Role of Fibulins in Embryonic Stage Development and Their Involvement in Various Diseases
Abstract
:1. Introduction
2. The Fibulin Family
3. Role of Fibulins in Embryonic Development
3.1. Long Fibulins
3.1.1. Fibulin-1
3.1.2. Fibulin-2
3.2. Short Fibulins
3.2.1. Fibulin-3
3.2.2. Fibulin-4
3.2.3. Fibulin-5
3.2.4. Fibulin-7
3.3. Hemicentins
3.3.1. Fibulin-6
3.3.2. Fibulin-8
4. Role of Fibulins during Cancer Progression
5. Role of Fibulins in Other Diseases
6. Miscellaneous Role of Fibulin Family
7. Conclusions
Funding
Conflicts of Interest
References
- Alberts, B.; Johnson, A.; Lewis, J.; Morgan, D.; Raff, M.; Roberts, K.; Walter, P. The Extracellular Matrix of Animals. In Molecular Biol. of the Cell, 6th ed.; Garland Science: New York, NY, USA, 2015. [Google Scholar]
- Giltay, R.; Timpl, R.; Kostka, G. Sequence, recombinant expression and tissue localization of two novel extracellular matrix proteins, fibulin-3 and fibulin-4. Matrix Biol. 1999, 18, 469–480. [Google Scholar] [CrossRef]
- De Vega, S.; Iwamoto, T.; Yamada, Y. Fibulins: Multiple roles in matrix structures and tissue functions. Cell. Mol. Life Sci. 2009, 66, 1890–1902. [Google Scholar] [CrossRef]
- Sasaki, T.; Mann, K.; Wiedemann, H.; Göhring, W.; Lustig, A.; Engel, J.; Chu, M.L.; Timpl, R. Dimer model for the microfibrillar protein fibulin-2 and identification of the connecting disulfide bridge. EMBO J. 1997, 16, 3035–3043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barth, J.L.; Argraves, K.M.; Roark, E.F.; Little, C.D.; Argraves, W.S. Identification of chicken and C. elegans fibulin-1 homologs and characterization of the C. elegans fibulin-1 gene. Matrix Biol. 1998, 17, 635–646. [Google Scholar] [CrossRef]
- Argraves, W.S.; Tran, H.; Burgess, W.H.; Dickerson, K. Fibulin is an extracellular matrix and plasma glycoprotein with repeated domain structure. J. Cell Biol. 1990, 111, 3155–3164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, N.; Kostka, G.; Garbe, J.H.; Keene, D.R.; Bächinger, H.P.; Hanisch, F.G.; Markova, D.; Tsuda, T.; Timpl, R.; Chu, M.L.; et al. A comparative analysis of the fibulin protein family. Biochemical characterization, binding interactions, and tissue localization. J. Biol. Chem. 2007, 282, 11805–11816. [Google Scholar] [CrossRef] [Green Version]
- Lecka-Czernik, B.; Lumpkin, C.K., Jr.; Goldstein, S. An overexpressed gene transcript in senescent and quiescent human fibroblasts encoding a novel protein in the epidermal growth factor-like repeat family stimulates DNA synthesis. Mol. Cell. Biol. 1995, 15, 120–128. [Google Scholar] [CrossRef] [Green Version]
- Yanagisawa, H.; Schluterman, M.K.; Brekken, R.A. Fibulin-5, an integrin-binding matricellular protein: Its function in development and disease. J. Cell Commun. Signal. 2009, 3, 337–347. [Google Scholar] [CrossRef] [Green Version]
- De Vega, S.; Iwamoto, T.; Nakamura, T.; Hozumi, K.; McKnight, D.A.; Fisher, L.W.; Fukumoto, S.; Yamada, Y. TM14 is a new member of the fibulin family (fibulin-7) that interacts with extracellular matrix molecules and is active for cell binding. J. Biol. Chem. 2007, 282, 30878–30888. [Google Scholar] [CrossRef] [Green Version]
- Vogel, B.E.; Hedgecock, E.M. Hemicentin, a conserved extracellular member of the immunoglobulin superfamily, organizes epithelial and other cell attachments into oriented line-shaped junctions. Development 2001, 128, 883–894. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Muriel, J.M.; Ramirez, S.; Hutter, H.; Hedgecock, E.M.; Breydo, L.; Baskakov, I.V.; Vogel, B.E. Hemicentin assembly in the extracellular matrix is mediated by distinct structural modules. J. Biol. Chem. 2006, 281, 23606–23610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Xu, M.; Zhou, X.; Jones, O.B.; Moharomd, E.; Pan, Y.; Yan, G.; Anthony, D.D.; Isaacs, W.B. Specific structure and unique function define the hemicentin. Cell Biosci. 2013, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wu, J.; Dong, H.; Khan, S.A.; Chu, M.L.; Tsuda, T. Fibulin-2 deficiency attenuates angiotensin II-induced cardiac hypertrophy by reducing transforming growth factor-β signalling. Clin. Sci. 2014, 126, 275–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiemann, W.P.; Blobe, G.C.; Kalume, D.E.; Pandey, A.; Lodish, H.F. Context-specific effects of fibulin-5 (DANCE/EVEC) on cell proliferation, motility, and invasion. Fibulin-5 is induced by transforming growth factor-beta and affects protein kinase cascades. J. Biol. Chem. 2002, 277, 27367–27377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuang, P.P.; Joyce-Brady, M.; Zhang, X.H.; Jean, J.C.; Goldstein, R.H. Fibulin-5 gene expression in human lung fibroblasts is regulated by TGF-beta and phosphatidylinositol 3-kinase activity. Am. J. Physiol. Cell Physiol. 2006, 291, C1412–C1421. [Google Scholar] [CrossRef] [Green Version]
- Topalovski, M.; Hagopian, M.; Wang, M.; Brekken, R.A. Hypoxia and Transforming Growth Factor β Cooperate to Induce Fibulin-5 Expression in Pancreatic Cancer. J. Biol. Chem. 2016, 291, 22244–22252. [Google Scholar] [CrossRef] [Green Version]
- Bardin, A.; Moll, F.; Margueron, R.; Delfour, C.; Chu, M.L.; Maudelonde, T.; Cavailles, V.; Pujol, P. Transcriptional and Posttranscriptional Regulation of Fibulin-1 by Estrogens Leads to Differential Induction of Messenger Ribonucleic Acid Variants in Ovarian and Breast Cancer Cells. Endocrinology 2005, 146, 760–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Missan, D.S.; Chittur, S.V.; DiPersio, C.M. Regulation of fibulin-2 gene expression by integrin α3β1 contributes to the invasive phenotype of transformed keratinocytes. J. Investig. Dermatol. 2014, 134, 2418–2427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argraves, W.S.; Dickerson, K.; Burgess, W.H.; Ruoslahti, E. Fibulin, a novel protein that interacts with the fibronectin receptor beta subunit cytoplasmic domain. Cell 1989, 58, 623–629. [Google Scholar] [CrossRef]
