Albumin Urinary Excretion Is Associated with Increased Levels of Urinary Chemokines, Cytokines, and Growth Factors Levels in Humans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Methods
2.2. Urine Albumin and Creatinine Determinations
2.3. Determination of Urinary Chemokines, Cytokines, and Growth Factors
2.4. Statistics
3. Results
3.1. Study Cohort
3.2. Significant Associations between Urine Cytokines and Urine Albumin
3.3. The Influence of Molecular Weights on the Associations between Urine CYtokines and Urine Albumin
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Curtis, S.; Komenda, P. Screening for chronic kidney disease: Moving toward more sustainable health care. Curr. Opin. Nephrol. Hypertens. 2020, 29, 333–338. [Google Scholar] [CrossRef]
- Shlipak, M.G.; Tummalapalli, S.L.; Boulware, L.E.; Grams, M.E.; Ix, J.H.; Jha, V.; Kengne, A.P.; Madero, M.; Mihaylova, B.; Tangri, N.; et al. The Case for Early Identification and Intervention of Chronic Kidney Disease: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2021, 99, 34–47. [Google Scholar] [CrossRef]
- Pollock, C.A.; Poronnik, P. Albumin transport and processing by the proximal tubule: Physiology and pathophysiology. Curr. Opin. Nephrol. Hypertens. 2007, 16, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Lenoir, O.; Jasiek, M.; Hénique, C.; Guyonnet, L.; Hartleben, B.; Bork, T.; Chipont, A.; Flosseau, K.; Bensaada, I.; Schmitt, A.; et al. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy 2015, 11, 1130–1145. [Google Scholar] [CrossRef]
- Matsushita, K.; Coresh, J.; Sang, Y.; Chalmers, J.; Fox, C.; Guallar, E.; Jafar, T.; Jassal, S.K.; Landman, G.W.; Muntner, P.; et al. Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: A collaborative meta-analysis of individual participant data. Lancet. Diabetes Endocrinol. 2015, 3, 514–525. [Google Scholar] [CrossRef] [Green Version]
- Lind, L. Population-based cardiovascular cohort studies in Uppsala. Upsala J. Med. Sci. 2019, 124, 16–20. [Google Scholar] [CrossRef]
- Lind, L.; Fors, N.; Hall, J.; Marttala, K.; Stenborg, A. A comparison of three different methods to evaluate endothelium-dependent vasodilation in the elderly: The Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2368–2375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assarsson, E.; Lundberg, M.; Holmquist, G.; Björkesten, J.; Thorsen, S.B.; Ekman, D.; Eriksson, A.; Rennel Dickens, E.; Ohlsson, S.; Edfeldt, G.; et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS ONE 2014, 9, e95192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moen, A.; Lind, A.L.; Thulin, M.; Kamali-Moghaddam, M.; Røe, C.; Gjerstad, J.; Gordh, T. Inflammatory Serum Protein Profiling of Patients with Lumbar Radicular Pain One Year after Disc Herniation. Int. J. Inflamm. 2016, 2016, 3874964. