848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guizouarn, H.; Allegrini, B. Erythroid glucose transport in health and disease. Pflug. Arch. 2020, 472, 1371–1383. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.L.; Santin, A.E.; Bryant, P.A.; Holman, R.; Rodnick, K.J. The initial noncovalent binding of glucose to human hemoglobin in nonenzymatic glycation. Glycobiology 2013, 23, 1250–1259. [Google Scholar] [CrossRef] [Green Version]
- Stevens, V.J.; Vlassara, H.; Abati, A.; Cerami, A. Nonenzymatic glycosylation of hemoglobin. J. Biol. Chem. 1977, 252, 2998–3002. [Google Scholar] [CrossRef]
- Sayinalp, S.; Sozen, T.; Usman, A.; Dundar, S. Investigation of the effect of poorly controlled diabetes mellitus on erythrocyte life. J. Diabetes Complicat. 1995, 9, 190–193. [Google Scholar] [CrossRef]
- Cohen, R.M.; Franco, R.S.; Khera, P.K.; Smith, E.P.; Lindsell, C.J.; Ciraolo, P.J.; Palascak, M.B.; Joiner, C.H. Red cell life span heterogeneity in hematologically normal people is sufficient to alter HbA1c. Blood 2008, 112, 4284–4291. [Google Scholar] [CrossRef] [Green Version]
- Chandramouli, V.; Carter, J.R., Jr. Cell membrane changes in chronically diabetic rats. Diabetes 1975, 24, 257–262. [Google Scholar] [CrossRef]
- Bizjak, D.A.; Brinkmann, C.; Bloch, W.; Grau, M. Increase in Red Blood Cell-Nitric Oxide Synthase Dependent Nitric Oxide Production during Red Blood Cell Aging in Health and Disease: A Study on Age Dependent Changes of Rheologic and Enzymatic Properties in Red Blood Cells. PLoS ONE 2015, 10, e0125206. [Google Scholar] [CrossRef] [Green Version]
- Brinkmann, C.; Bizjak, D.A.; Bischof, S.; Latsch, J.; Brixius, K.; Bloch, W.; Grau, M. Endurance training alters enzymatic and rheological properties of red blood cells (RBC) in type 2 diabetic men during in vivo RBC aging. Clin. Hemorheol. Microcirc. 2016, 63, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Virtue, M.A.; Furne, J.K.; Nuttall, F.Q.; Levitt, M.D. Relationship between GHb concentration and erythrocyte survival determined from breath carbon monoxide concentration. Diabetes Care 2004, 27, 931–935. [Google Scholar] [CrossRef] [Green Version]
- Peterson, C.M.; Jones, R.L.; Koenig, R.J.; Melvin, E.T.; Lehrman, M.L. Reversible hematologic sequelae of diabetes mellitus. Ann. Intern. Med. 1977, 86, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Mazzanti, L.; Faloia, E.; Rabini, R.A.; Staffolani, R.; Kantar, A.; Fiorini, R.; Swoboda, B.; de Pirro, R.; Bertoli, E. Diabetes mellitus induces red blood cell plasma membrane alterations possibly affecting the aging process. Clin. Biochem. 1992, 25, 41–46. [Google Scholar] [CrossRef]
- Baba, Y.; Kai, M.; Setoyama, S.; Otsuji, S. The lower levels of erythrocyte surface electric charge in diabetes mellitus. Clin. Chim. Acta 1978, 84, 247–249. [Google Scholar] [CrossRef]
- Miller, J.A.; Gravallese, E.; Bunn, H.F. Nonenzymatic glycosylation of erythrocyte membrane proteins. Relevance to diabetes. J. Clin. Investig. 1980, 65, 896–901. [Google Scholar] [CrossRef] [Green Version]
- Kamada, T.; McMillan, D.E.; Yamashita, T.; Otsuji, S. Lowered membrane fluidity of younger erythrocytes in diabetes. Diabetes Res. Clin. Pract. 1992, 16, 1–6. [Google Scholar] [CrossRef]
- Rattan, V.; Shen, Y.; Sultana, C.; Kumar, D.; Kalra, V.K. Diabetic RBC-induced oxidant stress leads to transendothelial migration of monocyte-like HL-60 cells. Am. J. Physiol. 1997, 273, E369–E375. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Shin, S. Changes in erythrocyte aggregation and deformability in diabetes mellitus: A brief review. Indian J. Exp. Biol. 2009, 47, 7–15. [Google Scholar] [PubMed]
- English, E.; Idris, I.; Smith, G.; Dhatariya, K.; Kilpatrick, E.S.; John, W.G. The effect of anaemia and abnormalities of erythrocyte indices on HbA1c analysis: A systematic review. Diabetologia 2015, 58, 1409–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buda, P.; Friedman-Gruszczynska, J.; Ksiazyk, J. Congenital diarrhoea. Med. Wieku Rozw. 2011, 15, 477–486. [Google Scholar]
- Hsieh, C.; Prabhu, N.C.S.; Rajashekaraiah, V. Age-Related Modulations in Erythrocytes under Blood Bank Conditions. Transfus. Med. Hemother. 2019, 46, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.; Prabhu, N.C.S.; Rajashekaraiah, V. Influence of AS-7 on the storage lesion in young and old circulating erythrocytes. Transfus. Apher. Sci. 2020, 59, 102905. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.; Rajashekaraiah, V. Effects of rejuvenation on young and old erythrocytes of banked blood towards the end of storage period. Am. J. Blood Res. 2020, 10, 161–171. [Google Scholar] [PubMed]
- Lippi, G.; Mercadanti, M.; Aloe, R.; Targher, G. Erythrocyte mechanical fragility is increased in patients with type 2 diabetes. Eur. J. Intern. Med. 2012, 23, 150–153. [Google Scholar] [CrossRef]
- Almizraq, R.; Tchir, J.D.; Holovati, J.L.; Acker, J.P. Storage of red blood cells affects membrane composition, microvesiculation, and in vitro quality. Transfusion 2013, 53, 2258–2267. [Google Scholar] [CrossRef]
- Bardyn, M.; Rappaz, B.; Jaferzadeh, K.; Crettaz, D.; Tissot, J.D.; Moon, I.; Turcatti, G.; Lion, N.; Prudent, M. Red blood cells ageing markers: A multi-parametric analysis. Blood Transfus. 2017, 15, 239–248. [Google Scholar] [CrossRef]
- Bennett-Guerrero, E.; Veldman, T.H.; Doctor, A.; Telen, M.J.; Ortel, T.L.; Reid, T.S.; Mulherin, M.A.; Zhu, H.; Buck, R.D.; Califf, R.M.; et al. Evolution of adverse changes in stored RBCs. Proc. Natl. Acad. Sci. USA 2007, 104, 17063–17068. [Google Scholar] [CrossRef] [Green Version]
- Buehler, P.W.; Karnaukhova, E.; Gelderman, M.P.; Alayash, A.I. Blood aging, safety, and transfusion: Capturing the “radical” menace. Antioxid. Redox Signal. 2011, 14, 1713–1728. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Schubert, P.; Devine, D.V. Proteomic analysis of red blood cells from donors exhibiting high hemolysis demonstrates a reduction in membrane-associated proteins involved in the oxidative response. Transfusion 2017, 57, 2248–2256. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, A.; Kriebardis, A.G.; Rinalducci, S.; Antonelou, M.H.; Hansen, K.C.; Papassideri, I.S.; Zolla, L. An update on red blood cell storage lesions, as gleaned through biochemistry and omics technologies. Transfusion 2015, 55, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Gautam, R.; Oh, J.Y.; Marques, M.B.; Dluhy, R.A.; Patel, R.P. Characterization of Storage-Induced Red Blood Cell Hemolysis Using Raman Spectroscopy. Lab. Med. 2018, 49, 298–310. [Google Scholar] [CrossRef] [PubMed]
- Gevi, F.; D’Alessandro, A.; Rinalducci, S.; Zolla, L. Alterations of red blood cell metabolome during cold liquid storage of erythrocyte concentrates in CPD-SAGM. J. Proteom. 2012, 76, 168–180. [Google Scholar] [CrossRef]
- Gkoumassi, E.; Dijkstra-Tiekstra, M.J.; Hoentjen, D.; de Wildt-Eggen, J. Hemolysis of red blood cells during processing and storage. Transfusion 2012, 52, 489–492. [Google Scholar] [CrossRef]
- Hess, J.R.; Sparrow, R.L.; van der Meer, P.F.; Acker, J.P.; Cardigan, R.A.; Devine, D.V. Red blood cell hemolysis during blood bank storage: Using national quality management data to answer basic scientific questions. Transfusion 2009, 49, 2599–2603. [Google Scholar] [CrossRef]
- Horvath, K.A.; Acker, M.A.; Chang, H.; Bagiella, E.; Smith, P.K.; Iribarne, A.; Kron, I.L.; Lackner, P.; Argenziano, M.; Ascheim, D.D.; et al. Blood transfusion and infection after cardiac surgery. Ann. Thorac. Surg. 2013, 95, 2194–2201. [Google Scholar] [CrossRef] [Green Version]
- Karon, B.S.; van Buskirk, C.M.; Jaben, E.A.; Hoyer, J.D.; Thomas, D.D. Temporal sequence of major biochemical events during blood bank storage of packed red blood cells. Blood Transfus. 2012, 10, 453–461. [Google Scholar] [CrossRef] [PubMed]
- McAteer, M.J.; Dumont, L.J.; Cancelas, J.; Rugg, N.; Vassallo, R.; Whitley, P.; Graminske, S.; Friedman, K. Multi-institutional randomized control study of haemolysis in stored red cell units prepared manually or by an automated system. Vox Sang. 2010, 99, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Salzer, U.; Zhu, R.; Luten, M.; Isobe, H.; Pastushenko, V.; Perkmann, T.; Hinterdorfer, P.; Bosman, G.J. Vesicles generated during storage of red cells are rich in the lipid raft marker stomatin. Transfusion 2008, 48, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Simon, T.L.; Marcus, C.S.; Myhre, B.A.; Nelson, E.J. Effects of AS-3 nutrient-additive solution on 42 and 49 days of storage of red cells. Transfusion 1987, 27, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Sowemimo-Coker, S.O. Red blood cell hemolysis during processing. Transfus. Med. Rev. 2002, 16, 46–60. [Google Scholar] [CrossRef]
- Stapley, R.; Owusu, B.Y.; Brandon, A.; Cusick, M.; Rodriguez, C.; Marques, M.B.; Kerby, J.D.; Barnum, S.R.; Weinberg, J.A.; Lancaster, J.R., Jr.; et al. Erythrocyte storage increases rates of NO and nitrite scavenging: Implications for transfusion-related toxicity. Biochem. J. 2012, 446, 499–508. [Google Scholar] [CrossRef] [Green Version]
- Van ‘t Erve, T.J.; Wagner, B.A.; Martin, S.M.; Knudson, C.M.; Blendowski, R.; Keaton, M.; Holt, T.; Hess, J.R.; Buettner, G.R.; Ryckman, K.K.; et al. The heritability of hemolysis in stored human red blood cells. Transfusion 2015, 55, 1178–1185. [Google Scholar] [CrossRef] [Green Version]
- Calderon-Salinas, J.V.; Munoz-Reyes, E.G.; Guerrero-Romero, J.F.; Rodriguez-Moran, M.; Bracho-Riquelme, R.L.; Carrera-Gracia, M.A.; Quintanar-Escorza, M.A. Eryptosis and oxidative damage in type 2 diabetic mellitus patients with chronic kidney disease. Mol. Cell Biochem. 2011, 357, 171–179. [Google Scholar] [CrossRef]
- Nicolay, J.P.; Schneider, J.; Niemoeller, O.M.; Artunc, F.; Portero-Otin, M.; Haik, G., Jr.; Thornalley, P.J.; Schleicher, E.; Wieder, T.; Lang, F. Stimulation of suicidal erythrocyte death by methylglyoxal. Cell Physiol. Biochem. 2006, 18, 223–232. [Google Scholar] [CrossRef]
- Boas, F.E.; Forman, L.; Beutler, E. Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia. Proc. Natl. Acad. Sci. USA 1998, 95, 3077–3081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosman, G.J.; Cluitmans, J.C.; Groenen, Y.A.; Werre, J.M.; Willekens, F.L.; Novotny, V.M. Susceptibility to hyperosmotic stress-induced phosphatidylserine exposure increases during red blood cell storage. Transfusion 2011, 51, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Dinkla, S.; Peppelman, M.; van der Raadt, J.; Atsma, F.; Novotny, V.M.; van Kraaij, M.G.; Joosten, I.; Bosman, G.J. Phosphatidylserine exposure on stored red blood cells as a parameter for donor-dependent variation in product quality. Blood Transfus. 2014, 12, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Roelofsen, B.; Op Den Kamp, J.A.; van Deenen, L.L. Structural and dynamic aspects of red cell phospholipids; featuring phosphatidylcholine. Biomed. Biochim. Acta 1987, 46, S10–S15. [Google Scholar] [PubMed]
- Verhoeven, A.J.; Hilarius, P.M.; Dekkers, D.W.; Lagerberg, J.W.; de Korte, D. Prolonged storage of red blood cells affects aminophospholipid translocase activity. Vox Sang. 2006, 91, 244–251. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes, A. 6. Glycemic Targets: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43, S66–S76. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, B.M.; Houben, A.J.; Berendschot, T.T.; Schouten, J.S.; Kroon, A.A.; van der Kallen, C.J.; Henry, R.M.; Koster, A.; Sep, S.J.; Dagnelie, P.C.; et al. Prediabetes and Type 2 Diabetes Are Associated With Generalized Microvascular Dysfunction: The Maastricht Study. Circulation 2016, 134, 1339–1352. [Google Scholar] [CrossRef] [Green Version]
- Schnell, O.; Crocker, J.B.; Weng, J. Impact of HbA1c Testing at Point of Care on Diabetes Management. J. Diabetes Sci. Technol. 2017, 11, 611–617. [Google Scholar] [CrossRef]
- Yazdanpanah, S.; Rabiee, M.; Tahriri, M.; Abdolrahim, M.; Rajab, A.; Jazayeri, H.E.; Tayebi, L. Evaluation of glycated albumin (GA) and GA/HbA1c ratio for diagnosis of diabetes and glycemic control: A comprehensive review. Crit. Rev. Clin. Lab. Sci. 2017, 54, 219–232. [Google Scholar] [CrossRef]