- Kluge, M.; Mann, K.; Dziadek, M.; Timpl, R. Characterization of a novel calcium-binding 90-kDa glycoprotein (BM-90) shared by basement membranes and serum. Eur. J. Biochem. 1990, 193, 651–659. [Google Scholar] [CrossRef]
- Roark, E.F.; Keene, D.R.; Haudenschild, C.C.; Godyna, S.; Little, C.D.; Argraves, W.S. The association of human fibulin-1 with elastic fibers: An immunohistological, ultrastructural, and RNA study. J. Histochem. Cytochem. 1995, 43, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Visconti, R.P.; Barth, J.L.; Keeley, F.W.; Little, C.D. Codistribution analysis of elastin and related fibrillar proteins in early vertebrate development. Matrix Biol. 2003, 22, 109–121. [Google Scholar] [CrossRef]
- Spence, S.G.; Argraves, W.S.; Walters, L.; Hungerford, J.E.; Little, C.D. Fibulin is localized at sites of epithelial-mesenchymal transitions in the early avian embryo. Dev. Biol. 1992, 151, 473–484. [Google Scholar] [CrossRef]
- Bouchey, D.; Argraves, W.S.; Little, C.D. Fibulin-1, vitronectin, and fibronectin expression during avian cardiac valve and septa development. Anatom. Rec. 1996, 244, 540–551. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Timpl, R.; Sasaki, T.; Chu, M.L.; Ekblom, P. Fibulin-1 and fibulin-2 expression during organogenesis in the developing mouse embryo. Dev. Dynam. 1996, 205, 348–364. [Google Scholar] [CrossRef]
- Nakamoto, T.; Okada, H.; Nakajima, T.; Ikuta, A.; Yasuda, K.; Kanzaki, H. Progesterone induces the fibulin-1 expression in human endometrial stromal cells. Hum. Reprod. 2005, 20, 1447–1455. [Google Scholar] [CrossRef] [Green Version]
- Harikrishnan, K.; Cooley, M.A.; Sugi, Y.; Barth, J.L.; Rasmussen, L.M.; Kern, C.B.; Argraves, K.M.; Argraves, W.S. Fibulin-1 suppresses endothelial to mesenchymal transition in the proximal outflow tract. Mech. Dev. 2015, 136, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Fresco, V.M.; Kern, C.B.; Mohammadi, M.; Twal, W.O. Fibulin-1 Binds to Fibroblast Growth Factor 8 with High Affinity: Effects on embryo survival. J. Biol. Chem. 2016, 291, 18730–18739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ducros, E.; Berthaut, A.; Mirshahi, P.; Lemarchand, S.; Soria, J.; Legeais, J.M.; Mirshahi, M. Expression of extracellular matrix proteins fibulin-1 and fibulin-2 by human corneal fibroblasts. Curr. Eye Res. 2007, 32, 481–490. [Google Scholar] [CrossRef]
- Adam, S.; Göhring, W.; Wiedemann, H.; Chu, M.L.; Timpl, R.; Kostka, G. Binding of fibulin-1 to nidogen depends on its C-terminal globular domain and a specific array of calcium-binding epidermal growth factor-like (EG) modules. J. Mol. Biol. 1997, 272, 226–236. [Google Scholar] [CrossRef]
- Cooley, M.A.; Kern, C.B.; Fresco, V.M.; Wessels, A.; Thompson, R.P.; McQuinn, T.C.; Twal, W.O.; Mjaatvedt, C.H.; Drake, C.J.; Argraves, W.S. Fibulin-1 is required for morphogenesis of neural crest-derived structures. Dev. Biol. 2008, 319, 336–345. [Google Scholar] [CrossRef] [Green Version]
- Cooley, M.A.; Fresco, V.M.; Dorlon, M.E.; Twal, W.O.; Lee, N.V.; Barth, J.L.; Kern, C.B.; Iruela-Arispe, M.L.; Argraves, W.S. Fibulin-1 is required during cardiac ventricular morphogenesis for versican cleavage, suppression of ErbB2 and Erk1/2 activation, and to attenuate trabecular cardiomyocyte proliferation. Dev. Dynam. 2012, 241, 303–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, N.V.; Rodriguez-Manzaneque, J.C.; Thai, S.N.; Twal, W.O.; Luque, A.; Lyons, K.M.; Argraves, W.S.; Iruela-Arispe, M.L. Fibulin-1 acts as a cofactor for the matrix metalloprotease ADAMTS-1. J. Biol. Chem. 2005, 280, 34796–34804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostka, G.; Giltay, R.; Bloch, W.; Addicks, K.; Timpl, R.; Fässler, R.; Chu, M.L. Perinatal lethality and endothelial cell abnormalities in several vessel compartments of fibulin-1-deficient mice. Mol. Cell. Biol. 2001, 21, 7025–7034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, T.C.; Sasaki, T.; Zhang, R.Z.; Fässler, R.; Timpl, R.; Chu, M.L. Structure and expression of fibulin-2, a novel extracellular matrix protein with multiple EGF-like repeats and consensus motifs for calcium binding. J. Cell Biol. 1993, 123, 1269–1277. [Google Scholar] [CrossRef]
- Cangemi, C.; Hansen, M.L.; Argraves, W.S.; Rasmussen, L.M. Fibulins and their role in cardiovascular biology and disease. Adv. Clin. Chem. 2014, 67, 245–265. [Google Scholar] [PubMed]
- Timpl, R.; Sasaki, T.; Kostka, G.; Chu, M.L. Fibulins: A versatile family of extracellular matrix proteins. Nat. Rev. Mol. Cell Biol. 2003, 4, 479–489. [Google Scholar] [CrossRef]
- Tsuda, T. Extracellular Interactions between Fibulins and Transforming Growth Factor (TGF)-β in Physiological and Pathological Conditions. IJMS 2018, 19, 2787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.Y.; Chu, M.L.; Pan, T.C.; Sasaki, T.; Timpl, R.; Ekblom, P. Extracellular matrix protein fibulin-2 is expressed in the embryonic endocardial cushion tissue and is a prominent component of valves in adult heart. Dev. Biol. 1995, 167, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Olijnyk, D.; Ibrahim, A.M.; Ferrier, R.K.; Tsuda, T.; Chu, M.L.; Gusterson, B.A.; Stein, T.; Morris, J.S. Fibulin-2 is involved in early extracellular matrix development of the outgrowing mouse mammary epithelium. Cell. Mol. Life Sci. 2014, 71, 3811–3828. [Google Scholar] [CrossRef]