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Daniel, C.; Vogelbacher, R.; Stief, A.; Grigo, C.; Hugo, C. Long-term gene therapy with thrombospondin 2 inhibits TGF-β activation, inflammation and angiogenesis in chronic allograft nephropathy. PLoS ONE 2013, 8, e83846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Si, R.; Zhao, P.; Yu, Z.; Qu, Z.; Sun, W.; Li, T.; Jiang, Y. Increased Non-switched Memory B Cells are Associated with Plasmablasts, Serum IL-6 Levels and Renal Functional Impairments in IgAN Patients. Immunol. Investig. 2020, 49, 178–190. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhu, L.; Zhou, T.; Zhang, Q.; Shi, S.; Liu, L.; Lv, J.; Zhang, H. Urinary CXCL1: A novel predictor of IgA nephropathy progression. PLoS ONE 2015, 10, e0119033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Fu, X.; Sun, Y.; Zhang, S.; Xie, H.; Lin, H. High urinary interleukin-8 levels is associated with poor prognosis in idiopathic membranous nephropathy. Intern. Med. J. 2018, 48, 207–209. [Google Scholar] [CrossRef]
- Mizuno, S.; Ikebuchi, F.; Fukuta, K.; Kato, T.; Matsumoto, K.; Adachi, K.; Abe, T.; Nakamura, T. Recombinant human hepatocyte growth factor (HGF), but not rat HGF, elicits glomerular injury and albuminuria in normal rats via an immune complex-dependent mechanism. Clin. Exp. Pharmacol. Physiol. 2011, 38, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, Y.; Sakatsume, M.; Xie, Y.; Kuroda, T.; Igashima, M.; Narita, I.; Gejyo, F. Macrophage metalloelastase as a major factor for glomerular injury in anti-glomerular basement membrane nephritis. J. Immunol. 2003, 170, 3377–3385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okabayashi, Y.; Nagasaka, S.; Kanzaki, G.; Tsuboi, N.; Yokoo, T.; Shimizu, A. Group 1 innate lymphoid cells are involved in the progression of experimental anti-glomerular basement membrane glomerulonephritis and are regulated by peroxisome proliferator-activated receptor α. Kidney Int. 2019, 96, 942–956. [Google Scholar] [CrossRef]
- Esashi, E.; Ito, H.; Minehata, K.; Saito, S.; Morikawa, Y.; Miyajima, A. Oncostatin M deficiency leads to thymic hypoplasia, accumulation of apoptotic thymocytes and glomerulonephritis. Eur. J. Immunol. 2009, 39, 1664–1670. [Google Scholar] [CrossRef] [PubMed]
- El-Shehaby, A.; Darweesh, H.; El-Khatib, M.; Momtaz, M.; Marzouk, S.; El-Shaarawy, N.; Emad, Y. Correlations of urinary biomarkers, TNF-like weak inducer of apoptosis (TWEAK), osteoprotegerin (OPG), monocyte chemoattractant protein-1 (MCP-1), and IL-8 with lupus nephritis. J. Clin. Immunol. 2011, 31, 848–856. [Google Scholar] [CrossRef]
- Tsai, I.T.; Wu, C.C.; Hung, W.C.; Lee, T.L.; Hsuan, C.F.; Wei, C.T.; Lu, Y.C.; Yu, T.H.; Chung, F.M.; Lee, Y.J.; et al. FABP1 and FABP2 as markers of diabetic nephropathy. Int. J. Med. Sci. 2020, 17, 2338–2345. [Google Scholar] [CrossRef]
Variable | Number/Mean | Percent/Standard Deviation (SD) |