- Elgart, J.F.; Silvestrini, C.; Prestes, M.; Gonzalez, L.; Rucci, E.; Gagliardino, J.J. Drug treatment of type 2 diabetes: Its cost is significantly associated with HbA1c levels. Int. J. Clin. Pract. 2019, 73, e13336. [Google Scholar] [CrossRef] [PubMed]
- Zeller, W.P.; Eyzaguirre, M.; Hannigan, J.; Ozog, K.; Suarez, C.; Silberman, S.; Hoffstadter, A.; Hurley, R.M. Fast hemoglobins and red blood cell metabolites in citrate phosphate dextrose adenine stored blood. Ann. Clin. Lab. Sci. 1985, 15, 61–65. [Google Scholar]
- Szelenyi, J.G.; Foldi, J.; Hollan, S.R. Enhanced nonenzymatic glycosylation of blood proteins in stored blood. Transfusion 1983, 23, 11–14. [Google Scholar] [CrossRef]
- Savu, O.; Bradescu, O.M.; Serafinceanu, C.; Iosif, L.; Tirgoviste, C.I.; Stoian, I. Erythrocyte caspase-3 and antioxidant defense is activated in red blood cells and plasma of type 2 diabetes patients at first clinical onset. Redox. Rep. 2013, 18, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Prosenz, J.; Ohlinger, T.; Mullner, E.W.; Marculescu, R.; Gerner, C.; Salzer, U.; Kiefer, F.W.; Baron, D.M. Glycated hemoglobin concentrations of red blood cells minimally increase during storage under standard blood banking conditions. Transfusion 2019, 59, 454–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzydzan, O.; Brodyak, I.; Sokol-Letowska, A.; Kucharska, A.Z.; Sybirna, N. Loganic Acid, an Iridoid Glycoside Extracted from Cornus mas L. Fruits, Reduces of Carbonyl/Oxidative Stress Biomarkers in Plasma and Restores Antioxidant Balance in Leukocytes of Rats with Streptozotocin-Induced Diabetes Mellitus. Life 2020, 10, 349. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Mirasole, C.; Zolla, L. Haemoglobin glycation (Hb1Ac) increases during red blood cell storage: A MALDI-TOF mass-spectrometry-based investigation. Vox Sang. 2013, 105, 177–180. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Nemkov, T.; Hansen, K.C.; Szczepiorkowski, Z.M.; Dumont, L.J. Red blood cell storage in additive solution-7 preserves energy and redox metabolism: A metabolomics approach. Transfusion 2015, 55, 2955–2966. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.A.L.; Azevedo Filho, C.A.; Pereira, G.; Silva, D.C.N.; Castro, M.; Almeida, A.F.; Lucena, S.C.A.; Santos, B.S.; Barjas-Castro, M.L.; Fontes, A. Vitamin E nanoemulsion activity on stored red blood cells. Transfus. Med. 2017, 27, 213–217. [Google Scholar] [CrossRef]
- Adeshara, K.A.; Diwan, A.G.; Jagtap, T.R.; Advani, K.; Siddiqui, A.; Tupe, R.S. Relationship between plasma glycation with membrane modification, oxidative stress and expression of glucose trasporter-1 in type 2 diabetes patients with vascular complications. J. Diabetes Complicat. 2017, 31, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Annadurai, T.; Vasanthakumar, A.; Geraldine, P.; Thomas, P.A. Variations in erythrocyte antioxidant levels and lipid peroxidation status and in serum lipid profile parameters in relation to blood haemoglobin A1c values in individuals with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2014, 105, 58–69. [Google Scholar] [CrossRef]
- Beard, K.M.; Shangari, N.; Wu, B.; O’Brien, P.J. Metabolism, not autoxidation, plays a role in alpha-oxoaldehyde- and reducing sugar-induced erythrocyte GSH depletion: Relevance for diabetes mellitus. Mol. Cell Biochem. 2003, 252, 331–338. [Google Scholar] [CrossRef]
- Blakytny, R.; Harding, J.J. Glycation (non-enzymic glycosylation) inactivates glutathione reductase. Biochem. J. 1992, 288 Pt 1, 303–307. [Google Scholar] [CrossRef] [Green Version]
- Bravi, M.C.; Pietrangeli, P.; Laurenti, O.; Basili, S.; Cassone-Faldetta, M.; Ferri, C.; de Mattia, G. Polyol pathway activation and glutathione redox status in non-insulin-dependent diabetic patients. Metabolism 1997, 46, 1194–1198. [Google Scholar] [CrossRef]
- Choudhuri, S.; Mandal, L.K.; Paine, S.K.; Sen, A.; Dutta, D.; Chowdhury, I.H.; Mukherjee, A.; Saha, A.; Bhadhuri, G.; Bhattacharya, B. Role of hyperglycemia-mediated erythrocyte redox state alteration in the development of diabetic retinopathy. Retina 2013, 33, 207–216. [Google Scholar] [CrossRef]
- Dominguez, C.; Ruiz, E.; Gussinye, M.; Carrascosa, A. Oxidative stress at onset and in early stages of type 1 diabetes in children and adolescents. Diabetes Care 1998, 21, 1736–1742. [Google Scholar] [CrossRef]
- Fatima, N.; Faisal, S.M.; Zubair, S.; Siddiqui, S.S.; Moin, S.; Owais, M. Emerging role of Interleukins IL-23/IL-17 axis and biochemical markers in the pathogenesis of Type 2 Diabetes: Association with age and gender in human subjects. Int. J. Biol. Macromol. 2017, 105, 1279–1288. [Google Scholar] [CrossRef] [PubMed]
- Kocic, R.; Pavlovic, D.; Kocic, G.; Pesic, M. Susceptibility to oxidative stress, insulin resistance, and insulin secretory response in the development of diabetes from obesity. Vojnosanit. Pregl. 2007, 64, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Konukoglu, D.; Akcay, T.; Dincer, Y.; Hatemi, H. The susceptibility of red blood cells to autoxidation in type 2 diabetic patients with angiopathy. Metabolism 1999, 48, 1481–1484. [Google Scholar] [CrossRef]
- Kotake, M.; Shinohara, R.; Kato, K.; Hayakawa, N.; Hayashi, R.; Uchimura, K.; Makino, M.; Nagata, M.; Kakizawa, H.; Nakagawa, H.; et al. Reduction of activity, but no decrease in concentration, of erythrocyte Cu,Zn-superoxide dismutase by hyperglycaemia in diabetic patients. Diabet. Med. 1998, 15, 668–671. [Google Scholar] [CrossRef]
- Kumawat, M.; Sharma, T.K.; Singh, I.; Singh, N.; Ghalaut, V.S.; Vardey, S.K.; Shankar, V. Antioxidant Enzymes and Lipid Peroxidation in Type 2 Diabetes Mellitus Patients with and without Nephropathy. N. Am. J. Med. Sci. 2013, 5, 213–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lankin, V.Z.; Tikhaze, A.K.; Konovalova, G.G.; Odinokova, O.A.; Doroshchuk, N.A.; Chazova, I.E. Oxidative and carbonyl stress as a factors of the modification of proteins and DNA destruction in diabetes. Ter. Arkh. 2018, 90, 46–50. [Google Scholar] [CrossRef]
- Lutchmansingh, F.K.; Hsu, J.W.; Bennett, F.I.; Badaloo, A.V.; McFarlane-Anderson, N.; Gordon-Strachan, G.M.; Wright-Pascoe, R.A.; Jahoor, F.; Boyne, M.S. Glutathione metabolism in type 2 diabetes and its relationship with microvascular complications and glycemia. PLoS ONE 2018, 13, e0198626. [Google Scholar] [CrossRef] [Green Version]
- Maschirow, L.; Khalaf, K.; Al-Aubaidy, H.A.; Jelinek, H.F. Inflammation, coagulation, endothelial dysfunction and oxidative stress in prediabetes--Biomarkers as a possible tool for early disease detection for rural screening. Clin. Biochem. 2015, 48, 581–585. [Google Scholar] [CrossRef] [Green Version]
- Memisogullari, R.; Taysi, S.; Bakan, E.; Capoglu, I. Antioxidant status and lipid peroxidation in type II diabetes mellitus. Cell Biochem. Funct 2003, 21, 291–296. [Google Scholar] [CrossRef]
- Murakami, K.; Kondo, T.; Ohtsuka, Y.; Fujiwara, Y.; Shimada, M.; Kawakami, Y. Impairment of glutathione metabolism in erythrocytes from patients with diabetes mellitus. Metabolism 1989, 38, 753–758. [Google Scholar] [CrossRef]
- Nwose, E.U.; Jelinek, H.F.; Richards, R.S.; Kerr, P.G. Changes in the erythrocyte glutathione concentration in the course of diabetes mellitus. Redox Rep. 2006, 11, 99–104. [Google Scholar] [CrossRef]
- Nwose, E.U.; Richards, R.S.; Cann, N.G.; Butkowski, E. Cardiovascular risk assessment in prediabetes: A hypothesis. Med. Hypotheses 2009, 72, 271–275. [Google Scholar] [CrossRef]
- Oda, A.; Bannai, C.; Yamaoka, T.; Katori, T.; Matsushima, T.; Yamashita, K. Inactivation of Cu,Zn-superoxide dismutase by in vitro glycosylation and in erythrocytes of diabetic patients. Horm. Metab. Res. 1994, 26, 1–4. [Google Scholar] [CrossRef]
- Pasaoglu, H.; Sancak, B.; Bukan, N. Lipid peroxidation and resistance to oxidation in patients with type 2 diabetes mellitus. Tohoku J. Exp. Med. 2004, 203, 211–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sailaja, Y.R.; Baskar, R.; Saralakumari, D. The antioxidant status during maturation of reticulocytes to erythrocytes in type 2 diabetics. Free Radic. Biol. Med. 2003, 35, 133–139. [Google Scholar] [CrossRef]
- Sampathkumar, R.; Balasubramanyam, M.; Tara, C.; Rema, M.; Mohan, V. Association of hypoglutathionemia with reduced Na+/K+ ATPase activity in type 2 diabetes and microangiopathy. Mol. Cell Biochem. 2006, 282, 169–176. [Google Scholar] [CrossRef]
- Sekhar, R.V.; McKay, S.V.; Patel, S.G.; Guthikonda, A.P.; Reddy, V.T.; Balasubramanyam, A.; Jahoor, F. Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care 2011, 34, 162–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spanidis, Y.; Mpesios, A.; Stagos, D.; Goutzourelas, N.; Bar-Or, D.; Karapetsa, M.; Zakynthinos, E.; Spandidos, D.A.; Tsatsakis, A.M.; Leon, G.; et al. Assessment of the redox status in patients with metabolic syndrome and type 2 diabetes reveals great variations. Exp. Ther. Med. 2016, 11, 895–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayalingam, S.; Parthiban, A.; Shanmugasundaram, K.R.; Mohan, V. Abnormal antioxidant status in impaired glucose tolerance and non-insulin-dependent diabetes mellitus. Diabet. Med. 1996, 13, 715–719. [Google Scholar] [CrossRef]
- Whillier, S.; Raftos, J.E.; Kuchel, P.W. Glutathione synthesis by red blood cells in type 2 diabetes mellitus. Redox Rep. 2008, 13, 277–282. [Google Scholar] [CrossRef]
- Whiting, P.H.; Kalansooriya, A.; Holbrook, I.; Haddad, F.; Jennings, P.E. The relationship between chronic glycaemic control and oxidative stress in type 2 diabetes mellitus. Br. J. Biomed. Sci. 2008, 65, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Hirokawa, J.; Tagami, S.; Kawakami, Y.; Urata, Y.; Kondo, T. Weakened cellular scavenging activity against oxidative stress in diabetes mellitus: Regulation of glutathione synthesis and efflux. Diabetologia 1995, 38, 201–210. [Google Scholar] [CrossRef]
- Collard, K.; White, D.; Copplestone, A. The influence of storage age on iron status, oxidative stress and antioxidant protection in paediatric packed cell units. Blood Transfus. 2014, 12, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Dumaswala, U.J.; Zhuo, L.; Mahajan, S.; Nair, P.N.; Shertzer, H.G.; Dibello, P.; Jacobsen, D.W. Glutathione protects chemokine-scavenging and antioxidative defense functions in human RBCs. Am. J. Physiol. Cell Physiol. 2001, 280, C867–C873. [Google Scholar] [CrossRef] [PubMed]
- Van’t Erve, T.J.; Doskey, C.M.; Wagner, B.A.; Hess, J.R.; Darbro, B.W.; Ryckman, K.K.; Murray, J.C.; Raife, T.J.; Buettner, G.R. Heritability of glutathione and related metabolites in stored red blood cells. Free Radic. Biol. Med. 2014, 76, 107–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whillier, S.; Raftos, J.E.; Sparrow, R.L.; Kuchel, P.W. The effects of long-term storage of human red blood cells on the glutathione synthesis rate and steady-state concentration. Transfusion 2011, 51, 1450–1459. [Google Scholar] [CrossRef]
- Aoki, S.; Hasegawa, G.; Shigeta, H.; Obayashi, H.; Fujii, M.; Kimura, F.; Moriwaki, A.; Nakamura, N.; Ienaga, K.; Nakamura, K.; et al. Crossline levels in serum and erythrocyte membrane proteins from patients with diabetic nephropathy. Diabetes Res. Clin. Pract. 2000, 48, 119–125. [Google Scholar] [CrossRef]
- Cho, S.J.; Roman, G.; Yeboah, F.; Konishi, Y. The road to advanced glycation end products: A mechanistic perspective. Curr. Med. Chem. 2007, 14, 1653–1671. [Google Scholar] [CrossRef]
- Gabreanu, G.R.; Angelescu, S. Erythrocyte membrane in type 2 diabetes mellitus. Discoveries 2016, 4, e60. [Google Scholar] [CrossRef] [Green Version]
- Goh, S.Y.; Cooper, M.E. Clinical review: The role of advanced glycation end products in progression and complications of diabetes. J. Clin. Endocrinol. Metab. 2008, 93, 1143–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makita, Z.; Vlassara, H.; Rayfield, E.; Cartwright, K.; Friedman, E.; Rodby, R.; Cerami, A.; Bucala, R. Hemoglobin-AGE: A circulating marker of advanced glycosylation. Science 1992, 258, 651–653. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Uchino, H.; Shimizu, T.; Kanazawa, A.; Tamura, Y.; Sakai, K.; Watada, H.; Hirose, T.; Kawamori, R.; Tanaka, Y. Comparison of glycated albumin (GA) and glycated hemoglobin (HbA1c) in type 2 diabetic patients: Usefulness of GA for evaluation of short-term changes in glycemic control. Endocr. J. 2007, 54, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Tupe, R.S.; Diwan, A.G.; Mittal, V.D.; Narayanam, P.S.; Mahajan, K.B. Association of plasma proteins at multiple stages of glycation and antioxidant status with erythrocyte oxidative stress in patients with type 2 diabetes. Br. J. Biomed. Sci. 2014, 71, 93–99; quiz 138. [Google Scholar] [CrossRef] [PubMed]