- Tsuda, T.; Wang, H.; Timpl, R.; Chu, M.L. Fibulin-2 expression marks transformed mesenchymal cells in developing cardiac valves, aortic arch vessels, and coronary vessels. Dev. Dynam. 2001, 222, 89–100. [Google Scholar] [CrossRef]
- Schaeffer, J.; Tannahill, D.; Cioni, J.M.; Rowlands, D.; Keynes, R. Identification of the extracellular matrix protein Fibulin-2 as a regulator of spinal nerve organization. Dev. Biol. 2018, 442, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Miosge, N.; Götz, W.; Sasaki, T.; Chu, M.L.; Timpl, R.; Herken, R. The extracellular matrix proteins fibulin-1 and fibulin-2 in the early human embryo. Histochem. J. 1996, 28, 109–116. [Google Scholar] [CrossRef]
- Fässler, R.; Sasaki, T.; Timpl, R.; Chu, M.L.; Werner, S. Differential regulation of fibulin, tenascin-C, and nidogen expression during wound healing of normal and glucocorticoid-treated mice. Exp. Cell Res. 1996, 222, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Knittel, T.; Kobold, D.; Saile, B.; Grundmann, A.; Neubauer, K.; Piscaglia, F.; Ramadori, G. Rat liver myofibroblasts and hepatic stellate cells: Different cell populations of the fibroblast lineage with fibrogenic potential. Gastroenterology 1999, 117, 1205–1221. [Google Scholar] [CrossRef]
- Hunzelmann, N.; Nischt, R.; Brenneisen, P.; Eickert, A.; Krieg, T. Increased deposition of fibulin-2 in solar elastosis and its colocalization with elastic fibres. Br. J. Dermatol. 2001, 145, 217–222. [Google Scholar] [CrossRef]
- Sicot, F.X.; Tsuda, T.; Markova, D.; Klement, J.F.; Arita, M.; Zhang, R.Z.; Pan, T.C.; Mecham, R.P.; Birk, D.E.; Chu, M.L. Fibulin-2 is dispensable for mouse development and elastic fiber formation. Mol. Cell. Biol. 2008, 28, 1061–1067. [Google Scholar] [CrossRef] [Green Version]
- Longmate, W.M.; Monichan, R.; Chu, M.L.; Tsuda, T.; Mahoney, M.G.; DiPersio, C.M. Reduced fibulin-2 contributes to loss of basement membrane integrity and skin blistering in mice lacking integrin α3β1 in the epidermis. J. Investig. Dermatol. 2014, 134, 1609–1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehlermann, J.; Weber, S.; Pfisterer, P.; Schorle, H. Cloning, expression and characterization of the murine Efemp1, a gene mutated in Doyne-Honeycomb retinal dystrophy. Gene Expr. Patterns 2003, 3, 441–447. [Google Scholar] [CrossRef]
- Stone, E.M.; Lotery, A.J.; Munier, F.L.; Héon, E.; Piguet, B.; Guymer, R.H.; Vandenburgh, K.; Cousin, P.; Nishimura, D.; Swiderski, R.E.; et al. A single EFEMP1 mutation associated with both MalattiaLeventinese and Doyne honeycomb retinal dystrophy. Nat. Genet. 1999, 22, 199–202. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, P.J.; Bakall, B.; Choi, J.; Liu, Z.; Sasaki, T.; Davis, E.C.; Marmorstein, A.D.; Marmorstein, L.Y. Lack of fibulin-3 causes early aging and herniation, but not macular degeneration in mice. Hum. Mol. Genet. 2007, 16, 3059–3070. [Google Scholar] [CrossRef]
- Marmorstein, L.Y.; McLaughlin, P.J.; Peachey, N.S.; Sasaki, T.; Marmorstein, A.D. Formation and progression of sub-retinal pigment epithelium deposits in Efemp1 mutation knock-in mice: A model for the early pathogenic course of macular degeneration. Hum. Mol. Genet. 2007, 16, 2423–2432. [Google Scholar] [CrossRef] [Green Version]
- Katsanis, N.; Venable, S.; Smith, J.R.; Lupski, J.R. Isolation of a paralog of the Doyne honeycomb retinal dystrophy gene from the multiple retinopathy critical region on 11q13. Hum. Genet. 2000, 106, 66–72. [Google Scholar] [CrossRef]
- Noda, K.; Kitagawa, K.; Miki, T.; Horiguchi, M.; Akama, T.O.; Taniguchi, T.; Taniguchi, H.; Takahashi, K.; Ogra, Y.; Mecham, R.P.; et al. A matricellular protein fibulin-4 is essential for the activation of lysyl oxidase. Sci. Adv. 2020, 6, eabc1404. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, W.M.; Greene, L.M.; Ryan, M.P.; Sierra, V.; Berger, A.; Laurent-Puig, P.; Conseiller, E. Human fibulin-4: Analysis of its biosynthetic processing and mRNA expression in normal and tumour tissues. FEBS Lett. 2001, 489, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Y.; Sekine, T.; Nakamura, H.; Imajoh-Ohmi, S.; Fukuda, H.; Yudoh, K.; Masuko-Hongo, K.; Nishioka, K.; Kato, T. Fibulin-4 is a target of autoimmunity predominantly in patients with osteoarthritis. J. Immunol. 2006, 176, 3196–3204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Davis, E.C.; Chapman, S.L.; Budatha, M.; Marmorstein, L.Y.; Word, R.A.; Yanagisawa, H. Fibulin-4 deficiency results in ascending aortic aneurysms: A potential link between abnormal smooth muscle cell phenotype and aneurysm progression. Circul. Res. 2010, 106, 583–592. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, P.J.; Chen, Q.; Horiguchi, M.; Starcher, B.C.; Stanton, J.B.; Broekelmann, T.J.; Marmorstein, A.D.; McKay, B.; Mecham, R.; Nakamura, T.; et al. Targeted disruption of fibulin-4 abolishes elastogenesis and causes perinatal lethality in mice. Mol. Cell. Biol. 2006, 26, 1700–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanada, K.; Vermeij, M.; Garinis, G.A.; de Waard, M.C.; Kunen, M.G.; Myers, L.; Maas, A.; Duncker, D.J.; Meijers, C.; Dietz, H.C.; et al. Perturbations of vascular homeostasis and aortic valve abnormalities in fibulin-4 deficient mice. Circul. Res. 2007, 100, 738–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaijzel, E.L.; van Heijningen, P.M.; Wielopolski, P.A.; Vermeij, M.; Koning, G.A.; van Cappellen, W.A.; Que, I.; Chan, A.; Dijkstra, J.; Ramnath, N.W.; et al. Multimodality imaging reveals a gradual increase in matrix metalloproteinase activity at aneurysmal lesions in live fibulin-4 mice. Circul. Cardiovasc. Imaging 2010, 3, 567–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Zhang, T.; Roshetsky, J.F.; Ouyang, Z.; Essers, J.; Fan, C.; Wang, Q.; Hinek, A.; Plow, E.F.; Dicorleto, P.E. Fibulin-4 regulates expression of the tropoelastin gene and consequent elastic-fibre formation by human fibroblasts. Biochem. J. 2009, 423, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Moltzer, E.; te Riet, L.; Swagemakers, S.M.; van Heijningen, P.M.; Vermeij, M.; van Veghel, R.; Bouhuizen, A.M.; van Esch, J.H.; Lankhorst, S.; Ramnath, N.W.; et al. Impaired vascular contractility and aortic wall degeneration in fibulin-4 deficient mice: Effect of angiotensin II type 1 (AT1) receptor blockade. PLoS ONE 2011, 6, e23411. [Google Scholar] [CrossRef] [Green Version]