---|---|---|
Age (years) | 75 | |
Males/females | 41/49 | 45.6/54.4% |
Smoker | 6.66% | |
Mean | SD | |
Body mass index (BMI) | 26.9 | 3.79 |
eGFRcombo (mL/min/1.73 m2) | 70.3 | 12.4 |
Urine albumin (mg/L) | 16.5 | 28.2 |
Adjustment for Sex, Urinary Creatinine, eGFR, BMI, Smoking and Exercise Habits | |||||
---|---|---|---|---|---|
Variable | Beta | Cilow | Cihigh | p-Value | MW (kDa) |
Thrombospondin 2 | 0.66253 | 0.43343 | 0.89163 | 2.47 × 10−7 * | 130 |
Interleukin 6 | 0.56538 | 0.36327 | 0.76749 | 5.26 × 10−7 * | 23.7 |
Interleukin 8 | 0.4989 | 0.27203 | 0.72578 | 0.0000483 * | 11.1 |
Hepatocyte growth factor | 0.32414 | 0.16972 | 0.47856 | 0.0000976 * | 83.1 |
Matrix metalloproteinase-12 (MMP-12) | 0.51085 | 0.26328 | 0.75841 | 0.0001248 * | 54 |
C-X-C motif chemokine 9 | 0.399 | 0.19804 | 0.59995 | 0.0002121 * | 14 |
Osteoprotegerin | 0.38552 | 0.17953 | 0.5915 | 0.0004508 * | 46 |
Growth-regulated alpha protein | 0.40438 | 0.18537 | 0.6234 | 0.0005307 * | 11.3 |
C-X-C motif chemokine 6 | 0.39919 | 0.1622 | 0.63618 | 0.0014672 * | 11.9 |
Oncostatin-M (OSM) | 0.3936 | 0.1494 | 0.6378 | 0.0022716 * | 28.5 |
Fatty acid-binding protein, intestinal | 0.35665 | 0.13527 | 0.57804 | 0.002282 * | 15.2 |
Protein S100-A12 (EN-RAGE) | 0.36311 | 0.10689 | 0.61933 | 0.0068934 * | 10.6 |
Spondin-2 (SPON2) | 0.19605 | 0.05334 | 0.33877 | 0.008721 | 35.8 |
Polymeric immunoglobulin receptor (PIgR) | 0.2687 | 0.06465 | 0.47276 | 0.011777 | 83.3 |
Proheparin-binding EGF-like growth factor (HB-EGF) | −0.30206 | −0.56596 | −0.03816 | 0.027785 | 23.7 |
Heme oxygenase 1 (HO-1) | 0.21941 | 0.02154 | 0.41729 | 0.032871 | 32.8 |
C-C motif chemokine 4 (CCL4) | 0.25296 | 0.02471 | 0.48122 | 0.032964 | 10.2 |
Latency-associated peptide transforming growth factor beta-1 (LAP TGF-beta-1) | 0.28651 | 0.01783 | 0.5552 | 0.03996 | 44.3 |
Matrix metalloproteinase-7 (MMP-7) | 0.22505 | 0.01171 | 0.43839 | 0.042082 | 29.7 |
Dickkopf-related protein 1 (Dkk-1) | 0.24117 | 0.01231 | 0.47003 | 0.042289 | 28.7 |
Stem cell factor (SCF) | 0.23776 | 0.00863 | 0.4669 | 0.045463 | 30.9 |
Urokinase-type plasminogen activator (uPA) | 0.23353 | 0.00506 | 0.462 | 0.0487 | 48.5 |
Monocyte chemotactic protein 1 (MCP-1) | 0.15326 | −0.00317 | 0.30969 | 0.058581 | 11 |
Decorin (DCN) | −0.1959 | −0.40101 | 0.00921 | 0.065049 | 39.7 |
Tissue factor (TF) | 0.20699 | −0.01075 | 0.42474 | 0.066297 | 33.1 |
Prolargin (PRELP) | 0.16354 | −0.01059 | 0.33766 | 0.069549 | 43.8 |
Delta and Notch-like epidermal growth factor-related receptor (DNER) | 0.0687 | −0.00519 | 0.14259 | 0.072327 | 78.5 |
Tumor necrosis factor (Ligand) superfamily. member 12 (TWEAK) | 0.24865 | −0.01961 | 0.5169 | 0.073198 | 27.2 |
Programmed cell death 1 ligand 2 (PD-L2) | 0.19334 | −0.02281 | 0.40949 | 0.083611 | 31 |
Kidney Injury Molecule (KIM1) | 0.14807 | −0.02614 | 0.32228 | 0.099858 | 38.7 |