- Wautier, J.L.; Wautier, M.P.; Schmidt, A.M.; Anderson, G.M.; Hori, O.; Zoukourian, C.; Capron, L.; Chappey, O.; Yan, S.D.; Brett, J.; et al. Advanced glycation end products (AGEs) on the surface of diabetic erythrocytes bind to the vessel wall via a specific receptor inducing oxidant stress in the vasculature: A link between surface-associated AGEs and diabetic complications. Proc. Natl. Acad. Sci. USA 1994, 91, 7742–7746. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, M.; Nakamura, N.; Nakano, K.; Kitagawa, Y.; Shigeta, H.; Hasegawa, G.; Ienaga, K.; Nakamura, K.; Nakazawa, Y.; Fukui, I.; et al. Immunochemical quantification of crossline as a fluorescent advanced glycation endproduct in erythrocyte membrane proteins from diabetic patients with or without retinopathy. Diabet. Med. 1998, 15, 458–462. [Google Scholar] [CrossRef]
- Lysenko, L.; Mierzchala, M.; Gamian, A.; Durek, G.; Kubler, A.; Kozlowski, R.; Sliwinski, M. The effect of packed red blood cell storage on arachidonic acid and advanced glycation end-product formation. Arch. Immunol. Ther. Exp. 2006, 54, 357–362. [Google Scholar] [CrossRef]
- Mangalmurti, N.S.; Chatterjee, S.; Cheng, G.; Andersen, E.; Mohammed, A.; Siegel, D.L.; Schmidt, A.M.; Albelda, S.M.; Lee, J.S. Advanced glycation end products on stored red blood cells increase endothelial reactive oxygen species generation through interaction with receptor for advanced glycation end products. Transfusion 2010, 50, 2353–2361. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Zamora, S.; Mendez-Rodriguez, M.L.; Olguin-Martinez, M.; Sanchez-Sevilla, L.; Quintana-Quintana, M.; Garcia-Garcia, N.; Hernandez-Munoz, R. Increased erythrocytes by-products of arginine catabolism are associated with hyperglycemia and could be involved in the pathogenesis of type 2 diabetes mellitus. PLoS ONE 2013, 8, e66823. [Google Scholar] [CrossRef] [PubMed]
- Grau, M.; Friederichs, P.; Krehan, S.; Koliamitra, C.; Suhr, F.; Bloch, W. Decrease in red blood cell deformability is associated with a reduction in RBC-NOS activation during storage. Clin. Hemorheol. Microcirc. 2015, 60, 215–229. [Google Scholar] [CrossRef]
- Alberti, K.G.; Emerson, P.M.; Darley, J.H.; Hockaday, T.D. 2,3-Diphosphoglycerate and tissue oxygenation in uncontrolled diabetes mellitus. Lancet 1972, 2, 391–395. [Google Scholar] [CrossRef]
- Ditzel, J. Impaired oxygen release caused by alterations of the metabolism in the erythrocytes in diabetes. Lancet 1972, 1, 721–723. [Google Scholar] [CrossRef]
- Resnick, L.M.; Gupta, R.K.; Barbagallo, M.; Laragh, J.H. Is the higher incidence of ischemic disease in patients with hypertension and diabetes related to intracellular depletion of high energy metabolites? Am. J. Med. Sci. 1994, 307 (Suppl. 1), S66–S69. [Google Scholar] [PubMed]
- Standl, E.; Kolb, H.J. 2,3-Diphosphoglycerate fluctuations in erythrocytes reflecting pronounced blood glucose variation. In-vivo and in-vitro studies in normal, diabetic and hypoglycaemic subjects. Diabetologia 1973, 9, 461–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almizraq, R.J.; Holovati, J.L.; Acker, J.P. Characteristics of Extracellular Vesicles in Red Blood Concentrates Change with Storage Time and Blood Manufacturing Method. Transfus. Med. Hemother. 2018, 45, 185–193. [Google Scholar] [CrossRef]
- De Korte, D.; Kleine, M.; Korsten, H.G.; Verhoeven, A.J. Prolonged maintenance of 2,3-diphosphoglycerate acid and adenosine triphosphate in red blood cells during storage. Transfusion 2008, 48, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Hamasaki, N.; Yamamoto, M. Red blood cell function and blood storage. Vox Sang. 2000, 79, 191–197. [Google Scholar] [CrossRef]
- Hogman, C.F.; Knutson, F.; Loof, H. Storage of whole blood before separation: The effect of temperature on red cell 2,3 DPG and the accumulation of lactate. Transfusion 1999, 39, 492–497. [Google Scholar] [CrossRef] [Green Version]
- Knutson, F.; Loof, H.; Hogman, C.F. Pre-separation storage of whole blood: The effect of temperature on red cell 2,3-diphosphoglycerate and myeloperoxidase in plasma. Transfus. Sci. 1999, 21, 111–115. [Google Scholar] [CrossRef]
- Li, Y.; Xiong, Y.; Wang, R.; Tang, F.; Wang, X. Blood banking-induced alteration of red blood cell oxygen release ability. Blood Transfus. 2016, 14, 238–244. [Google Scholar] [CrossRef]
- Tinmouth, A.; Chin-Yee, I. The clinical consequences of the red cell storage lesion. Transfus. Med. Rev. 2001, 15, 91–107. [Google Scholar] [CrossRef] [PubMed]
- Weiskopf, R.B.; Feiner, J.; Hopf, H.; Lieberman, J.; Finlay, H.E.; Quah, C.; Kramer, J.H.; Bostrom, A.; Toy, P. Fresh blood and aged stored blood are equally efficacious in immediately reversing anemia-induced brain oxygenation deficits in humans. Anesthesiology 2006, 104, 911–920. [Google Scholar] [CrossRef] [PubMed]
- De La Tour, D.D.; Raccah, D.; Jannot, M.F.; Coste, T.; Rougerie, C.; Vague, P. Erythrocyte Na/K ATPase activity and diabetes: Relationship with C-peptide level. Diabetologia 1998, 41, 1080–1084. [Google Scholar] [CrossRef]
- Kherd, A.A.; Helmi, N.; Balamash, K.S.; Kumosani, T.A.; Al-Ghamdi, S.A.; Qari, M.; Huwait, E.A.; Yaghmoor, S.S.; Nabil, A.; Al-Ghamdi, M.A.; et al. Changes in erythrocyte ATPase activity under different pathological conditions. Afr. Health Sci. 2017, 17, 1204–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiziltunc, A.; Akcay, F.; Polat, F.; Kuskay, S.; Sahin, Y.N. Reduced lecithin: Cholesterol acyltransferase (LCAT) and Na+, K+, ATPase activity in diabetic patients. Clin. Biochem. 1997, 30, 177–182. [Google Scholar] [CrossRef]
- Koc, B.; Erten, V.; Yilmaz, M.I.; Sonmez, A.; Kocar, I.H. The relationship between red blood cell Na/K-ATPase activities and diabetic complications in patients with type 2 diabetes mellitus. Endocrine 2003, 21, 273–278. [Google Scholar] [CrossRef]
- Kumar, R. Biochemical changes in erythrocyte membrane in type 2 diabetes mellitus. Indian J. Med. Sci. 2012, 66, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Mazzanti, L.; Rabini, R.A.; Salvolini, E.; Tesei, M.; Martarelli, D.; Venerando, B.; Curatola, G. Sialic acid, diabetes, and aging: A study on the erythrocyte membrane. Metabolism 1997, 46, 59–61. [Google Scholar] [CrossRef]
- Mazzanti, L.; Rabini, R.A.; Testa, I.; Bertoli, E. Modifications induced by diabetes on the physicochemical and functional properties of erythrocyte plasma membrane. Eur. J. Clin. Investig. 1989, 19, 84–89. [Google Scholar] [CrossRef]
- Mimura, M.; Makino, H.; Kanatsuka, A.; Asai, T.; Yoshida, S. Reduction of erythrocyte (Na(+)-K+)ATPase activity in type 2 (non-insulin-dependent) diabetic patients with microalbuminuria. Horm. Metab. Res. 1994, 26, 33–38. [Google Scholar] [CrossRef]
- Rabini, R.A.; Petruzzi, E.; Staffolani, R.; Tesei, M.; Fumelli, P.; Pazzagli, M.; Mazzanti, L. Diabetes mellitus and subjects’ ageing: A study on the ATP content and ATP-related enzyme activities in human erythrocytes. Eur. J. Clin. Investig. 1997, 27, 327–332. [Google Scholar] [CrossRef]
- Scarpini, E.; Bianchi, R.; Moggio, M.; Sciacco, M.; Fiori, M.G.; Scarlato, G. Decrease of nerve Na+,K(+)-ATPase activity in the pathogenesis of human diabetic neuropathy. J. Neurol. Sci. 1993, 120, 159–167. [Google Scholar] [CrossRef]
- Shahid, S.M.; Rafique, R.; Mahboob, T. Electrolytes and sodium transport mechanism in diabetes mellitus. Pak. J. Pharm. Sci. 2005, 18, 6–10. [Google Scholar] [PubMed]
- Umudum, F.; Yucel, O.; Sahin, Y.; Bakan, E. Erythrocyte membrane glycation and NA(+)-K(+) levels in NIDDM. J. Diabetes Complicat. 2002, 16, 359–362. [Google Scholar] [CrossRef]
- Zadhoush, F.; Sadeghi, M.; Pourfarzam, M. Biochemical changes in blood of type 2 diabetes with and without metabolic syndrome and their association with metabolic syndrome components. J. Res. Med. Sci. 2015, 20, 763–770. [Google Scholar] [CrossRef]
- Bailey, D.N.; Bove, J.R. Chemical and hematological changes in stored CPD blood. Transfusion 1975, 15, 244–249. [Google Scholar] [CrossRef]
- Burger, P.; Kostova, E.; Bloem, E.; Hilarius-Stokman, P.; Meijer, A.B.; van den Berg, T.K.; Verhoeven, A.J.; de Korte, D.; van Bruggen, R. Potassium leakage primes stored erythrocytes for phosphatidylserine exposure and shedding of pro-coagulant vesicles. Br. J. Haematol. 2013, 160, 377–386. [Google Scholar] [CrossRef]
- Flatt, J.F.; Bawazir, W.M.; Bruce, L.J. The involvement of cation leaks in the storage lesion of red blood cells. Front. Physiol. 2014, 5, 214. [Google Scholar] [CrossRef] [Green Version]
- Marjanovic, M.; Willis, J.S. ATP dependence of Na(+)-K+ pump of cold-sensitive and cold-tolerant mammalian red blood cells. J. Physiol. 1992, 456, 575–590. [Google Scholar] [CrossRef]
- Nogueira, D.; Rocha, S.; Abreu, E.; Costa, E.; Santos-Silva, A. Biochemical and cellular changes in leukocyte-depleted red blood cells stored for transfusion. Transfus. Med. Hemother. 2015, 42, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Opoku-Okrah, C.; Acquah, B.K.; Dogbe, E.E. Changes in potassium and sodium concentrations in stored blood. Pan. Afr. Med. J. 2015, 20, 236. [Google Scholar] [CrossRef]
- Wallas, C.H. Sodium and potassium changes in blood bank stored human erythrocytes. Transfusion 1979, 19, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Wallas, C.H.; Harris, A.S.; Wetherall, N.T. Storage and survival of red blood cells with elevated sodium levels. Transfusion 1982, 22, 364–367. [Google Scholar] [CrossRef]
- Barbagallo, M.; Gupta, R.K.; Resnick, L.M. Cellular ions in NIDDM: Relation of calcium to hyperglycemia and cardiac mass. Diabetes Care 1996, 19, 1393–1398. [Google Scholar] [CrossRef]
- Bookchin, R.M.; Etzion, Z.; Lew, V.L.; Tiffert, T. Preserved function of the plasma membrane calcium pump of red blood cells from diabetic subjects with high levels of glycated haemoglobin. Cell Calcium 2009, 45, 260–263. [Google Scholar] [CrossRef]
- Fujita, J.; Tsuda, K.; Takeda, T.; Yu, L.; Fujimoto, S.; Kajikawa, M.; Nishimura, M.; Mizuno, N.; Hamamoto, Y.; Mukai, E.; et al. Nisoldipine improves the impaired erythrocyte deformability correlating with elevated intracellular free calcium-ion concentration and poor glycaemic control in NIDDM. Br. J. Clin. Pharm. 1999, 47, 499–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez Flecha, F.L.; Castello, P.R.; Gagliardino, J.J.; Rossi, J.P. Molecular characterization of the glycated plasma membrane calcium pump. J. Membr. Biol. 1999, 171, 25–34. [Google Scholar] [CrossRef]
- Lang, F.; Abed, M.; Lang, E.; Foller, M. Oxidative stress and suicidal erythrocyte death. Antioxid. Redox Signal. 2014, 21, 138–153. [Google Scholar] [CrossRef] [PubMed]
- Raftos, J.E.; Edgley, A.; Bookchin, R.M.; Etzion, Z.; Lew, V.L.; Tiffert, T. Normal Ca2+ extrusion by the Ca2+ pump of intact red blood cells exposed to high glucose concentrations. Am J. Physiol. Cell Physiol. 2001, 280, C1449–C1454. [Google Scholar] [CrossRef]
- Resnick, L.M.; Barbagallo, M.; Gupta, R.K.; Laragh, J.H. Ionic basis of hypertension in diabetes mellitus. Role of hyperglycemia. Am. J. Hypertens. 1993, 6, 413–417. [Google Scholar] [CrossRef]
- Antonelou, M.H.; Tzounakas, V.L.; Velentzas, A.D.; Stamoulis, K.E.; Kriebardis, A.G.; Papassideri, I.S. Effects of pre-storage leukoreduction on stored red blood cells signaling: A time-course evaluation from shape to proteome. J. Proteom. 2012, 76, 220–238. [Google Scholar] [CrossRef]
- Wiley, J.S.; McCulloch, K.E.; Bowden, D.S. Increased calcium permeability of cold-stored erythrocytes. Blood 1982, 60, 92–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cancelas, J.A.; Dumont, L.J.; Maes, L.A.; Rugg, N.; Herschel, L.; Whitley, P.H.; Szczepiokowski, Z.M.; Siegel, A.H.; Hess, J.R.; Zia, M. Additive solution-7 reduces the red blood cell cold storage lesion. Transfusion 2015, 55, 491–498. [Google Scholar] [CrossRef]
- Doctor, A.; Spinella, P. Effect of processing and storage on red blood cell function in vivo. Semin. Perinatol. 2012, 36, 248–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hess, J.R. Red cell storage. J. Proteom. 2010, 73, 368–373. [Google Scholar] [CrossRef]