- Halabi, C.M.; Broekelmann, T.J.; Lin, M.; Lee, V.S.; Chu, M.L.; Mecham, R.P. Fibulin-4 is essential for maintaining arterial wall integrity in conduit but not muscular arteries. Sci. Adv. 2017, 3, e1602532. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Ruiz-Lozano, P.; Lindner, V.; Yabe, D.; Taniwaki, M.; Furukawa, Y.; Kobuke, K.; Tashiro, K.; Lu, Z.; Andon, N.L.; et al. DANCE, a novel secreted RGD protein expressed in developing, atherosclerotic, and balloon-injured arteries. J. Biol. Chem. 1999, 274, 22476–22483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowal, R.C.; Richardson, J.A.; Miano, J.M.; Olson, E.N. EVEC, a novel epidermal growth factor-like repeat-containing protein upregulated in embryonic and diseased adult vasculature. Circul. Res. 1999, 84, 1166–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winship, A.; Cuman, C.; Rainczuk, K.; Dimitriadis, E. Fibulin-5 is upregulated in decidualized human endometrial stromal cells and promotes primary human extravillous trophoblast outgrowth. Placenta 2015, 36, 1405–1411. [Google Scholar] [CrossRef]
- Hartanti, M.D.; Hummitzsch, K.; Irving-Rodgers, H.F.; Bonner, W.M.; Copping, K.J.; Anderson, R.A.; McMillen, I.C.; Perry, V.; Rodgers, R.J. Morphometric and gene expression analyses of stromal expansion during development of the bovine fetal ovary. Reprod. Fertil. Dev. 2019, 31, 482–495. [Google Scholar] [CrossRef]
- Nakamura, T. Roles of short fibulins, a family of matricellular proteins, in lung matrix assembly and disease. J. Int. Soc. Matrix Biol. 2018, 73, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Noda, K.; Nakamura, T.; Komatsu, Y. Fibulin-5 deficiency causes developmental defect of premaxillary bone in mice. Biochem. Biophys. Res. Commun. 2015, 466, 585–591. [Google Scholar] [CrossRef] [Green Version]
- Yanagisawa, H.; Davis, E.C.; Starcher, B.C.; Ouchi, T.; Yanagisawa, M.; Richardson, J.A.; Olson, E.N. Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo. Nature 2002, 415, 168–171. [Google Scholar] [CrossRef]
- Choi, J.; Bergdahl, A.; Zheng, Q.; Starcher, B.; Yanagisawa, H.; Davis, E.C. Analysis of dermal elastic fibers in the absence of fibulin-5 reveals potential roles for fibulin-5 in elastic fiber assembly. J. Int. Soc. Matrix Biol. 2009, 28, 211–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spencer, J.A.; Hacker, S.L.; Davis, E.C.; Mecham, R.P.; Knutsen, R.H.; Li, D.Y.; Gerard, R.D.; Richardson, J.A.; Olson, E.N.; Yanagisawa, H. Altered vascular remodeling in fibulin-5-deficient mice reveals a role of fibulin-5 in smooth muscle cell proliferation and migration. Proc. Nat. Acad. Sci. USA 2005, 102, 2946–2951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, L.J.; Lomas, A.; Hodson, N.; Sherratt, M.J.; Mellody, K.T.; Weiss, A.S.; Shuttleworth, A.; Kielty, C.M. Fibulin-5 interacts with fibrillin-1 molecules and microfibrils. Biochem. J. 2005, 38, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, A.D.; Itoh, S.; Jeney, V.; Yanagisawa, H.; Fujimoto, M.; Ushio-Fukai, M.; Fukai, T. Fibulin-5 is a novel binding protein for extracellular superoxide dismutase. Circul. Res. 2004, 95, 1067–1074. [Google Scholar] [CrossRef] [Green Version]
- Hirai, M.; Horiguchi, M.; Ohbayashi, T.; Kita, T.; Chien, K.R.; Nakamura, T. Latent TGF-beta-binding protein 2 binds to DANCE/fibulin-5 and regulates elastic fiber assembly. EMBO J. 2007, 26, 3283–3295. [Google Scholar] [CrossRef] [Green Version]
- Noda, K.; Dabovic, B.; Takagi, K.; Inoue, T.; Horiguchi, M.; Hirai, M.; Fujikawa, Y.; Akama, T.O.; Kusumoto, K.; Zilberberg, L.; et al. Latent TGF-β binding protein 4 promotes elastic fiber assembly by interacting with fibulin-5. Proc. Nat. Acad. Sci. USA 2013, 110, 2852–2857. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhao, Y.; Gao, J.; Pawlyk, B.; Starcher, B.; Spencer, J.A.; Yanagisawa, H.; Zuo, J.; Li, T. Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat. Genet. 2004, 36, 178–182. [Google Scholar] [CrossRef]
- Albig, A.R.; Schiemann, W.P. Fibulin-5 antagonizes vascular endothelial growth factor (VEGF) signaling and angiogenic sprouting by endothelial cells. DNA Cell Biol. 2004, 23, 367–379. [Google Scholar] [CrossRef]
- De Vega, S.; Suzuki, N.; Nonaka, R.; Sasaki, T.; Forcinito, P.; Arikawa-Hirasawa, E.; Yamada, Y. A C-terminal fragment of fibulin-7 interacts with endothelial cells and inhibits their tube formation in culture. Arch. Biochem. Biophys. 2014, 545, 148–153. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, P.; Dash, S.P.; Sarangi, P.P. The role of adhesion protein Fibulin7 in development and diseases. Mol. Med. 2020, 26, 47. [Google Scholar] [CrossRef]
- Tsunezumi, J.; Sugiura, H.; Oinam, L.; Ali, A.; Thang, B.Q.; Sada, A.; Yamashiro, Y.; Kuro-O, M.; Yanagisawa, H. Fibulin-7, a heparin binding matricellular protein, promotes renal tubular calcification in mice. J. Int. Soc. Matrix Biol. 2018, 74, 5–20. [Google Scholar] [CrossRef]