Proteinase-activated receptor 1 (PAR-1) | −0.17143 | −0.38624 | 0.04338 | 0.121937 | 47.4 |
V-set and immunoglobulin domain-containing protein 2 (VSIG2) | 0.17382 | −0.04422 | 0.39186 | 0.122328 | 34.3 |
Leukemia inhibitory factor (LIF) | 0.18743 | −0.06395 | 0.43881 | 0.14804 | 22 |
Tumor necrosis factor receptor superfamily member 9 (TNFRSF9) | 0.15277 | −0.05275 | 0.35829 | 0.149244 | 27.9 |
Protein AMBP (AMBP) | 0.17428 | −0.0668 | 0.41537 | 0.160594 | 39 |
T cell surface glycoprotein CD6 isoform (CD6) | 0.13314 | −0.05205 | 0.31833 | 0.162884 | 71.8 |
Heat shock 27 kDa protein (HSP 27) | 0.15679 | −0.06131 | 0.37488 | 0.162911 | 22.8 |
Fractalkine (CX3CL1) | 0.08507 | −0.0437 | 0.21385 | 0.199288 | 42.2 |
TNF-related apoptosis-inducing ligand receptor 2 (TRAIL-R2) | 0.11637 | −0.06322 | 0.29597 | 0.207955 | 47.9 |
CD40 ligand (CD40-L) | 0.06835 | −0.0419 | 0.1786 | 0.228085 | 29.3 |
CUB domain-containing protein 1 (CDCP1) | 0.1487 | −0.10124 | 0.39864 | 0.247213 | 92.9 |
Angiotensin-converting enzyme 2 (ACE2) | 0.10271 | −0.08248 | 0.2879 | 0.280465 | 92.5 |
Monocyte chemotactic protein 2 (MCP-2) | 0.11316 | −0.10873 | 0.33505 | 0.320708 | 11.2 |
Lipoprotein lipase (LPL) | 0.12793 | −0.13163 | 0.38749 | 0.337081 | 53.2 |
Tumor necrosis factor receptor superfamily member 10A (TNFRSF10A) | 0.1034 | −0.10735 | 0.31416 | 0.339281 | 50.1 |
Vascular endothelial growth factor A (VEGF-A) | 0.10938 | −0.11773 | 0.33648 | 0.348193 | 27 |
Prostasin (PRSS8) | 0.11391 | −0.12454 | 0.35237 | 0.352084 | 42.8 |
Interleukin-1 alpha (IL-1 alpha) | 0.09469 | −0.10705 | 0.29644 | 0.360489 | 30.6 |
Interleukin-17D (IL-17D) | −0.12737 | −0.40046 | 0.14572 | 0.363538 | 21.9 |
Osteoclast-associated immunoglobulin-like receptor (hOSCAR) | −0.09501 | −0.30164 | 0.11162 | 0.370336 | 30.5 |
Natural killer cell receptor 2B4 (CD244) | −0.106 | −0.34078 | 0.12878 | 0.378981 | 41.6 |
Interleukin-18 (IL-18) | 0.1087 | −0.14085 | 0.35824 | 0.395949 | 22.3 |
T-cell surface glycoprotein CD5 (CD5) | 0.07028 | −0.0947 | 0.23525 | 0.406376 | 54.6 |
Interleukin-1 receptor antagonist protein (IL-1ra) | 0.07691 | −0.10753 | 0.26136 | 0.416301 | 20.1 |
Lactoylglutathione lyase (GLO1) | 0.10629 | −0.14975 | 0.36233 | 0.418381 | 20.8 |
Serine protease 27 (PRSS27) | 0.09235 | −0.14179 | 0.32649 | 0.44188 | 31.9 |
SLAM family member 5 (CD84) | 0.07309 | −0.12097 | 0.26715 | 0.462668 | 38.8 |
Interleukin-10 receptor subunit beta (IL-10RB) | −0.0726 | −0.26956 | 0.12435 | 0.472201 | 37 |
Leukemia inhibitory factor receptor (LIF-R) | 0.07275 | −0.13932 | 0.28483 | 0.503391 | 123.7 |
Gastric intrinsic factor (GIF) | 0.08151 | −0.1627 | 0.32572 | 0.514985 | 45.4 |
Programmed cell death 1 ligand 1 (PD-L1) | 0.04702 | −0.09406 | 0.18811 | 0.51555 | 33.3 |
Galectin-9 (Gal-9) | −0.08683 | −0.36148 | 0.18782 | 0.537352 | 39.5 |