- Hess, J.R.; Greenwalt, T.G. Storage of red blood cells: New approaches. Transfus. Med. Rev. 2002, 16, 283–295. [Google Scholar] [CrossRef]
- Hess, J.R.; Hill, H.R.; Oliver, C.K.; Lippert, L.E.; Rugg, N.; Joines, A.D.; Gormas, J.F.; Pratt, P.G.; Silverstein, E.B.; Greenwalt, T.J. Twelve-week RBC storage. Transfusion 2003, 43, 867–872. [Google Scholar] [CrossRef]
- Kirby, B.S.; Hanna, G.; Hendargo, H.C.; McMahon, T.J. Restoration of intracellular ATP production in banked red blood cells improves inducible ATP export and suppresses RBC-endothelial adhesion. Am. J. Physiol. Heart Circ. Physiol. 2014, 307, H1737–H1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonart, M.S.; Nascimento, A.J.; Nonoyama, K.; Pelissari, C.B.; Stinghen, A.E.; Barretto, O.C. Correlation of discocyte frequency and ATP concentration in preserved blood. A morphological indicator of red blood cell viability. Braz. J. Med. Biol. Res. 1997, 30, 745–747. [Google Scholar] [CrossRef] [Green Version]
- Meyer, E.K.; Dumont, D.F.; Baker, S.; Dumont, L.J. Rejuvenation capacity of red blood cells in additive solutions over long-term storage. Transfusion 2011, 51, 1574–1579. [Google Scholar] [CrossRef] [PubMed]
- Paglia, G.; Sigurjonsson, O.E.; Bordbar, A.; Rolfsson, O.; Magnusdottir, M.; Palsson, S.; Wichuk, K.; Gudmundsson, S.; Palsson, B.O. Metabolic fate of adenine in red blood cells during storage in SAGM solution. Transfusion 2016, 56, 2538–2547. [Google Scholar] [CrossRef]
- Yoshida, T.; AuBuchon, J.P.; Tryzelaar, L.; Foster, K.Y.; Bitensky, M.W. Extended storage of red blood cells under anaerobic conditions. Vox Sang. 2007, 92, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, R.; Heidenreich, D.; Weisbach, V.; Zingsem, J.; Neidhardt, B.; Eckstein, R. In vitro quality control of red blood cell concentrates outdated in clinical practice. Transfus. Clin. Biol. 2003, 10, 275–283. [Google Scholar] [CrossRef]
- Ansarihadipour, H.; Dorostkar, H. Comparison of plasma oxidative biomarkers and conformational modifications of hemoglobin in patients with diabetes on hemodialysis. Iran. Red Crescent Med. J. 2014, 16, e22045. [Google Scholar] [CrossRef] [Green Version]
- Constantin, A.; Constantinescu, E.; Dumitrescu, M.; Calin, A.; Popov, D. Effects of ageing on carbonyl stress and antioxidant defense in RBCs of obese Type 2 diabetic patients. J. Cell Mol. Med. 2005, 9, 683–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussein, O.A.; Gefen, Y.; Zidan, J.M.; Karochero, E.Y.; Luder, A.S.; Assy, N.N.; Sror, E.S.; Aviram, M.Y. LDL oxidation is associated with increased blood hemoglobin A1c levels in diabetic patients. Clin. Chim. Acta 2007, 377, 114–118. [Google Scholar] [CrossRef]
- Konukoglu, D.; Kemerli, G.D.; Sabuncu, T.; Hatemi, H.H. Protein carbonyl content in erythrocyte membranes in type 2 diabetic patients. Horm. Metab. Res. 2002, 34, 367–370. [Google Scholar] [CrossRef]
- Margetis, P.I.; Antonelou, M.H.; Petropoulos, I.K.; Margaritis, L.H.; Papassideri, I.S. Increased protein carbonylation of red blood cell membrane in diabetic retinopathy. Exp. Mol. Pathol. 2009, 87, 76–82. [Google Scholar] [CrossRef]
- Pandey, K.B.; Mishra, N.; Rizvi, S.I. Myricetin may provide protection against oxidative stress in type 2 diabetic erythrocytes. Z Nat. C J. Biosci. 2009, 64, 626–630. [Google Scholar] [CrossRef]
- Schwartz, R.S.; Madsen, J.W.; Rybicki, A.C.; Nagel, R.L. Oxidation of spectrin and deformability defects in diabetic erythrocytes. Diabetes 1991, 40, 701–708. [Google Scholar] [CrossRef]
- Watala, C.; Golanski, J.; Witas, H.; Gurbiel, R.; Gwozdzinski, K.; Trojanowski, Z. The effects of in vivo and in vitro non-enzymatic glycosylation and glycoxidation on physico-chemical properties of haemoglobin in control and diabetic patients. Int. J. Biochem. Cell Biol. 1996, 28, 1393–1403. [Google Scholar] [CrossRef]
- Berlett, B.S.; Stadtman, E.R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 1997, 272, 20313–20316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosman, G.J.; Lasonder, E.; Luten, M.; Roerdinkholder-Stoelwinder, B.; Novotny, V.M.; Bos, H.; de Grip, W.J. The proteome of red cell membranes and vesicles during storage in blood bank conditions. Transfusion 2008, 48, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, R.; Katharia, R. Oxidative injury as contributory factor for red cells storage lesion during twenty eight days of storage. Blood Transfus. 2012, 10, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Cluitmans, J.C.; Hardeman, M.R.; Dinkla, S.; Brock, R.; Bosman, G.J. Red blood cell deformability during storage: Towards functional proteomics and metabolomics in the Blood Bank. Blood Transfus. 2012, 10 (Suppl. 2), s12–s18. [Google Scholar] [CrossRef]
- D’Alessandro, A.; D’Amici, G.M.; Vaglio, S.; Zolla, L. Time-course investigation of SAGM-stored leukocyte-filtered red bood cell concentrates: From metabolism to proteomics. Haematologica 2012, 97, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Delobel, J.; Prudent, M.; Crettaz, D.; ElHajj, Z.; Riederer, B.M.; Tissot, J.D.; Lion, N. Cysteine redox proteomics of the hemoglobin-depleted cytosolic fraction of stored red blood cells. Proteom. Clin. Appl. 2016, 10, 883–893. [Google Scholar] [CrossRef]
- Delobel, J.; Prudent, M.; Rubin, O.; Crettaz, D.; Tissot, J.D.; Lion, N. Subcellular fractionation of stored red blood cells reveals a compartment-based protein carbonylation evolution. J. Proteom. 2012, 76, 181–193. [Google Scholar] [CrossRef]
- Delobel, J.; Prudent, M.; Tissot, J.D.; Lion, N. Proteomics of the red blood cell carbonylome during blood banking of erythrocyte concentrates. Proteom. Clin. Appl. 2016, 10, 257–266. [Google Scholar] [CrossRef]
- Dumaswala, U.J.; Zhuo, L.; Jacobsen, D.W.; Jain, S.K.; Sukalski, K.A. Protein and lipid oxidation of banked human erythrocytes: Role of glutathione. Free Radic. Biol. Med. 1999, 27, 1041–1049. [Google Scholar] [CrossRef]
- Harper, V.M.; Oh, J.Y.; Stapley, R.; Marques, M.B.; Wilson, L.; Barnes, S.; Sun, C.W.; Townes, T.; Patel, R.P. Peroxiredoxin-2 recycling is inhibited during erythrocyte storage. Antioxid. Redox Signal. 2015, 22, 294–307. [Google Scholar] [CrossRef] [Green Version]
- Jarolim, P.; Lahav, M.; Liu, S.C.; Palek, J. Effect of hemoglobin oxidation products on the stability of red cell membrane skeletons and the associations of skeletal proteins: Correlation with a release of hemin. Blood 1990, 76, 2125–2131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanias, T.; Acker, J.P. Biopreservation of red blood cells--the struggle with hemoglobin oxidation. FEBS J. 2010, 277, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Kriebardis, A.G.; Antonelou, M.H.; Stamoulis, K.E.; Economou-Petersen, E.; Margaritis, L.H.; Papassideri, I.S. Progressive oxidation of cytoskeletal proteins and accumulation of denatured hemoglobin in stored red cells. J. Cell Mol. Med. 2007, 11, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, J.G.; Nagababu, E.; Rifkind, J.M. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front. Physiol. 2014, 5, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pallotta, V.; Rinalducci, S.; Zolla, L. Red blood cell storage affects the stability of cytosolic native protein complexes. Transfusion 2015, 55, 1927–1936. [Google Scholar] [CrossRef]
- Rael, L.T.; Bar-Or, R.; Ambruso, D.R.; Mains, C.W.; Slone, D.S.; Craun, M.L.; Bar-Or, D. The effect of storage on the accumulation of oxidative biomarkers in donated packed red blood cells. J. Trauma. 2009, 66, 76–81. [Google Scholar] [CrossRef]
- Reisz, J.A.; Wither, M.J.; Dzieciatkowska, M.; Nemkov, T.; Issaian, A.; Yoshida, T.; Dunham, A.J.; Hill, R.C.; Hansen, K.C.; D’Alessandro, A. Oxidative modifications of glyceraldehyde 3-phosphate dehydrogenase regulate metabolic reprogramming of stored red blood cells. Blood 2016, 128, e32–e42. [Google Scholar] [CrossRef] [Green Version]
- Rinalducci, S.; Zolla, L. Biochemistry of storage lesions of red cell and platelet concentrates: A continuous fight implying oxidative/nitrosative/phosphorylative stress and signaling. Transfus. Apher. Sci. 2015, 52, 262–269. [Google Scholar] [CrossRef]
- Wagner, G.M.; Chiu, D.T.; Qju, J.H.; Heath, R.H.; Lubin, B.H. Spectrin oxidation correlates with membrane vesiculation in stored RBCs. Blood 1987, 69, 1777–1781. [Google Scholar] [CrossRef] [Green Version]
- Wither, M.; Dzieciatkowska, M.; Nemkov, T.; Strop, P.; D’Alessandro, A.; Hansen, K.C. Hemoglobin oxidation at functional amino acid residues during routine storage of red blood cells. Transfusion 2016, 56, 421–426. [Google Scholar] [CrossRef]
- Yoshida, T.; Prudent, M.; D’Alessandro, A. Red blood cell storage lesion: Causes and potential clinical consequences. Blood Transfus. 2019, 17, 27–52. [Google Scholar] [CrossRef] [PubMed]
- Inouye, M.; Hashimoto, H.; Mio, T.; Sumino, K. Levels of lipid peroxidation product and glycated hemoglobin A1c in the erythrocytes of diabetic patients. Clin. Chim. Acta 1998, 276, 163–172. [Google Scholar] [CrossRef]
- Inouye, M.; Mio, T.; Sumino, K. Link between glycation and lipoxidation in red blood cells in diabetes. Clin. Chim. Acta 1999, 285, 35–44. [Google Scholar] [CrossRef]
- Inouye, M.; Mio, T.; Sumino, K. Glycated hemoglobin and lipid peroxidation in erythrocytes of diabetic patients. Metabolism 1999, 48, 205–209. [Google Scholar] [CrossRef]
- Jain, S.K. Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells. J. Biol. Chem. 1989, 264, 21340–21345. [Google Scholar] [CrossRef]
- Jain, S.K.; McVie, R.; Duett, J.; Herbst, J.J. Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes. Diabetes 1989, 38, 1539–1543. [Google Scholar] [CrossRef] [PubMed]
- Rabini, R.A.; Fumelli, P.; Galassi, R.; Dousset, N.; Taus, M.; Ferretti, G.; Mazzanti, L.; Curatola, G.; Solera, M.L.; Valdiguie, P. Increased susceptibility to lipid oxidation of low-density lipoproteins and erythrocyte membranes from diabetic patients. Metabolism 1994, 43, 1470–1474. [Google Scholar] [CrossRef]
- Silliman, C.C.; Moore, E.E.; Kelher, M.R.; Khan, S.Y.; Gellar, L.; Elzi, D.J. Identification of lipids that accumulate during the routine storage of prestorage leukoreduced red blood cells and cause acute lung injury. Transfusion 2011, 51, 2549–2554. [Google Scholar] [CrossRef] [Green Version]
- Tavazzi, B.; Di Pierro, D.; Amorini, A.M.; Fazzina, G.; Tuttobene, M.; Giardina, B.; Lazzarino, G. Energy metabolism and lipid peroxidation of human erythrocytes as a function of increased oxidative stress. Eur. J. Biochem. 2000, 267, 684–689. [Google Scholar] [CrossRef]
- Sertoglu, E.; Kurt, I.; Tapan, S.; Uyanik, M.; Serdar, M.A.; Kayadibi, H.; El-Fawaeir, S. Comparison of plasma and erythrocyte membrane fatty acid compositions in patients with end-stage renal disease and type 2 diabetes mellitus. Chem. Phys. Lipids 2014, 178, 11–17. [Google Scholar] [CrossRef]
- Montuschi, P.; Barnes, P.J.; Roberts, L.J., 2nd. Isoprostanes: Markers and mediators of oxidative stress. FASEB J. 2004, 18, 1791–1800. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.P.; Yosten, G.L.; Kolar, G.R.; Jones, C.W.; Stephenson, A.H.; Ellsworth, M.L.; Sprague, R.S. Low O2-induced ATP release from erythrocytes of humans with type 2 diabetes is restored by physiological ratios of C-peptide and insulin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R862–R868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sprague, R.; Stephenson, A.; Bowles, E.; Stumpf, M.; Ricketts, G.; Lonigro, A. Expression of the heterotrimeric G protein Gi and ATP release are impaired in erythrocytes of humans with diabetes mellitus. Adv. Exp. Med. Biol. 2006, 588, 207–216. [Google Scholar] [CrossRef]
- Sprague, R.S.; Goldman, D.; Bowles, E.A.; Achilleus, D.; Stephenson, A.H.; Ellis, C.G.; Ellsworth, M.L. Divergent effects of low-O(2) tension and iloprost on ATP release from erythrocytes of humans with type 2 diabetes: Implications for O(2) supply to skeletal muscle. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H566–H573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subasinghe, W.; Spence, D.M. Simultaneous determination of cell aging and ATP release from erythrocytes and its implications in type 2 diabetes. Anal. Chim. Acta 2008, 618, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Giebink, A.; Spence, D.M. Microfluidic evaluation of red cells collected and stored in modified processing solutions used in blood banking. Integr. Biol. 2014, 6, 65–75. [Google Scholar] [CrossRef]