- Russell, M.W.; Raeker, M.O.; Geisler, S.B.; Thomas, P.E.; Simmons, T.A.; Bernat, J.A.; Thorsson, T.; Innis, J.W. Functional analysis of candidate genes in 2q13 deletion syndrome implicates FBLN7 and TMEM87B deficiency in congenital heart defects and FBLN7 in craniofacial malformations. Hum. Mol. Genet. 2014, 23, 4272–4284. [Google Scholar] [CrossRef] [Green Version]
- De Vega, S.; Hozumi, K.; Suzuki, N.; Nonaka, R.; Seo, E.; Takeda, A.; Ikeuchi, T.; Nomizu, M.; Yamada, Y.; Arikawa-Hirasawa, E. Identification of peptides derived from the C-terminal domain of fibulin-7 active for endothelial cell adhesion and tube formation disruption. Biopolymers 2016, 106, 184–195. [Google Scholar] [CrossRef]
- Sarangi, P.P.; Chakraborty, P.; Dash, S.P.; Ikeuchi, T.; de Vega, S.; Ambatipudi, K.; Wahl, L.; Yamada, Y. Cell adhesion protein fibulin-7 and its C-terminal fragment negatively regulate monocyte and macrophage migration and functions in vitro and in vivo. FASEB J. 2018, 32, 4889–4898. [Google Scholar] [CrossRef] [Green Version]
- Schultz, D.W.; Klein, M.L.; Humpert, A.J.; Luzier, C.W.; Persun, V.; Schain, M.; Mahan, A.; Runckel, C.; Cassera, M.; Vittal, V.; et al. Analysis of the ARMD1 locus: Evidence that a mutation in HEMICENTIN-1 is associated with age-related macular degeneration in a large family. Hum. Mol. Genet. 2003, 12, 3315–3323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrissey, M.A.; Keeley, D.P.; Hagedorn, E.J.; McClatchey, S.; Chi, Q.; Hall, D.H.; Sherwood, D.R. B-LINK: A hemicentin, plakin, and integrin-dependent adhesion system that links tissues by connecting adjacent basement membranes. Dev. Cell 2014, 31, 319–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riddle, D.L.; Blumenthal, T.; Meyer, B.J.; Priess, J.R. C. Elegans II, 2nd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1997; Volume 33. [Google Scholar]
- Carney, T.J.; Feitosa, N.M.; Sonntag, C.; Slanchev, K.; Kluger, J.; Kiyozumi, D.; Gebauer, J.M.; Coffin Talbot, J.; Kimmel, C.B.; Sekiguchi, K.; et al. Genetic analysis of fin development in zebrafish identifies furin and hemicentin1 as potential novel fraser syndrome disease genes. PLoS Genet. 2010, 6, e1000907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feitosa, N.M.; Zhang, J.; Carney, T.J.; Metzger, M.; Korzh, V.; Bloch, W.; Hammerschmidt, M. Hemicentin 2 and Fibulin 1 are required for epidermal-dermal junction formation and fin mesenchymal cell migration during zebrafish development. Dev. Biol. 2012, 369, 235–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, M.L.; Tsuda, T. Fibulins in development and heritable disease. Birth Defects Res. 2004, 72, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Qing, J.; Maher, V.M.; Tran, H.; Argraves, W.S.; Dunstan, R.W.; McCormick, J.J. Suppression of anchorage-independent growth and matrigel invasion and delayed tumor formation by elevated expression of fibulin-1D in human fibrosarcoma-derived cell lines. Oncogene 1997, 15, 2159–2168. [Google Scholar] [CrossRef] [Green Version]
- Twal, W.O.; Czirok, A.; Hegedus, B.; Knaak, C.; Chintalapudi, M.R.; Okagawa, H.; Sugi, Y.; Argraves, W.S. Fibulin-1 suppression of fibronectin-regulated cell adhesion and motility. J. Cell Sci. 2001, 114, 4587–4598. [Google Scholar] [CrossRef]
- Forti, S.; Scanlan, M.J.; Invernizzi, A.; Castiglioni, F.; Pupa, S.; Agresti, R.; Fontanelli, R.; Morelli, D.; Old, L.J.; Pupa, S.M.; et al. Identification of breast cancer-restricted antigens by antibody screening of SKBR3 cDNA library using a preselected patient’s serum. Breast Cancer Res. Treat. 2002, 73, 245–256. [Google Scholar] [CrossRef]
- Skov, V.; Thomassen, M.; Kjaer, L.; Larsen, T.S.; Kruse, T.A. Highly Deregulated Fibulins in Patients with Philadelphia-Negative Chronic Myeloproliferative Neoplasms. Blood 2019, 134, 5396. [Google Scholar] [CrossRef]
- Mohamedi, Y.; Fontanil, T.; Cobo, T.; Vega, J.A.; Cobo, J.L.; García-Suárez, O.; Cobo, J.; Cal, S.; Obaya, A.J. The molecular interaction of ADAMTS-1 and fibulin-1 and its potential contribution to breast cancer biology. J. Cancer Met. Treat. 2019, 5, 37. [Google Scholar] [CrossRef]
- Moll, F.; Katsaros, D.; Lazennec, G.; Hellio, N.; Roger, P.; Giacalone, P.L.; Chalbos, D.; Maudelonde, T.; Rochefort, H.; Pujol, P. Estrogen induction and overexpression of fibulin-1C mRNA in ovarian cancer cells. Oncogene 2002, 21, 1097–1107. [Google Scholar] [CrossRef]
- Ramaswamy, S.; Ross, K.N.; Lander, E.S.; Golub, T.R. A molecular signature of metastasis in primary solid tumors. Nat. Genet. 2003, 33, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Baird, B.N.; Schliekelman, M.J.; Ahn, Y.H.; Chen, Y.; Roybal, J.D.; Gill, B.J.; Mishra, D.K.; Erez, B.; O’Reilly, M.; Yang, Y.; et al. Fibulin-2 is a driver of malignant progression in lung adenocarcinoma. PLoS ONE 2013, 8, e67054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senapati, S.; Gnanapragassam, V.S.; Moniaux, N.; Momi, N.; Batra, S.K. Role of MUC4-NIDO domain in the MUC4-mediated metastasis of pancreatic cancer cells. Oncogene 2012, 31, 3346–3356. [Google Scholar] [CrossRef] [Green Version]
- Law, E.W.; Cheung, A.K.; Kashuba, V.I.; Pavlova, T.V.; Zabarovsky, E.R.; Lung, H.L.; Cheng, Y.; Chua, D.; Lai-Wan Kwong, D.; Tsao, S.W.; et al. Anti-angiogenic and tumor-suppressive roles of candidate tumor-suppressor gene, Fibulin-2, in nasopharyngeal carcinoma. Oncogene 2012, 31, 728–738. [Google Scholar] [CrossRef] [Green Version]
- Alcendor, D.J.; Knobel, S.; Desai, P.; Zhu, W.Q.; Hayward, G.S. KSHV regulation of fibulin-2 in Kaposi’s sarcoma: Implications for tumorigenesis. Am. J. Pathol. 2011, 179, 1443–1454. [Google Scholar] [CrossRef]
- Zhang, H.; Hui, D.; Fu, X. Roles of Fibulin-2 in Carcinogenesis. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2020, 26, e918099. [Google Scholar] [CrossRef]