Agouti-related protein (AGRP) | −0.05759 | −0.24091 | 0.12574 | 0.539954 | 14.4 |
Cathepsin L1 (CTSL1) | −0.05031 | −0.23928 | 0.13867 | 0.603348 | 37.6 |
Interleukin-1 receptor-like 2 (IL1RL2) | −0.03832 | −0.18251 | 0.10587 | 0.603952 | 65.4 |
Adrenomedullin (ADM) | −0.04061 | −0.21214 | 0.13092 | 0.643965 | 20.4 |
P-selectin glycoprotein ligand 1 (PSGL-1) | −0.03572 | −0.19221 | 0.12078 | 0.655922 | 43.2 |
Lectin-like oxidized LDL receptor 1 (LOX-1) | 0.05033 | −0.17039 | 0.27105 | 0.656208 | 31 |
Carcinoembryonic antigen-related cell adhesion molecule 8 (CEACAM8) | 0.03157 | −0.11478 | 0.17792 | 0.673617 | 38.2 |
Transforming growth factor alpha (TGF-alpha) | 0.05621 | −0.20611 | 0.31854 | 0.675672 | 17 |
Alpha-L-iduronidase (IDUA) | −0.04533 | −0.29791 | 0.20724 | 0.725979 | 72.7 |
Chymotrypsin C (CTRC) | −0.04294 | −0.2859 | 0.20002 | 0.730005 | 29.5 |
Cystatin D (CST5) | −0.03128 | −0.22667 | 0.16411 | 0.75455 | 16.1 |
Tumor necrosis factor receptor superfamily member 11A (TNFRSF11A) | 0.02307 | −0.13903 | 0.18517 | 0.781033 | 66 |
Interleukin-18 receptor 1 (IL-18R1) | 0.01487 | −0.11934 | 0.14908 | 0.828691 | 62.3 |
Placenta growth factor (PGF) | 0.01696 | −0.1476 | 0.18152 | 0.840446 | 24.8 |
Thrombomodulin (TM) | 0.00998 | −0.10482 | 0.12479 | 0.865108 | 60.3 |
Receptor for advanced glycosylation end products (RAGE) | −0.01822 | −0.23653 | 0.2001 | 0.870512 | 42.8 |
Fms-related tyrosine kinase 3 ligand (Flt3L) | 0.01844 | −0.2344 | 0.27129 | 0.886689 | 26.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fellström, B.; Helmersson-Karlqvist, J.; Lind, L.; Soveri, I.; Thulin, M.; Ärnlöv, J.; Kultima, K.; Larsson, A. Albumin Urinary Excretion Is Associated with Increased Levels of Urinary Chemokines, Cytokines, and Growth Factors Levels in Humans. Biomolecules 2021, 11, 396. https://doi.org/10.3390/biom11030396
Fellström B, Helmersson-Karlqvist J, Lind L, Soveri I, Thulin M, Ärnlöv J, Kultima K, Larsson A. Albumin Urinary Excretion Is Associated with Increased Levels of Urinary Chemokines, Cytokines, and Growth Factors Levels in Humans. Biomolecules. 2021; 11(3):396. https://doi.org/10.3390/biom11030396
Chicago/Turabian StyleFellström, Bengt, Johanna Helmersson-Karlqvist, Lars Lind, Inga Soveri, Måns Thulin, Johan Ärnlöv, Kim Kultima, and Anders Larsson. 2021. "Albumin Urinary Excretion Is Associated with Increased Levels of Urinary Chemokines, Cytokines, and Growth Factors Levels in Humans" Biomolecules 11, no. 3: 396. https://doi.org/10.3390/biom11030396
APA StyleFellström, B., Helmersson-Karlqvist, J., Lind, L., Soveri, I., Thulin, M., Ärnlöv, J., Kultima, K., & Larsson, A. (2021). Albumin Urinary Excretion Is Associated with Increased Levels of Urinary Chemokines, Cytokines, and Growth Factors Levels in Humans. Biomolecules, 11(3), 396. https://doi.org/10.3390/biom11030396