- Zhu, H.; Zennadi, R.; Xu, B.X.; Eu, J.P.; Torok, J.A.; Telen, M.J.; McMahon, T.J. Impaired adenosine-5′-triphosphate release from red blood cells promotes their adhesion to endothelial cells: A mechanism of hypoxemia after transfusion. Crit. Care Med. 2011, 39, 2478–2486. [Google Scholar] [CrossRef]
- Babu, N. Influence of hypercholesterolemia on deformability and shape parameters of erythrocytes in hyperglycemic subjects. Clin. Hemorheol. Microcirc. 2009, 41, 169–177. [Google Scholar] [CrossRef]
- Bareford, D.; Jennings, P.E.; Stone, P.C.; Baar, S.; Barnett, A.H.; Stuart, J. Effects of hyperglycaemia and sorbitol accumulation on erythrocyte deformability in diabetes mellitus. J. Clin. Pathol. 1986, 39, 722–727. [Google Scholar] [CrossRef]
- Brown, C.D.; Ghali, H.S.; Zhao, Z.; Thomas, L.L.; Friedman, E.A. Association of reduced red blood cell deformability and diabetic nephropathy. Kidney Int. 2005, 67, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Buys, A.V.; van Rooy, M.J.; Soma, P.; van Papendorp, D.; Lipinski, B.; Pretorius, E. Changes in red blood cell membrane structure in type 2 diabetes: A scanning electron and atomic force microscopy study. Cardiovasc. Diabetol. 2013, 12, 25. [Google Scholar] [CrossRef] [Green Version]
- Cahn, A.; Livshits, L.; Srulevich, A.; Raz, I.; Yedgar, S.; Barshtein, G. Diabetic foot disease is associated with reduced erythrocyte deformability. Int. Wound J. 2016, 13, 500–504. [Google Scholar] [CrossRef]
- Caimi, G. Blood viscosity and erythrocyte filterability: Their evaluation in diabetes mellitus. Horm. Metab. Res. 1983, 15, 467–470. [Google Scholar] [CrossRef]
- Caimi, G.; Presti, R.L. Techniques to evaluate erythrocyte deformability in diabetes mellitus. Acta Diabetol. 2004, 41, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Diamantopoulos, E.J.; Kittas, C.; Charitos, D.; Grigoriadou, M.; Ifanti, G.; Raptis, S.A. Impaired erythrocyte deformability precedes vascular changes in experimental diabetes mellitus. Horm. Metab. Res. 2004, 36, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Diamantopoulos, E.J.; Raptis, S.A.; Moulopoulos, S.D. Red blood cell deformability index in diabetic retinopathy. Horm. Metab. Res. 1987, 19, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Ernst, E.; Matrai, A. Altered red and white blood cell rheology in type II diabetes. Diabetes 1986, 35, 1412–1415. [Google Scholar] [CrossRef] [PubMed]
- Garnier, M.; Attali, J.R.; Valensi, P.; Delatour-Hanss, E.; Gaudey, F.; Koutsouris, D. Erythrocyte deformability in diabetes and erythrocyte membrane lipid composition. Metabolism 1990, 39, 794–798. [Google Scholar] [CrossRef]
- Keymel, S.; Heiss, C.; Kleinbongard, P.; Kelm, M.; Lauer, T. Impaired red blood cell deformability in patients with coronary artery disease and diabetes mellitus. Horm. Metab. Res. 2011, 43, 760–765. [Google Scholar] [CrossRef]
- Kruchinina, M.V.; Gromov, A.A.; Generalov, V.M.; Kruchinin, V.N. Possible Differential Diagnosis of the Degrees of Rheological Disturbances in Patients with Type 2 Diabetes Mellitus by Dielectrophoresis of Erythrocytes. J. Pers. Med. 2020, 10, 60. [Google Scholar] [CrossRef]
- Kung, C.M.; Tseng, Z.L.; Wang, H.L. Erythrocyte fragility increases with level of glycosylated hemoglobin in type 2 diabetic patients. Clin. Hemorheol. Microcirc. 2009, 43, 345–351. [Google Scholar] [CrossRef]
- Li, Q.; Yang, L.Z. Hemoglobin A1c Level Higher Than 9.05% Causes A Significant Impairment of Erythrocyte Deformability In Diabetes Mellitus. Acta Endocrinol. 2018, 14, 66–75. [Google Scholar] [CrossRef]
- McMillan, D.E.; Utterback, N.G.; La Puma, J. Reduced erythrocyte deformability in diabetes. Diabetes 1978, 27, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Schmid-Schonbein, H.; Volger, E. Red-cell aggregation and red-cell deformability in diabetes. Diabetes 1976, 25, 897–902. [Google Scholar] [PubMed]
- Symeonidis, A.; Athanassiou, G.; Psiroyannis, A.; Kyriazopoulou, V.; Kapatais-Zoumbos, K.; Missirlis, Y.; Zoumbos, N. Impairment of erythrocyte viscoelasticity is correlated with levels of glycosylated haemoglobin in diabetic patients. Clin. Lab. Haematol. 2001, 23, 103–109. [Google Scholar] [CrossRef]
- Volger, E. Effect of metabolic control and concomitant diseases upon the rheology of blood in different states of diabetic retinopathy. Horm. Metab. Res. Suppl. 1981, 11, 104–107. [Google Scholar]
- Berezina, T.L.; Zaets, S.B.; Morgan, C.; Spillert, C.R.; Kamiyama, M.; Spolarics, Z.; Deitch, E.A.; Machiedo, G.W. Influence of storage on red blood cell rheological properties. J. Surg. Res. 2002, 102, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.M.; Yoshida, T.; Dumont, L.J.; Yang, X.; Piety, N.Z.; Shevkoplyas, S.S. Deterioration of red blood cell mechanical properties is reduced in anaerobic storage. Blood Transfus. 2016, 14, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Card, R.T.; Mohandas, N.; Mollison, P.L. Relationship of post-transfusion viability to deformability of stored red cells. Br. J. Haematol. 1983, 53, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Card, R.T.; Mohandas, N.; Perkins, H.A.; Shohet, S.B. Deformability of stored red blood cells. Relationship to degree of packing. Transfusion 1982, 22, 96–101. [Google Scholar] [CrossRef] [PubMed]
- De Weerd, P.; Vandenbussche, E.; de Bruyn, B.; Orban, G.A. Illusory contour orientation discrimination in the cat. Behav. Brain Res. 1990, 39, 1–17. [Google Scholar] [CrossRef]
- Frank, S.M.; Abazyan, B.; Ono, M.; Hogue, C.W.; Cohen, D.B.; Berkowitz, D.E.; Ness, P.M.; Barodka, V.M. Decreased erythrocyte deformability after transfusion and the effects of erythrocyte storage duration. Anesth. Analg. 2013, 116, 975–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Relevy, H.; Koshkaryev, A.; Manny, N.; Yedgar, S.; Barshtein, G. Blood banking-induced alteration of red blood cell flow properties. Transfusion 2008, 48, 136–146. [Google Scholar] [CrossRef]
- Salaria, O.N.; Barodka, V.M.; Hogue, C.W.; Berkowitz, D.E.; Ness, P.M.; Wasey, J.O.; Frank, S.M. Impaired red blood cell deformability after transfusion of stored allogeneic blood but not autologous salvaged blood in cardiac surgery patients. Anesth. Analg. 2014, 118, 1179–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, J.K.S.; Wei, X.; Wong, P.A.; Fang, J.; Kim, S.; Agrawal, R. Altered red blood cell deformability-A novel hypothesis for retinal microangiopathy in diabetic retinopathy. Microcirculation 2020, 27, e12649. [Google Scholar] [CrossRef] [PubMed]
- Grossin, N.; Wautier, M.P.; Wautier, J.L. Red blood cell adhesion in diabetes mellitus is mediated by advanced glycation end product receptor and is modulated by nitric oxide. Biorheology 2009, 46, 63–72. [Google Scholar] [CrossRef]
- Kaliyaperumal, R.; Deng, X.; Meiselman, H.J.; Song, H.; Dalan, R.; Leow, M.K.; Neu, B. Depletion interaction forces contribute to erythrocyte-endothelial adhesion in diabetes. Biochem. Biophys. Res. Commun. 2019, 516, 144–148. [Google Scholar] [CrossRef]
- Wautier, J.L.; Paton, R.C.; Wautier, M.P.; Pintigny, D.; Abadie, E.; Passa, P.; Caen, J.P. Increased adhesion of erythrocytes to endothelial cells in diabetes mellitus and its relation to vascular complications. N. Engl. J. Med. 1981, 305, 237–242. [Google Scholar] [CrossRef]
- Diebel, L.N.; Liberati, D.M. Red blood cell storage and adhesion to vascular endothelium under normal or stress conditions: An in vitro microfluidic study. J. Trauma. Acute Care Surg. 2019, 86, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Koshkaryev, A.; Zelig, O.; Manny, N.; Yedgar, S.; Barshtein, G. Rejuvenation treatment of stored red blood cells reverses storage-induced adhesion to vascular endothelial cells. Transfusion 2009, 49, 2136–2143. [Google Scholar] [CrossRef]
- Babu, N.; Singh, M. Analysis of aggregation parameters of erythrocytes in diabetes mellitus. Clin. Hemorheol. Microcirc. 2005, 32, 269–277. [Google Scholar]
- Demiroglu, H.; Gurlek, A.; Barista, I. Enhanced erythrocyte aggregation in type 2 diabetes with late complications. Exp. Clin. Endocrinol. Diabetes 1999, 107, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, L.; Li, Y. Enhanced RBC Aggregation in Type 2 Diabetes Patients. J. Clin. Lab. Anal. 2015, 29, 387–389. [Google Scholar] [CrossRef]
- Sheremet’ev, Y.A.; Popovicheva, A.N.; Rogozin, M.M.; Levin, G.Y. Red blood cell aggregation, disaggregation and aggregate morphology in autologous plasma and serum in diabetic foot disease. Clin. Hemorheol. Microcirc. 2019, 72, 221–227. [Google Scholar] [CrossRef]
- Hovav, T.; Yedgar, S.; Manny, N.; Barshtein, G. Alteration of red cell aggregability and shape during blood storage. Transfusion 1999, 39, 277–281. [Google Scholar] [CrossRef]
- Freeman, D.W.; Noren Hooten, N.; Eitan, E.; Green, J.; Mode, N.A.; Bodogai, M.; Zhang, Y.; Lehrmann, E.; Zonderman, A.B.; Biragyn, A.; et al. Altered Extracellular Vesicle Concentration, Cargo, and Function in Diabetes. Diabetes 2018, 67, 2377–2388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Card, R.T. Red cell membrane changes during storage. Transfus. Med. Rev. 1988, 2, 40–47. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Liumbruno, G.; Grazzini, G.; Zolla, L. Red blood cell storage: The story so far. Blood Transfus. 2010, 8, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Greenwalt, T.J. The how and why of exocytic vesicles. Transfusion 2006, 46, 143–152. [Google Scholar] [CrossRef]
- Hess, J.R. Red cell changes during storage. Transfus. Apher. Sci. 2010, 43, 51–59. [Google Scholar] [CrossRef]
- Kriebardis, A.G.; Antonelou, M.H.; Stamoulis, K.E.; Economou-Petersen, E.; Margaritis, L.H.; Papassideri, I.S. RBC-derived vesicles during storage: Ultrastructure, protein composition, oxidation, and signaling components. Transfusion 2008, 48, 1943–1953. [Google Scholar] [CrossRef]
- Oreskovic, R.T.; Dumaswala, U.J.; Greenwalt, T.J. Expression of blood group antigens on red cell microvesicles. Transfusion 1992, 32, 848–849. [Google Scholar] [CrossRef] [PubMed]
- Wannez, A.; Devalet, B.; Chatelain, B.; Chatelain, C.; Dogne, J.M.; Mullier, F. Extracellular Vesicles in Red Blood Cell Concentrates: An Overview. Transfus. Med. Rev. 2019, 33, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Racek, J.; Herynkova, R.; Holecek, V.; Jerabek, Z.; Slama, V. Influence of antioxidants on the quality of stored blood. Vox Sang. 1997, 72, 16–19. [Google Scholar] [CrossRef]
- Dumaswala, U.J.; Wilson, M.J.; Wu, Y.L.; Wykle, J.; Zhuo, L.; Douglass, L.M.; Daleke, D.L. Glutathione loading prevents free radical injury in red blood cells after storage. Free Radic. Res. 2000, 33, 517–529. [Google Scholar] [CrossRef] [PubMed]
- Cicha, I.; Suzuki, Y.; Tateishi, N.; Shiba, M.; Muraoka, M.; Tadokoro, K.; Maeda, N. Gamma-ray-irradiated red blood cells stored in mannitol-adenine-phosphate medium: Rheological evaluation and susceptibility to oxidative stress. Vox Sang. 2000, 79, 75–82. [Google Scholar] [CrossRef]
- Olivieri, O.; de Franceschi, L.; de Gironcoli, M.; Girelli, D.; Corrocher, R. Potassium loss and cellular dehydration of stored erythrocytes following incubation in autologous plasma: Role of the KCl cotransport system. Vox Sang. 1993, 65, 95–102. [Google Scholar] [CrossRef]
- Ciana, A.; Achilli, C.; Minetti, G. Spectrin and Other Membrane-Skeletal Components in Human Red Blood Cells of Different Age. Cell Physiol. Biochem. 2017, 42, 1139–1152. [Google Scholar] [CrossRef] [Green Version]
- Orbach, A.; Zelig, O.; Yedgar, S.; Barshtein, G. Biophysical and Biochemical Markers of Red Blood Cell Fragility. Transfus. Med. Hemother. 2017, 44, 183–187. [Google Scholar] [CrossRef] [Green Version]
- Bosman, G.J.; Werre, J.M.; Willekens, F.L.; Novotny, V.M. Erythrocyte ageing in vivo and in vitro: Structural aspects and implications for transfusion. Transfus. Med. 2008, 18, 335–347. [Google Scholar] [CrossRef]
- McVey, M.J.; Kuebler, W.M.; Orbach, A.; Arbell, D.; Zelig, O.; Barshtein, G.; Yedgar, S. Reduced deformability of stored red blood cells is associated with generation of extracellular vesicles. Transfus. Apher. Sci. 2020, 59, 102851. [Google Scholar] [CrossRef]