- Yi, C.H.; Smith, D.J.; West, W.W.; Hollingsworth, M.A. Loss of fibulin-2 expression is associated with breast cancer progression. Am. J. Pathol. 2007, 170, 1535–1545. [Google Scholar] [CrossRef] [Green Version]
- Fontanil, T.; Rúa, S.; Llamazares, M.; Moncada-Pazos, A.; Quirós, P.M.; García-Suárez, O.; Vega, J.A.; Sasaki, T.; Mohamedi, Y.; Esteban, M.M.; et al. Interaction between the ADAMTS-12 metalloprotease and fibulin-2 induces tumor-suppressive effects in breast cancer cells. Oncotarget 2014, 5, 1253–1264. [Google Scholar] [CrossRef]
- Fontanil, T.; Mohamedi, Y.; Cobo, T.; Cal, S.; Obaya, Á.J. Novel Associations within the Tumor Microenvironment: Fibulins Meet ADAMTSs. Front. Oncol. 2019, 9, 796. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.; Qi, S.; Lu, D.; Yu, J.; Huang, W.; Yu, L. EFEMP1 rs3791679 polymorphism was associated with susceptibility to glioma. Int. J. Clin. Exp. Pathol. 2015, 8, 15222–15227. [Google Scholar] [PubMed]
- Li, R.; Wang, L. Fibulin-4 is a novel Wnt/β-Catenin pathway activator in human osteosarcoma. Biochem. Biophys. Res. Comm. 2016, 474, 730–735. [Google Scholar] [CrossRef]
- En-lin, S.; Sheng-guo, C.; Hua-qiao, W. The expression of EFEMP1 in cervical carcinoma and its relationship with prognosis. Gynecol. Oncol. 2010, 117, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, D.; Han, S.; Gao, P.; Liu, C.; Li, J.; Pan, X. Fibulin-3 promotes osteosarcoma invasion and metastasis by inducing epithelial to mesenchymal transition and activating the Wnt/β-catenin signaling pathway. Sci. Rep. 2017, 7, 6215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, B.; Thirtamara-Rajamani, K.K.; Sim, H.; Viapiano, M.S. Fibulin-3 is uniquely upregulated in malignant gliomas and promotes tumor cell motility and invasion. Mol. Cancer Res. 2009, 7, 1756–1770. [Google Scholar] [CrossRef] [Green Version]
- Lei, D.; Zhang, F.; Yao, D.; Xiong, N.; Jiang, X.; Zhao, H. MiR-338-5p suppresses proliferation, migration, invasion, and promote apoptosis of glioblastoma cells by directly targeting EFEMP1. Biomed. Pharmacother. 2017, 89, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Yoon, H.Y.; Kim, S.K.; Kim, Y.W.; Kim, E.J.; Kim, I.Y.; Kim, W.J. EFEMP1 as a novel DNA methylation marker for prostate cancer: Array-based DNA methylation and expression profiling. Clin. Cancer Res. 2011, 17, 4523–4530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, H.Y.; Liu, S.P.; Kong, G.M.; Xu, Y.; Xu, Y.C.; Sun, G.Z.; Wang, Z.; Han, F.; Tong, J.D.; Bo, P. FBLN3 inhibited the invasion and metastasis of colorectal cancer through the AKT/mTOR pathway. Neoplasma 2019, 66, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Simsek, O.; Kocael, A.; Kemik, A.; Vatankulu, B.; Kocael, P.; Halac, M.; Ulualp, K.; Sonmezoglu, K. Decreased preoperative serum fibulin-3 levels in colon cancer patients. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 4076–4080. [Google Scholar] [PubMed]
- Yue, W.; Dacic, S.; Sun, Q.; Landreneau, R.; Guo, M.; Zhou, W.; Siegfried, J.M.; Yu, J.; Zhang, L. Frequent inactivation of RAMP2, EFEMP1 and Dutt1 in lung cancer by promoter hypermethylation. Clin. Cancer Res. 2007, 13, 4336–4344. [Google Scholar] [CrossRef] [Green Version]
- Luo, R.; Zhang, M.; Liu, L.; Lu, S.; Zhang, C.Z.; Yun, J. Decrease of fibulin-3 in hepatocellular carcinoma indicates poor prognosis. PLoS ONE 2013, 8, e70511. [Google Scholar] [CrossRef] [Green Version]
- Li, W.B.; Zhou, J.; Xu, L.; Su, X.L.; Liu, Q.; Pang, H. Identification of Genes Associated with Papillary Thyroid Carcinoma (PTC) for Diagnosis by Integrated Analysis. Horm. Metab. Res. 2016, 48, 226–231. [Google Scholar] [CrossRef] [Green Version]
- Sadr-Nabavi, A.; Ramser, J.; Volkmann, J.; Naehrig, J.; Wiesmann, F.; Betz, B.; Hellebrand, H.; Engert, S.; Seitz, S.; Kreutzfeld, R.; et al. Decreased expression of angiogenesis antagonist EFEMP1 in sporadic breast cancer is caused by aberrant promoter methylation and points to an impact of EFEMP1 as molecular biomarker. Int. J. Cancer 2009, 124, 1727–1735. [Google Scholar] [CrossRef] [PubMed]
- Hwang, C.F.; Chien, C.Y.; Huang, S.C.; Yin, Y.F.; Huang, C.C.; Fang, F.M.; Tsai, H.T.; Su, L.J.; Chen, C.H. Fibulin-3 is associated with tumour progression and a poor prognosis in nasopharyngeal carcinomas and inhibits cell migration and invasion via suppressed AKT activity. J. Pathol. 2010, 222, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Qiu, H.; Bao, W.; Li, B.; Lu, C.; Du, G.; Luo, X.; Wang, L.; Wan, X. Epigenetic inactivation of EFEMP1 is associated with tumor suppressive function in endometrial carcinoma. PLoS ONE 2013, 8, e67458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, I.G.; Kim, S.Y.; Choi, S.I.; Lee, J.H.; Kim, K.C.; Cho, E.W. Fibulin-3-mediated inhibition of epithelial-to-mesenchymal transition and self-renewal of ALDH+ lung cancer stem cells through IGF1R signaling. Oncogene 2014, 33, 3908–3917. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Liu, J.; Chen, J.; Gatza, M.L.; Blobe, G.C. Fibulin-3 is a novel TGF-β pathway inhibitor in the breast cancer microenvironment. Oncogene 2015, 34, 5635–5647. [Google Scholar] [CrossRef] [Green Version]
- Seeliger, H.; Camaj, P.; Ischenko, I.; Kleespies, A.; De Toni, E.N.; Thieme, S.E.; Blum, H.; Assmann, G.; Jauch, K.W.; Bruns, C.J. EFEMP1 expression promotes in vivo tumor growth in human pancreatic adenocarcinoma. Mol. Cancer Res. 2009, 7, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Wang, S.; Chen, J.; Liu, H.; Lu, J.; Jiang, H.; Huang, A.; Chen, Y. Fibulin-4 promotes osteosarcoma invasion and metastasis by inducing epithelial to mesenchymal transition via the PI3K/Akt/mTOR pathway. Int. J. Oncol. 2017, 50, 1513–1530. [Google Scholar] [CrossRef]