- Wolfe, L.C.; Byrne, A.M.; Lux, S.E. Molecular defect in the membrane skeleton of blood bank-stored red cells. Abnormal spectrin-protein 4.1-actin complex formation. J. Clin. Investig. 1986, 78, 1681–1686. [Google Scholar] [CrossRef]
- Rinalducci, S.; Ferru, E.; Blasi, B.; Turrini, F.; Zolla, L. Oxidative stress and caspase-mediated fragmentation of cytoplasmic domain of erythrocyte band 3 during blood storage. Blood Transfus. 2012, 10 (Suppl. 2), s55–s62. [Google Scholar] [CrossRef]
- Barshtein, G.; Rasmusen, T.L.; Zelig, O.; Arbell, D.; Yedgar, S. Inter-donor variability in deformability of red blood cells in blood units. Transfus. Med. 2020, 30, 492–496. [Google Scholar] [CrossRef]
- Barshtein, G.; Gural, A.; Zelig, O.; Arbell, D.; Yedgar, S. Unit-to-unit variability in the deformability of red blood cells. Transfus. Apher. Sci. 2020, 59, 102876. [Google Scholar] [CrossRef]
- Barshtein, G.; Gural, A.; Manny, N.; Zelig, O.; Yedgar, S.; Arbell, D. Storage-induced damage to red blood cell mechanical properties can be only partially reversed by rejuvenation. Transfus. Med. Hemother. 2014, 41, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Matot, I.; Katz, M.; Pappo, O.; Zelig, O.; Corchia, N.; Yedgar, S.; Barshtein, G.; Bennett-Guerrero, E.; Abramovitch, R. Resuscitation with aged blood exacerbates liver injury in a hemorrhagic rat model. Crit. Care Med. 2013, 41, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Barshtein, G.; Arbell, D.; Livshits, L.; Gural, A. Is It Possible to Reverse the Storage-Induced Lesion of Red Blood Cells? Front. Physiol. 2018, 9, 914. [Google Scholar] [CrossRef]
- Tarasev, M.; Chakraborty, S.; Alfano, K. RBC mechanical fragility as a direct blood quality metric to supplement storage time. Mil Med. 2015, 180, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Barshtein, G.; Pries, A.R.; Goldschmidt, N.; Zukerman, A.; Orbach, A.; Zelig, O.; Arbell, D.; Yedgar, S. Deformability of transfused red blood cells is a potent determinant of transfusion-induced change in recipient’s blood flow. Microcirculation 2016, 23, 479–486. [Google Scholar] [CrossRef]
- Ehrhart, I.C.; Parker, P.E.; Weidner, W.J.; Dabney, J.M.; Scott, J.B.; Haddy, F.J. Coronary vascular and myocardial responses to carotid body stimulation in the dog. Am. J. Physiol. 1975, 229, 754–760. [Google Scholar] [CrossRef]
- Antonelou, M.H.; Seghatchian, J. Insights into red blood cell storage lesion: Toward a new appreciation. Transfus. Apher. Sci. 2016, 55, 292–301. [Google Scholar] [CrossRef]
- Beutler, E.; West, C. The storage of hard-packed red blood cells in citrate-phosphate-dextrose (CPD) and CPD-adenine (CPDA-1). Blood 1979, 54, 280–284. [Google Scholar] [CrossRef] [Green Version]
- Sivertsen, J.; Braathen, H.; Lunde, T.H.F.; Kristoffersen, E.K.; Hervig, T.; Strandenes, G.; Apelseth, T.O. Cold-stored leukoreduced CPDA-1 whole blood: In vitro quality and hemostatic properties. Transfusion 2020, 60, 1042–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sparrow, R.L. Time to revisit red blood cell additive solutions and storage conditions: A role for “omics” analyses. Blood Transfus. 2012, 10 (Suppl. 2), s7–s11. [Google Scholar] [CrossRef]
- Graminske, S.; Puca, K.; Schmidt, A.; Brooks, S.; Boerner, A.; Heldke, S.; de Arruda Indig, M.; Brucks, M.; Kossor, D. In vitro evaluation of di(2-ethylhexyl)terephthalate-plasticized polyvinyl chloride blood bags for red blood cell storage in AS-1 and PAGGSM additive solutions. Transfusion 2018, 58, 1100–1107. [Google Scholar] [CrossRef]
- Heaton, A.; Miripol, J.; Aster, R.; Hartman, P.; Dehart, D.; Rzad, L.; Grapka, B.; Davisson, W.; Buchholz, D.H. Use of Adsol preservation solution for prolonged storage of low viscosity AS-1 red blood cells. Br. J. Haematol. 1984, 57, 467–478. [Google Scholar] [CrossRef]
- Sacks, D.B.; John, W.G. Interpretation of hemoglobin A1c values. JAMA 2014, 311, 2271–2272. [Google Scholar] [CrossRef]
- Wenk, R.E.; McGann, H.; Gibble, J. Haemoglobin A1c in donor erythrocytes. Transfus. Med. 2011, 21, 349–350. [Google Scholar] [CrossRef]
- Spencer, D.H.; Grossman, B.J.; Scott, M.G. Red cell transfusion decreases hemoglobin A1c in patients with diabetes. Clin. Chem. 2011, 57, 344–346. [Google Scholar] [CrossRef]
- Weinblatt, M.E.; Kochen, J.A.; Scimeca, P.G. Chronically transfused patients with increased hemoglobin Alc secondary to donor blood. Ann. Clin. Lab. Sci. 1986, 16, 34–37. [Google Scholar]
- Radin, M.S. Pitfalls in hemoglobin A1c measurement: When results may be misleading. J. Gen. Intern. Med. 2014, 29, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Rehman, K.; Akash, M.S.H. Mechanism of Generation of Oxidative Stress and Pathophysiology of Type 2 Diabetes Mellitus: How Are They Interlinked? J. Cell Biochem. 2017, 118, 3577–3585. [Google Scholar] [CrossRef]
- Akash, M.S.; Rehman, K.; Chen, S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J. Cell Biochem. 2013, 114, 525–531. [Google Scholar] [CrossRef]
- Sobel, B.E.; Schneider, D.J. Cardiovascular complications in diabetes mellitus. Curr. Opin. Pharm. 2005, 5, 143–148. [Google Scholar] [CrossRef]
- Faselis, C.; Katsimardou, A.; Imprialos, K.; Deligkaris, P.; Kallistratos, M.; Dimitriadis, K. Microvascular Complications of Type 2 Diabetes Mellitus. Curr. Vasc. Pharm. 2020, 18, 117–124. [Google Scholar] [CrossRef]
- Avogaro, A.; Fadini, G.P. Microvascular complications in diabetes: A growing concern for cardiologists. Int. J. Cardiol. 2019, 291, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Almdal, T.; Scharling, H.; Jensen, J.S.; Vestergaard, H. The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: A population-based study of 13,000 men and women with 20 years of follow-up. Arch. Intern. Med. 2004, 164, 1422–1426. [Google Scholar] [CrossRef] [Green Version]
- Lockhart, C.J.; McCann, A.J.; Pinnock, R.A.; Hamilton, P.K.; Harbinson, M.T.; McVeigh, G.E. Multimodal functional and anatomic imaging identifies preclinical microvascular abnormalities in type 1 diabetes mellitus. Am. J. Physiol. Heart Circ. Physiol. 2014, 307, H1729–H1736. [Google Scholar] [CrossRef] [Green Version]
- Querfeld, U.; Mak, R.H.; Pries, A.R. Microvascular disease in chronic kidney disease: The base of the iceberg in cardiovascular comorbidity. Clin. Sci. 2020, 134, 1333–1356. [Google Scholar] [CrossRef]
- Rizzoni, D.; de Ciuceis, C.; Salvetti, M.; Paini, A.; Rossini, C.; Agabiti-Rosei, C.; Muiesan, M.L. Interactions between macro- and micro-circulation: Are they relevant? High Blood Press Cardiovasc. Prev. 2015, 22, 119–128. [Google Scholar] [CrossRef]
- Kor, D.J.; van Buskirk, C.M.; Gajic, O. Red blood cell storage lesion. Bosn. J. Basic Med. Sci. 2009, 9 (Suppl. 1), 21–27. [Google Scholar] [CrossRef] [Green Version]
- Radosinska, J.; Vrbjar, N. The role of red blood cell deformability and Na,K-ATPase function in selected risk factors of cardiovascular diseases in humans: Focus on hypertension, diabetes mellitus and hypercholesterolemia. Physiol. Res. 2016, 65 (Suppl. 1), S43–S54. [Google Scholar] [CrossRef]
- Agrawal, R.; Sherwood, J.; Chhablani, J.; Ricchariya, A.; Kim, S.; Jones, P.H.; Balabani, S.; Shima, D. Red blood cells in retinal vascular disorders. Blood Cells Mol. Dis. 2016, 56, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Barshtein, G.; Arbell, D.; Yedgar, S. Hemodynamic Functionality of Transfused Red Blood Cells in the Microcirculation of Blood Recipients. Front. Physiol. 2018, 9, 41. [Google Scholar] [CrossRef]
- Wang, Z.S.; Song, Z.C.; Bai, J.H.; Li, F.; Wu, T.; Qi, J.; Hu, J. Red blood cell count as an indicator of microvascular complications in Chinese patients with type 2 diabetes mellitus. Vasc. Health Risk Manag. 2013, 9, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Soma, P.; Pretorius, E. Interplay between ultrastructural findings and atherothrombotic complications in type 2 diabetes mellitus. Cardiovasc. Diabetol. 2015, 14, 96. [Google Scholar] [CrossRef] [Green Version]
- Malandrino, N.; Wu, W.C.; Taveira, T.H.; Whitlatch, H.B.; Smith, R.J. Association between red blood cell distribution width and macrovascular and microvascular complications in diabetes. Diabetologia 2012, 55, 226–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimrin, A.B.; Hess, J.R. Current issues relating to the transfusion of stored red blood cells. Vox Sang. 2009, 96, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Arun, P.; Padmakumaran Nair, K.G.; Manojkumar, V.; Deepadevi, K.V.; Lakshmi, L.R.; Kurup, P.A. Decreased hemolysis and lipid peroxidation in blood during storage in the presence of nicotinic acid. Vox Sang. 1999, 76, 220–225. [Google Scholar] [CrossRef]
- Meledeo, M.A.; Peltier, G.C.; McIntosh, C.S.; Bynum, J.A.; Cap, A.P. Optimizing whole blood storage: Hemostatic function of 35-day stored product in CPD, CP2D, and CPDA-1 anticoagulants. Transfusion 2019, 59, 1549–1559. [Google Scholar] [CrossRef] [Green Version]
- Peppa, M.; Vlassara, H. Advanced glycation end products and diabetic complications: A general overview. Hormones 2005, 4, 28–37. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, F.; Wang, L.; Wang, W.; Liu, B.; Liu, J.; Chen, M.; He, Q.; Liao, Y.; Yu, X.; et al. Prevalence of chronic kidney disease in China: A cross-sectional survey. Lancet 2012, 379, 815–822. [Google Scholar] [CrossRef]
- Obrador, G.T.; Roberts, T.; St Peter, W.L.; Frazier, E.; Pereira, B.J.; Collins, A.J. Trends in anemia at initiation of dialysis in the United States. Kidney Int. 2001, 60, 1875–1884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sills, M.A.; Bennett, D.A.; Lovell, R.A.; Liebman, J.M.; Wood, P.L.; Glaeser, B.S.; Williams, M.; Hutchison, A.J. CGS 18102A, a benzopyranopyridine anxiolytic with 5-HT1 agonist and 5-HT2 antagonist properties. Prog. Clin. Biol. Res. 1990, 361, 469–475. [Google Scholar]
- McClellan, W.; Aronoff, S.L.; Bolton, W.K.; Hood, S.; Lorber, D.L.; Tang, K.L.; Tse, T.F.; Wasserman, B.; Leiserowitz, M. The prevalence of anemia in patients with chronic kidney disease. Curr. Med. Res. Opin. 2004, 20, 1501–1510. [Google Scholar] [CrossRef]
- Kazmi, W.H.; Kausz, A.T.; Khan, S.; Abichandani, R.; Ruthazer, R.; Obrador, G.T.; Pereira, B.J. Anemia: An early complication of chronic renal insufficiency. Am. J. Kidney Dis. 2001, 38, 803–812. [Google Scholar] [CrossRef]
- Drueke, T.B.; Parfrey, P.S. Summary of the KDIGO guideline on anemia and comment: Reading between the (guide)line(s). Kidney Int. 2012, 82, 952–960. [Google Scholar] [CrossRef] [Green Version]
- Levin, A.; Thompson, C.R.; Ethier, J.; Carlisle, E.J.; Tobe, S.; Mendelssohn, D.; Burgess, E.; Jindal, K.; Barrett, B.; Singer, J.; et al. Left ventricular mass index increase in early renal disease: Impact of decline in hemoglobin. Am. J. Kidney Dis. 1999, 34, 125–134. [Google Scholar] [CrossRef]
- Foley, R.N.; Parfrey, P.S.; Harnett, J.D.; Kent, G.M.; Murray, D.C.; Barre, P.E. The impact of anemia on cardiomyopathy, morbidity, and and mortality in end-stage renal disease. Am. J. Kidney Dis. 1996, 28, 53–61. [Google Scholar] [CrossRef]
- Silverberg, D.S.; Wexler, D.; Sheps, D.; Blum, M.; Keren, G.; Baruch, R.; Schwartz, D.; Yachnin, T.; Steinbruch, S.; Shapira, I.; et al. The effect of correction of mild anemia in severe, resistant congestive heart failure using subcutaneous erythropoietin and intravenous iron: A randomized controlled study. J. Am. Coll. Cardiol. 2001, 37, 1775–1780. [Google Scholar] [CrossRef] [Green Version]
- Higgins, M.R.; Grace, M.; Ulan, R.A.; Silverberg, D.S.; Bettcher, K.B.; Dossetor, J.B. Anemia in hemodialysis patients. Arch. Intern. Med. 1977, 137, 172–176. [Google Scholar] [CrossRef]
- Goodnough, L.T.; Strasburg, D.; Riddell, J.t.; Verbrugge, D.; Wish, J. Has recombinant human erythropoietin therapy minimized red-cell transfusions in hemodialysis patients? Clin. Nephrol. 1994, 41, 303–307. [Google Scholar]
- Ibrahim, H.N.; Ishani, A.; Guo, H.; Gilbertson, D.T. Blood transfusion use in non-dialysis-dependent chronic kidney disease patients aged 65 years and older. Nephrol Dial. Transpl. 2009, 24, 3138–3143. [Google Scholar] [CrossRef] [Green Version]