- Wang, T.; Wang, M.; Fang, S.; Wang, Q.; Fang, R.; Chen, J. Fibulin-4 is associated with prognosis of endometrial cancer patients and inhibits cancer cell invasion and metastasis via Wnt/β-catenin signaling pathway. Oncotarget 2017, 8, 18991–19012. [Google Scholar] [CrossRef]
- Manders, D.B.; Kishore, H.A.; Gazdar, A.F.; Keller, P.W.; Tsunezumi, J.; Yanagisawa, H.; Lea, J.; Word, R.A. Dysregulation of fibulin-5 and matrix metalloproteases in epithelial ovarian cancer. Oncotarget 2018, 9, 14251–14267. [Google Scholar] [CrossRef] [PubMed]
- Winship, A.L.; Rainczuk, K.; Ton, A.; Dimitriadis, E. Fibulin-5 localisation in human endometrial cancer shifts from epithelial to stromal with increasing tumour grade, and silencing promotes endometrial epithelial cancer cell proliferation. Oncol. Lett. 2016, 12, 651–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heo, J.H.; Song, J.Y.; Jeong, J.Y.; Kim, G.; Kim, T.H.; Kang, H.; Kwon, A.Y.; An, H.J. Fibulin-5 is a tumour suppressor inhibiting cell migration and invasion in ovarian cancer. J. Clin. Pathol. 2016, 69, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Tu, K.; Dou, C.; Zheng, X.; Li, C.; Yang, W.; Yao, Y.; Liu, Q. Fibulin-5 inhibits hepatocellular carcinoma cell migration and invasion by down-regulating matrix metalloproteinase-7 expression. BMC Cancer 2014, 14, 938. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Wu, H.; Jiang, H.; Wang, Q.; Dou, Z.; Ma, H.; Yan, S.; Yuan, C.; Yang, N.; Kong, B. FBLN5 is targeted by microRNA-27a-3p and suppresses tumorigenesis and progression in high-grade serous ovarian carcinoma. Oncol. Rep. 2020, 44, 2143–2151. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Topalovski, M.; Toombs, J.E.; Wright, C.M.; Moore, Z.R.; Boothman, D.A.; Yanagisawa, H.; Wang, H.; Witkiewicz, A.; Castrillon, D.H.; et al. Fibulin-5 Blocks Microenvironmental ROS in Pancreatic Cancer. Cancer Res. 2015, 75, 5058–5069. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, P.; Dash, S.P.; Dalpati, N.; Kumar, P.; Jain, D.; Sarangi, P.P. AC-terminal fragment of adhesion protein fibulin-7 inhibits growth of murine breast tumor by regulating macrophage reprogramming. FEBS J. 2021, 288, 803–817. [Google Scholar] [CrossRef]
- De Vega, S.; Kondo, A.; Suzuki, M.; Arai, H.; Jiapaer, S.; Sabit, H.; Nakada, M.; Ikeuchi, T.; Ishijima, M.; Arikawa-Hirasawa, E.; et al. Fibulin-7 is overexpressed in glioblastomas and modulates glioblastoma neovascularization through interaction with angiopoietin-1. Int. J. Cancer 2019, 145, 2157–2169. [Google Scholar] [CrossRef]
- Toren, A.; Rozenfeld-Granot, G.; Heath, K.E.; Amariglio, N.; Rocca, B.; Crosson, J.; Epstein, C.J.; Laghi, F.; Landolfi, R.; Carlsson, L.E.; et al. MYH9 spectrum of autosomal-dominant giant platelet syndromes: Unexpected association with fibulin-1 variant-D inactivation. Am. J. Hematol. 2003, 74, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Debeer, P.; Schoenmakers, E.F.; Twal, W.O.; Argraves, W.S.; De Smet, L.; Fryns, J.P.; Van De Ven, W.J. The fibulin-1 gene (FBLN1) is disrupted in a t(12;22) associated with a complex type of synpolydactyly. J. Med. Genet. 2002, 39, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, J.; Tarttelin, E.E.; Gregory-Evans, C.Y.; Moosajee, M.; Gregory-Evans, K. Transcriptional regulation and expression of the dominant drusen gene FBLN3 (EFEMP1) in mammalian retina. Investig. Ophthalmol. Vis. Sci. 2003, 44, 4613–4621. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, T.; Hanisch, F.G.; Deutzmann, R.; Sakai, L.Y.; Sakuma, T.; Miyamoto, T.; Yamamoto, T.; Hannappel, E.; Chu, M.L.; Lanig, H.; et al. Functional consequence of fibulin-4 missense mutations associated with vascular and skeletal abnormalities and cutis laxa. J. Int. Soc. Matrix Biol. 2016, 56, 132–149. [Google Scholar] [CrossRef] [PubMed]
- Hucthagowder, V.; Sausgruber, N.; Kim, K.H.; Angle, B.; Marmorstein, L.Y.; Urban, Z. Fibulin-4: A novel gene for an autosomal recessive cutis laxa syndrome. Am. J. Hum. Genet. 2006, 78, 1075–1080. [Google Scholar] [CrossRef] [Green Version]
- Igoucheva, O.; Alexeev, V.; Halabi, C.M.; Adams, S.M.; Stoilov, I.; Sasaki, T.; Arita, M.; Donahue, A.; Mecham, R.P.; Birk, D.E.; et al. Fibulin-4 E57K Knock-in Mice Recapitulate Cutaneous, Vascular and Skeletal Defects of Recessive Cutis Laxa 1B with both Elastic Fiber and Collagen Fibril Abnormalities. J. Biol. Chem. 2015, 290, 21443–21459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loeys, B.; Van Maldergem, L.; Mortier, G.; Coucke, P.; Gerniers, S.; Naeyaert, J.M.; De Paepe, A. Homozygosity for a missense mutation in fibulin-5 (FBLN5) results in a severe form of cutis laxa. Hum. Mol. Genet. 2002, 11, 2113–2118. [Google Scholar] [CrossRef]
- Sisto, M.; D’Amore, M.; Lofrumento, D.D.; Scagliusi, P.; D’Amore, S.; Mitolo, V.; Lisi, S. Fibulin-6 expression and anoikis in human salivary gland epithelial cells: Implications in Sjogren’s syndrome. Int. Immunol. 2009, 21, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Ng, K.M.; Catalano, M.G.; Pinós, T.; Selva, D.M.; Avvakumov, G.V.; Munell, F.; Hammond, G.L. Evidence that fibulin family members contribute to the steroid-dependent extravascular sequestration of sex hormone-binding globulin. J. Biol. Chem. 2006, 281, 15853–15861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Consonni, S.R.; Werneck, C.C.; Sobreira, D.R.; Kühne, F.; Moraes, S.G.; Alvares, L.E.; Joazeiro, P.P. Elastic fiber assembly in the adult mouse pubic symphysis during pregnancy and postpartum. Biol. Reprod. 2012, 86, 151-1–151-10. [Google Scholar] [CrossRef] [PubMed]
- Riding, G.A.; Jones, A.; Holland, M.K.; Hill, J.R.; Lehnert, S.A. Proteomic analysis of bovine conceptus fluids during early pregnancy. Proteomics 2008, 8, 160–177. [Google Scholar] [CrossRef]