- Provenzano, R.; Garcia-Mayol, L.; Suchinda, P.; Von Hartitzsch, B.; Woollen, S.B.; Zabaneh, R.; Fink, J.C.; Group, P.S. Once-weekly epoetin alfa for treating the anemia of chronic kidney disease. Clin. Nephrol. 2004, 61, 392–405. [Google Scholar] [CrossRef]
- Pfeffer, M.A.; Burdmann, E.A.; Chen, C.Y.; Cooper, M.E.; de Zeeuw, D.; Eckardt, K.U.; Feyzi, J.M.; Ivanovich, P.; Kewalramani, R.; Levey, A.S.; et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N. Engl. J. Med. 2009, 361, 2019–2032. [Google Scholar] [CrossRef] [Green Version]
- Despotis, G.J.; Zhang, L.; Lublin, D.M. Transfusion risks and transfusion-related pro-inflammatory responses. Hematol. Oncol. Clin. N. Am. 2007, 21, 147–161. [Google Scholar] [CrossRef]
- Carson, J.L.; Altman, D.G.; Duff, A.; Noveck, H.; Weinstein, M.P.; Sonnenberg, F.A.; Hudson, J.I.; Provenzano, G. Risk of bacterial infection associated with allogeneic blood transfusion among patients undergoing hip fracture repair. Transfusion 1999, 39, 694–700. [Google Scholar] [CrossRef]
- Zou, S.; Dorsey, K.A.; Notari, E.P.; Foster, G.A.; Krysztof, D.E.; Musavi, F.; Dodd, R.Y.; Stramer, S.L. Prevalence, incidence, and residual risk of human immunodeficiency virus and hepatitis C virus infections among United States blood donors since the introduction of nucleic acid testing. Transfusion 2010, 50, 1495–1504. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.; Terasaki, P.I. Significance of the positive crossmatch test in kidney transplantation. N. Engl. J. Med. 1969, 280, 735–739. [Google Scholar] [CrossRef]
- Karpinski, M.; Pochinco, D.; Dembinski, I.; Laidlaw, W.; Zacharias, J.; Nickerson, P. Leukocyte reduction of red blood cell transfusions does not decrease allosensitization rates in potential kidney transplant candidates. J. Am. Soc. Nephrol. 2004, 15, 818–824. [Google Scholar] [CrossRef] [Green Version]
- Kiernan, M.C.; Walters, R.J.; Andersen, K.V.; Taube, D.; Murray, N.M.; Bostock, H. Nerve excitability changes in chronic renal failure indicate membrane depolarization due to hyperkalaemia. Brain 2002, 125, 1366–1378. [Google Scholar] [CrossRef] [Green Version]
- Baumgaertel, M.W.; Kraemer, M.; Berlit, P. Neurologic complications of acute and chronic renal disease. Handb. Clin. Neurol. 2014, 119, 383–393. [Google Scholar] [CrossRef]
- Jabbari, B.; Vaziri, N.D. The nature, consequences, and management of neurological disorders in chronic kidney disease. Hemodial. Int. 2018, 22, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Mayeda, L.; Katz, R.; Ahmad, I.; Bansal, N.; Batacchi, Z.; Hirsch, I.B.; Robinson, N.; Trence, D.L.; Zelnick, L.; de Boer, I.H. Glucose time in range and peripheral neuropathy in type 2 diabetes mellitus and chronic kidney disease. BMJ Open Diabetes Res. Care 2020, 8, e000991. [Google Scholar] [CrossRef] [Green Version]
- Pop-Busui, R.; Roberts, L.; Pennathur, S.; Kretzler, M.; Brosius, F.C.; Feldman, E.L. The management of diabetic neuropathy in CKD. Am. J. Kidney Dis. 2010, 55, 365–385. [Google Scholar] [CrossRef] [Green Version]
- Davison, S.N.; Koncicki, H.; Brennan, F. Pain in chronic kidney disease: A scoping review. Semin. Dial. 2014, 27, 188–204. [Google Scholar] [CrossRef]
- Aggarwal, H.K.; Sood, S.; Jain, D.; Kaverappa, V.; Yadav, S. Evaluation of spectrum of peripheral neuropathy in predialysis patients with chronic kidney disease. Ren. Fail. 2013, 35, 1323–1329. [Google Scholar] [CrossRef]
- Grunwald, J.E.; Pistilli, M.; Ying, G.S.; Daniel, E.; Maguire, M.; Xie, D.; Roy, J.; Whittock-Martin, R.; Parker Ostroff, C.; Lo, J.C.; et al. Association Between Progression of Retinopathy and Concurrent Progression of Kidney Disease: Findings from the Chronic Renal Insufficiency Cohort (CRIC) Study. JAMA Ophthalmol. 2019, 137, 767–774. [Google Scholar] [CrossRef]
- Wong, C.W.; Wong, T.Y.; Cheng, C.Y.; Sabanayagam, C. Kidney and eye diseases: Common risk factors, etiological mechanisms, and pathways. Kidney Int. 2014, 85, 1290–1302. [Google Scholar] [CrossRef] [Green Version]
- Izzedine, H.; Bodaghi, B.; Launay-Vacher, V.; Deray, G. Eye and kidney: From clinical findings to genetic explanations. J. Am. Soc. Nephrol. 2003, 14, 516–529. [Google Scholar] [CrossRef] [Green Version]
- Grunwald, J.E.; Alexander, J.; Maguire, M.; Whittock, R.; Parker, C.; McWilliams, K.; Lo, J.C.; Townsend, R.; Gadegbeku, C.A.; Lash, J.P.; et al. Prevalence of ocular fundus pathology in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2010, 5, 867–873. [Google Scholar] [CrossRef] [Green Version]
- Grunwald, J.E.; Alexander, J.; Ying, G.S.; Maguire, M.; Daniel, E.; Whittock-Martin, R.; Parker, C.; McWilliams, K.; Lo, J.C.; Go, A.; et al. Retinopathy and chronic kidney disease in the Chronic Renal Insufficiency Cohort (CRIC) study. Arch. Ophthalmol. 2012, 130, 1136–1144. [Google Scholar] [CrossRef] [PubMed]
- Grunwald, J.E.; Pistilli, M.; Ying, G.S.; Daniel, E.; Maguire, M.G.; Xie, D.; Whittock-Martin, R.; Parker Ostroff, C.; Lo, J.C.; Townsend, R.R.; et al. Retinopathy and progression of CKD: The CRIC study. Clin. J. Am. Soc. Nephrol. 2014, 9, 1217–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, M.S.; Wilson, D.B.; Craven, T.E.; Stafford, J.; Fried, L.F.; Wong, T.Y.; Klein, R.; Burke, G.L.; Hansen, K.J. Associations between retinal microvascular abnormalities and declining renal function in the elderly population: The Cardiovascular Health Study. Am. J. Kidney Dis. 2005, 46, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Grunwald, J.E.; Pistilli, M.; Ying, G.S.; Maguire, M.; Daniel, E.; Whittock-Martin, R.; Parker-Ostroff, C.; Mohler, E.; Lo, J.C.; Townsend, R.R.; et al. Retinopathy and the risk of cardiovascular disease in patients with chronic kidney disease (from the Chronic Renal Insufficiency Cohort study). Am. J. Cardiol. 2015, 116, 1527–1533. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.Y.; Coresh, J.; Klein, R.; Muntner, P.; Couper, D.J.; Sharrett, A.R.; Klein, B.E.; Heiss, G.; Hubbard, L.D.; Duncan, B.B. Retinal microvascular abnormalities and renal dysfunction: The atherosclerosis risk in communities study. J. Am. Soc. Nephrol. 2004, 15, 2469–2476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chillo, P.; Ismail, A.; Sanyiwa, A.; Ruggajo, P.; Kamuhabwa, A. Hypertensive retinopathy and associated factors among nondiabetic chronic kidney disease patients seen at a tertiary hospital in Tanzania: A cross-sectional study. Int. J. Nephrol. Renov. Dis. 2019, 12, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Yawn, B.P.; Buchanan, G.R.; Afenyi-Annan, A.N.; Ballas, S.K.; Hassell, K.L.; James, A.H.; Jordan, L.; Lanzkron, S.M.; Lottenberg, R.; Savage, W.J.; et al. Management of sickle cell disease: Summary of the 2014 evidence-based report by expert panel members. JAMA 2014, 312, 1033–1048. [Google Scholar] [CrossRef]
- Cappellini, M.D.; Cohen, A.; Porter, J.; Taher, A.; Viprakasit, V. (Eds.) Guidelines for the Management of Transfusion Dependent Thalassaemia (TDT); Thalassaemia International Federation: Nicosia, Cyprus, 2014. [Google Scholar]
- Stamboulis, E.; Vlachou, N.; Drossou-Servou, M.; Tsaftaridis, P.; Koutsis, G.; Katsaros, N.; Economou-Petersen, E.; Loutradi-Anagnostou, A. Axonal sensorimotor neuropathy in patients with beta-thalassaemia. J. Neurol. Neuro. Surg. Psychiatry 2004, 75, 1483–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemtsas, P.; Arnaoutoglou, M.; Perifanis, V.; Koutsouraki, E.; Spanos, G.; Arnaoutoglou, N.; Chalkia, P.; Pantelidou, D.; Orologas, A. Polyneuropathy and myopathy in beta-thalassemia major patients. Ann. Hematol. 2018, 97, 899–904. [Google Scholar] [CrossRef]
- Sawaya, R.A.; Zahed, L.; Taher, A. Peripheral neuropathy in thalassaemia. Ann. Saudi Med. 2006, 26, 358–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papanastasiou, D.A.; Papanicolaou, D.; Magiakou, A.M.; Beratis, N.G.; Tzebelikos, E.; Papapetropoulos, T. Peripheral neuropathy in patients with beta-thalassaemia. J. Neurol. Neurosurg. Psychiatry 1991, 54, 997–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zafeiriou, D.I.; Economou, M.; Athanasiou-Metaxa, M. Neurological complications in beta-thalassemia. Brain Dev. 2006, 28, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Okuyucu, E.E.; Turhanoglu, A.; Duman, T.; Kaya, H.; Melek, I.M.; Yilmazer, S. Peripheral nervous system involvement in patients with sickle cell disease. Eur. J. Neurol. 2009, 16, 814–818. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.W., Jr.; Harris, J.W.; Clark, M. Mononeuropathy in sickle cell anemia: Anatomical and pathophysiological basis for its rarity. Muscle Nerve 1991, 14, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Tsen, L.C.; Cherayil, G. Sickle cell-induced peripheral neuropathy following spinal anesthesia for cesarean delivery. Anesthesiology 2001, 95, 1298–1299. [Google Scholar] [CrossRef]
- Friedlander, A.H.; Genser, L.; Swerdloff, M. Mental nerve neuropathy: A complication of sickle-cell crisis. Oral Surg. Oral Med. Oral Pathol. 1980, 49, 15–17. [Google Scholar] [CrossRef]
- Konotey-Ahulu, F.I. Mental-nerve neuropathy: A complication of sickle-cell crisis. Lancet 1972, 2, 388. [Google Scholar] [CrossRef]
- Asher, S.W. Multiple cranial neuropathies, trigeminal neuralgia, and vascular headaches in sickle cell disease, a possible common mechanism. Neurology 1980, 30, 210–211. [Google Scholar] [CrossRef]
- Agapidou, A.; Aiken, L.; Linpower, L.; Tsitsikas, D.A. Ischemic Monomeric Neuropathy in a Woman with Sickle Cell Anaemia. Case Rep. Hematol. 2016, 2016, 8628425. [Google Scholar] [CrossRef]
- Sharma, D.; Brandow, A.M. Neuropathic pain in individuals with sickle cell disease. Neuro. Sci. Lett. 2020, 714, 134445. [Google Scholar] [CrossRef] [PubMed]
- Poh, F.; Hlis, R.; Chhabra, A. Upper limb peripheral neuropathy in sickle cell anemia: MR neurography appearances. Indian J. Radiol. Imaging 2019, 29, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Liaska, A.; Petrou, P.; Georgakopoulos, C.D.; Diamanti, R.; Papaconstantinou, D.; Kanakis, M.G.; Georgalas, I. beta-Thalassemia and ocular implications: A systematic review. BMC Ophthalmol. 2016, 16, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhoiwala, D.L.; Dunaief, J.L. Retinal abnormalities in beta-thalassemia major. Surv. Ophthalmol. 2016, 61, 33–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilong, Y.; Dubert, M.; Koki, G.; Noubiap, J.J.; Pangetna, H.N.; Menet, A.; Chelo, D.; Offredo, L.; Jacob, S.; Belinga, S.; et al. Sickle cell retinopathy and other chronic complications of sickle cell anemia: A clinical study of 84 Sub-Saharan African cases (Cameroon). J. Fr. Ophtalmol. 2018, 41, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Heydarian, S.; Jafari, R.; Dailami, K.N.; Hashemi, H.; Jafarzadehpour, E.; Heirani, M.; Yekta, A.; Mahjoob, M.; Khabazkhoob, M. Ocular abnormalities in beta thalassemia patients: Prevalence, impact, and management strategies. Int. Ophthalmol. 2020, 40, 511–527. [Google Scholar] [CrossRef]
- Abdalla Elsayed, M.E.A.; Mura, M.; Al Dhibi, H.; Schellini, S.; Malik, R.; Kozak, I.; Schatz, P. Sickle cell retinopathy. A focused review. Graefes. Arch. Clin. Exp. Ophthalmol. 2019, 257, 1353–1364. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, M.; Juca, J.V.O.; Alves, A.; Ferreira, C.V.O.; Barbosa, F.T.; Ribeiro, E.A.N. Sickle cell retinopathy: A literature review. Rev. Assoc. Med. Bras. 2017, 63, 1100–1103. [Google Scholar] [CrossRef]
- Li, J.; Bender, L.; Shaffer, J.; Cohen, D.; Ying, G.S.; Binenbaum, G. Prevalence and Onset of Pediatric Sickle Cell Retinopathy. Ophthalmology 2019, 126, 1000–1006. [Google Scholar] [CrossRef]
- Do, B.K.; Rodger, D.C. Sickle cell disease and the eye. Curr. Opin. Ophthalmol. 2017, 28, 623–628. [Google Scholar] [CrossRef]
- Beral, L.; Romana, M.; Lemonne, N.; David, T.; Connes, P. Terminologies regarding sickle cell retinopathy and maculopathy. Clin. Hemorheol. Microcirc. 2019, 71, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Croise, F.; Le Lez, M.L.; Pisella, P.J. Role of OCT-angiography in the management of sickle cell retinopathy. J. Fr. Ophtalmol. 2020, 43, 7–17. [Google Scholar] [CrossRef]
- Ez-Zahraoui, M.; Laghmari, M.; Lezrek, O.; Ben Dali, I.; Benotmane, F.; Daoudi, R. Sickle cell retinopathy. J. Fr. Ophtalmol. 2017, 40, 156–157. [Google Scholar] [CrossRef] [PubMed]