- Rawat, P.; Bathla, S.; Baithalu, R.; Yadav, M.L.; Kumar, S.; Ali, S.A.; Tiwari, A.; Lotfan, M.; Naru, J.; Jena, M.; et al. Identification of potential protein biomarkers for early detection of pregnancy in cow urine using 2D DIGE and label free quantitation. Clin. Proteom. 2016, 13, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
S.No. | Types of Fibulins | Size (kDa) | Gene Location | Location in ECM | Expression Pattern | References |
---|---|---|---|---|---|---|
1. | Fibulin-1 | 90-100 | 22q13.31 | Fibril matrix | Cartilage, developing limbs, developing myotomes, perichondrial structures, neural crest cells, and endocardial cushion tissue | [7,26,45] |
2. | Fibulin-2 | ~195 | 3p24-p25 | Basement membrane | Developing heart, smooth muscle precursor cells, developing cartilages, neural crest cells, and endocardial cushion tissue | [40,42] |
3. | Fibulin-3 | ~50 | 2p16 | Basement membrane | Cartilage, developing bones, and developing cranial area | [50] |
4. | Fibulin-4 | ~50 | 11q13 | The interface between the fibrillin microfibrillar scaffold and the elastin core | Heart, skeletal muscle, placenta, lungs, pancreas, brain, and kidney | [2] |
5. | Fibulin-5 | ~65 | 14q32.1 | Basement membrane | Developing artery, neural crest cells, mesenchymal tissues, endothelial cushion tissue, heart, lungs, and uterus | [39,65,66,91] |
6. | Fibulin-6 | ~600 | 1q25.3 | Basement membrane | Retinal endothelial and epithelial cells, and skin fibroblasts | [3,39,86] |
7. | Fibulin-7 | ~48 | 2q13 | Pericellular region | Cartilage, placenta, teeth, and hair follicles | [10] |
8. | Fibulin-8 | ~600 | 9q34.11 | Basement membrane | Developing somites and mesenchymal cells in zebrafish | [39,90] |
Type of Fibulin | Type of Cancer | Role | Involvement in Other Diseases | References |
---|---|---|---|---|
Fibulin-1 | Breast cancer | Increased expression promotes cancer progression | Autosomal dominant giant platelet syndrome and congenital hand malformation | [91,94,95,96,97] |
Ovarian cancer | Increased expression promotes cancer progression | |||
Interaction with ADAMTS-1 in breast cancer | Promotes anti-tumor effect | |||
Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) | Increased expression enhances the activity of TGF-β and promotes cancer progression | |||
Fibulin-2 | Human nasopharyngeal carcinoma | Tumor suppressive and anti-angiogenic effect | [99,101,102,103,105,106] | |
Kaposi’s sarcoma | Lower expression stimulates wild proliferation, invasion, and migration of the cancer cells | |||
Breast fibroadenoma | Decreased expression promotes cancer progression | |||
Interaction with ADAMTS-12 in breast cancer | Promotes anti-tumor effects | |||
Lung adenocarcinoma | Favors malignant progression of lung cancer | |||
Interaction with ADAMTS-4 and ADAMTS-5 in breastcancer | Favors cancer progression | |||
Fibulin-3 | Osteosarcoma | Promotes metastasis and invasion by activating Wnt/β-catenin pathway and EMT by PI3K/AKT pathway | Malattia Levantines and Doyne honeycomb retinal dystrophy | [51,108,122,123,124] |
Lung adenocarcinoma | Exhibits inhibitory effects on EMT and a self-renewal capacity | |||
Breast cancer | Suppresses TGF-β induced EMT and a self-renewal capacity | |||
Pancreatic adenocarcinoma | Promotes cancer progression | |||
Fibulin-4 | Colon cancer Cervical cancer Glioblastoma Ovarian carcinoma | Increased mRNA expression favors tumor progression | Cutis laxa, arterial tortuosity, diaphragmatic and inguinal hernia, ascending aortic aneurysms, developmental emphysema, joint laxity, and arachnodactyly | [56,69,125,126,139] |
Osteosarcoma | Increased expression favors metastasis and invasion | |||
Endometrial carcinoma | Higher expression inhibits cell invasion, proliferation, metastasis, and Wnt/β-catenin mediated EMT | |||
Fibulin-5 | Fibrosarcoma | Higher expression promotes cell migration and tumor progression | Ser227Pro homozygous missense mutation causes cutis laxa | [15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,132,141] |
Epithelial ovarian cancer and human endometrial cancer | Acts as a tumor suppressor | |||
Pancreatic ductal adenocarcinoma | Promotes tumor progression by blocking reactive oxygen species production | |||
Fibulin-6 | - | - | Sjogren’s syndrome and Fraser syndrome | [89,142] |
Fibulin-7 | Breast cancer | Delays reprogramming of the tumor associated macrophages | [132,133] | |
Astrocytic tumor | Promotes tumor progression |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahajan, D.; Kancharla, S.; Kolli, P.; Sharma, A.K.; Singh, S.; Kumar, S.; Mohanty, A.K.; Jena, M.K. Role of Fibulins in Embryonic Stage Development and Their Involvement in Various Diseases. Biomolecules 2021, 11, 685. https://doi.org/10.3390/biom11050685
Mahajan D, Kancharla S, Kolli P, Sharma AK, Singh S, Kumar S, Mohanty AK, Jena MK. Role of Fibulins in Embryonic Stage Development and Their Involvement in Various Diseases. Biomolecules. 2021; 11(5):685. https://doi.org/10.3390/biom11050685
Chicago/Turabian StyleMahajan, Deviyani, Sudhakar Kancharla, Prachetha Kolli, Amarish Kumar Sharma, Sanjeev Singh, Sudarshan Kumar, Ashok Kumar Mohanty, and Manoj Kumar Jena. 2021. "Role of Fibulins in Embryonic Stage Development and Their Involvement in Various Diseases" Biomolecules 11, no. 5: 685. https://doi.org/10.3390/biom11050685
APA StyleMahajan, D., Kancharla, S., Kolli, P., Sharma, A. K., Singh, S., Kumar, S., Mohanty, A. K., & Jena, M. K. (2021). Role of Fibulins in Embryonic Stage Development and Their Involvement in Various Diseases. Biomolecules, 11(5), 685. https://doi.org/10.3390/biom11050685