- Elagouz, M.; Jyothi, S.; Gupta, B.; Sivaprasad, S. Sickle cell disease and the eye: Old and new concepts. Surv. Ophthalmol. 2010, 55, 359–377. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.W. Ophthalmic Manifestations of Sickle Cell Disease. South Med. J. 2016, 109, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Inati, A.; Zeineh, N.; Isma’eel, H.; Koussa, S.; Gharzuddine, W.; Taher, A. Beta-thalassemia: The Lebanese experience. Clin. Lab. Haematol. 2006, 28, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Gimmon, Z.; Wexler, M.R.; Rachmilewitz, E.A. Juvenile leg ulceration in beta-thalassemia major and intermedia. Plast. Reconstr. Surg. 1982, 69, 320–325. [Google Scholar] [CrossRef]
- Stevens, D.M.; Shupack, J.L.; Javid, J.; Silber, R. Ulcers of the leg in thalassemia. Arch. Derm. 1977, 113, 1558–1560. [Google Scholar] [CrossRef]
- Ganor, S.; Cohen, T. Leg ulcers in a family with both beta thalassaemia and glucose-6-phosphate dehydrogenase deficiency. Br. J. Derm. 1976, 95, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Levin, C.; Koren, A. Healing of refractory leg ulcer in a patient with thalassemia intermedia and hypercoagulability after 14 years of unresponsive therapy. Isr. Med. Assoc. J. 2011, 13, 316–318. [Google Scholar] [PubMed]
- Lotti, T.; Benci, M.; Palleschi, G.M.; Cantini, F.; Palchetti, R.; Albertacci, A. Leg ulcer in a patient with beta-thalassemia and glucose-6-phosphate-dehydrogenase deficiency. Int. J. Derm. 1990, 29, 426–427. [Google Scholar] [CrossRef]
- Koshy, M.; Entsuah, R.; Koranda, A.; Kraus, A.P.; Johnson, R.; Bellvue, R.; Flournoy-Gill, Z.; Levy, P. Leg ulcers in patients with sickle cell disease. Blood 1989, 74, 1403–1408. [Google Scholar] [CrossRef] [Green Version]
- Monfort, J.B.; Senet, P. Leg Ulcers in Sickle-Cell Disease: Treatment Update. Adv. Wound Care 2020, 9, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Babalola, O.A.; Ogunkeyede, A.; Odetunde, A.B.; Fasola, F.; Oni, A.A.; Babalola, C.P.; Falusi, A.G. Haematological indices of sickle cell patients with chronic leg ulcers on compression therapy. Afr. J. Lab. Med. 2020, 9, 1037. [Google Scholar] [CrossRef]
- Kendall, C. Sickle Cell Leg Ulcers: A Case Study. Plast. Surg. Nurs. 2018, 38, 99–100. [Google Scholar] [CrossRef]
- Marti-Carvajal, A.J.; Knight-Madden, J.M.; Martinez-Zapata, M.J. Interventions for treating leg ulcers in people with sickle cell disease. Cochrane Database Syst. Rev. 2014, CD008394. [Google Scholar] [CrossRef]
- Kato, G.J.; McGowan, V.; Machado, R.F.; Little, J.A.; Taylor, J.t.; Morris, C.R.; Nichols, J.S.; Wang, X.; Poljakovic, M.; Morris, S.M., Jr.; et al. Lactate dehydrogenase as a biomarker of hemolysis-associated nitric oxide resistance, priapism, leg ulceration, pulmonary hypertension, and death in patients with sickle cell disease. Blood 2006, 107, 2279–2285. [Google Scholar] [CrossRef] [Green Version]
- Demosthenous, C.; Vlachaki, E.; Apostolou, C.; Eleftheriou, P.; Kotsiafti, A.; Vetsiou, E.; Mandala, E.; Perifanis, V.; Sarafidis, P. Beta-thalassemia: Renal complications and mechanisms: A narrative review. Hematology 2019, 24, 426–438. [Google Scholar] [CrossRef] [Green Version]
- Nafea, O.E.; Zakaria, M.; Hassan, T.; El Gebaly, S.M.; Salah, H.E. Subclinical nephrotoxicity in patients with beta-thalassemia: Role of urinary kidney injury molecule. Drug Chem. Toxicol. 2019, 1–10. [Google Scholar] [CrossRef]
- Sen, V.; Ece, A.; Uluca, U.; Soker, M.; Gunes, A.; Kaplan, I.; Tan, I.; Yel, S.; Mete, N.; Sahin, C. Urinary early kidney injury molecules in children with beta-thalassemia major. Ren. Fail. 2015, 37, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Ong-ajyooth, L.; Malasit, P.; Ong-ajyooth, S.; Fucharoen, S.; Pootrakul, P.; Vasuvattakul, S.; Siritanaratkul, N.; Nilwarangkur, S. Renal function in adult beta-thalassemia/Hb E disease. Nephron 1998, 78, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Ahmadzadeh, A.; Jalali, A.; Assar, S.; Khalilian, H.; Zandian, K.; Pedram, M. Renal tubular dysfunction in pediatric patients with beta-thalassemia major. Saudi J. Kidney Dis. Transpl. 2011, 22, 497–500. [Google Scholar] [PubMed]
- Sadeghi-Bojd, S.; Hashemi, M.; Karimi, M. Renal tubular function in patients with beta-thalassaemia major in Zahedan, southeast Iran. Singap. Med. J. 2008, 49, 410–412. [Google Scholar]
- Aldudak, B.; Karabay Bayazit, A.; Noyan, A.; Ozel, A.; Anarat, A.; Sasmaz, I.; Kilinc, Y.; Gali, E.; Anarat, R.; Dikmen, N. Renal function in pediatric patients with beta-thalassemia major. Pediatr. Nephrol. 2000, 15, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Mohkam, M.; Shamsian, B.S.; Gharib, A.; Nariman, S.; Arzanian, M.T. Early markers of renal dysfunction in patients with beta-thalassemia major. Pediatr. Nephrol. 2008, 23, 971–976. [Google Scholar] [CrossRef]
- Smolkin, V.; Halevy, R.; Levin, C.; Mines, M.; Sakran, W.; Ilia, K.; Koren, A. Renal function in children with beta-thalassemia major and thalassemia intermedia. Pediatr. Nephrol. 2008, 23, 1847–1851. [Google Scholar] [CrossRef] [PubMed]
- Jalali, A.; Khalilian, H.; Ahmadzadeh, A.; Sarvestani, S.; Rahim, F.; Zandian, K.; Asar, S. Renal function in transfusion-dependent pediatric beta-thalassemia major patients. Hematology 2011, 16, 249–254. [Google Scholar] [CrossRef]
- Bakr, A.; Al-Tonbary, Y.; Osman, G.; El-Ashry, R. Renal complications of beta-thalassemia major in children. Am. J. Blood Res. 2014, 4, 1–6. [Google Scholar]
- Hamed, E.A.; ElMelegy, N.T. Renal functions in pediatric patients with beta-thalassemia major: Relation to chelation therapy: Original prospective study. Ital. J. Pediatr. 2010, 36, 39. [Google Scholar] [CrossRef] [Green Version]
- Uzun, E.; Balci, Y.I.; Yuksel, S.; Aral, Y.Z.; Aybek, H.; Akdag, B. Glomerular and tubular functions in children with different forms of beta thalassemia. Ren. Fail. 2015, 37, 1414–1418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nickavar, A.; Qmarsi, A.; Ansari, S.; Zarei, E. Kidney Function in Patients with Different Variants of Beta-Thalassemia. Iran. J. Kidney Dis. 2017, 11, 132–137. [Google Scholar] [PubMed]
- Voskaridou, E.; Terpos, E.; Michail, S.; Hantzi, E.; Anagnostopoulos, A.; Margeli, A.; Simirloglou, D.; Loukopoulos, D.; Papassotiriou, I. Early markers of renal dysfunction in patients with sickle cell/beta-thalassemia. Kidney Int. 2006, 69, 2037–2042. [Google Scholar] [CrossRef] [Green Version]
- Deveci, B.; Kurtoglu, A.; Kurtoglu, E.; Salim, O.; Toptas, T. Documentation of renal glomerular and tubular impairment and glomerular hyperfiltration in multitransfused patients with beta thalassemia. Ann. Hematol. 2016, 95, 375–381. [Google Scholar] [CrossRef]
- Nath, K.A.; Hebbel, R.P. Sickle cell disease: Renal manifestations and mechanisms. Nat. Rev. Nephrol. 2015, 11, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Hariri, E.; Mansour, A.; El Alam, A.; Daaboul, Y.; Korjian, S.; Aoun Bahous, S. Sickle cell nephropathy: An update on pathophysiology, diagnosis, and treatment. Int. Urol. Nephrol. 2018, 50, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Laurentino, M.R.; Parente Filho, S.L.A.; Parente, L.L.C.; da Silva Junior, G.B.; Daher, E.F.; Lemes, R.P.G. Non-invasive urinary biomarkers of renal function in sickle cell disease: An overview. Ann. Hematol. 2019, 98, 2653–2660. [Google Scholar] [CrossRef]
- Naik, R.P.; Derebail, V.K. The spectrum of sickle hemoglobin-related nephropathy: From sickle cell disease to sickle trait. Expert Rev. Hematol. 2017, 10, 1087–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nath, K.A.; Vercellotti, G.M. Renal Functional Decline in Sickle Cell Disease and Trait. J. Am. Soc. Nephrol. 2020, 31, 236–238. [Google Scholar] [CrossRef]
- Nnaji, U.M.; Ogoke, C.C.; Okafor, H.U.; Achigbu, K.I. Sickle Cell Nephropathy and Associated Factors among Asymptomatic Children with Sickle Cell Anaemia. Int. J. Pediatr. 2020, 2020, 1286432. [Google Scholar] [CrossRef] [PubMed]
- Barshtein, G.; Goldschmidt, N.; Pries, A.R.; Zelig, O.; Arbell, D.; Yedgar, S. Deformability of transfused red blood cells is a potent effector of transfusion-induced hemoglobin increment: A study with beta-thalassemia major patients. Am. J. Hematol. 2017, 92, E559–E560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirlohi, M.S.; Yaghooti, H.; Shirali, S.; Aminasnafi, A.; Olapour, S. Increased levels of advanced glycation end products positively correlate with iron overload and oxidative stress markers in patients with beta-thalassemia major. Ann. Hematol. 2018, 97, 679–684. [Google Scholar] [CrossRef]
- Nur, E.; Brandjes, D.P.; Schnog, J.J.; Otten, H.M.; Fijnvandraat, K.; Schalkwijk, C.G.; Biemond, B.J.; Group, C.S. Plasma levels of advanced glycation end products are associated with haemolysis-related organ complications in sickle cell patients. Br. J. Haematol. 2010, 151, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Somjee, S.S.; Warrier, R.P.; Thomson, J.L.; Ory-Ascani, J.; Hempe, J.M. Advanced glycation end-products in sickle cell anaemia. Br. J. Haematol. 2005, 128, 112–118. [Google Scholar] [CrossRef]
- Safwat, N.A.; Kenny, M.A. Soluble receptor for advanced glycation end products as a vasculopathy biomarker in sickle cell disease. Pediatr. Res. 2018, 84, 869–874. [Google Scholar] [CrossRef]
T2 Diabetes | RBC Storage | |
---|---|---|
Elevated Hemolysis/Free Heme | [67] | [68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85] |
Elevated Membrane Phosphatidylserine exposure | [86,87] | [88,89,90,91,92] |
Elevated HbA1C | [93,94,95,96,97] | [73,98,99,100,101,102,103] |
Elevated Intra-RBC ROS concentration | [100,102] | [71,104,105] |
Decreased levels/activity of RBC GSH and other antioxidant systems | [102,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134] | [69,104,135,136,137,138] |
Elevated Intracellular AGE | [58,102,139,140,141,142,143,144,145,146,147] | [148,149] |
Abnormalities in Nitric oxide signaling and decreased RBC nitric oxide synthase (RBC-NOS) activity | [150] | [84,151] |
Decreased 2,3 DPG level | [152,153,154,155] | [33,70,73,88,156,157,158,159,160,161,162,163] |
Abnormalities in Na/K levels and decreased Na+/K+-ATPase activity | [128,141,164,165,166,167,168,169,170,171,172,173,174,175,176] | [70,72,177,178,179,180,181,182,183,184] |
Ca2+ intracellular accumulation and/or decreased Ca2+ ATPase activity | [141,172,185,186,187,188,189,190,191] | [73,75,192,193] |
Decreased intracellular ATP level | [154,172] | [68,72,73,75,77,80,81,82,83,88,156,157,162,194,195,196,197,198,199,200,201,202,203,204] |
Elevated intra-RBC protein oxidation | [102,118,145,205,206,207,208,209,210,211,212] | [34,71,73,79,135,137,162,179,181,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233] |
Elevated lipid peroxidation | [106,114,115,126,127,141,145,210,234,235,236,237,238,239] | [79,135,162,179,215,221,240,241] |
Elevated Poly Unsaturated Fatty Acid (PUFA) oxidation | [127,242] | [73,148,243] |
Decreased ATP release from RBC | [244,245,246,247] | [199,248,249] |
Decreased intra-RBC NADPH | [110,111,247] | [104] |
Decreased RBC deformability | [59,187,211,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268] | [70,73,156,197,216,269,270,271,272,273,274,275,276,277] |
Elevated RBC adhesion | [278,279,280] | [275,281,282] |
Elevated RBC aggregability | [262,283,284,285,286] | [162,275,287] |
Elevated release of Extracellular vesicles (EVs) | [288] | [69,72,73,156,192,289,290,291,292,293,294,295] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Livshits, L.; Barshtein, G.; Arbell, D.; Gural, A.; Levin, C.; Guizouarn, H. Do We Store Packed Red Blood Cells under “Quasi-Diabetic” Conditions? Biomolecules 2021, 11, 992. https://doi.org/10.3390/biom11070992
Livshits L, Barshtein G, Arbell D, Gural A, Levin C, Guizouarn H. Do We Store Packed Red Blood Cells under “Quasi-Diabetic” Conditions? Biomolecules. 2021; 11(7):992. https://doi.org/10.3390/biom11070992
Chicago/Turabian StyleLivshits, Leonid, Gregory Barshtein, Dan Arbell, Alexander Gural, Carina Levin, and Hélène Guizouarn. 2021. "Do We Store Packed Red Blood Cells under “Quasi-Diabetic” Conditions?" Biomolecules 11, no. 7: 992. https://doi.org/10.3390/biom11070992
APA StyleLivshits, L., Barshtein, G., Arbell, D., Gural, A., Levin, C., & Guizouarn, H. (2021). Do We Store Packed Red Blood Cells under “Quasi-Diabetic” Conditions? Biomolecules, 11(7), 992. https://doi.org/10.3390/biom11070992