Fecal Microbial Transplantation in Critically Ill Patients—Structured Review and Perspectives
Abstract
:1. Introduction—Defining Human Gut Microbiome
2. Intestinal Microbiota Diversity and Relation to Immunity and Inflammation
3. Intestinal Barrier Function
4. Changes in Gut Microbiota in Critically Ill Patients
- Artificial instrumentation of upper airways and upper GI tract (endotracheal intubation, nasogastric tube) overcomes natural immune barriers and leads to bacterial colonization of normally nearly sterile surfaces [11].
- Host responses to critical illness lead to ischemia-reperfusion injury of the gastrointestinal tract. This, in addition to the above discussed barrier disruption, also reduces the production of gastric protective mucus and the secretion of microbial peptides and IgA and reduces partial pressure of oxygen within and near intestinal wall [11].
- The lack of luminal nutrients in the gut causes catabolic starvation of bacteria, creating an additional selective pressure.
- The effects of medication have the potential to alter microbiota composition—for example, opioids reduce intestinal motility, and proton pump inhibitors alter the pH in the stomach. Nonetheless, by far the most disruptive factor is exposure to antibiotics. The US Centers for Disease Control found that 55% of all hospitalized patients received an antibiotic during their hospital stay. This proportion increased to 70% in the subgroup of patients in ICU [12,13]. One clinical manifestation of a profound microbiome alteration is antibiotic-associated diarrhea (AAD), which occurs in 5% to 35% of exposed subjects [12]. In addition, exposure to antibiotics increases Clostridium difficile (CD) or multidrug-resistant organisms (MDROs) colonization. Genes of antibiotic resistance then persist in the microbiome of the gut. This creates the rationale for the restoration of physiological microbiota by means of FMT, as discussed below.
- Environmental exposure to disinfectant agents and subtherapeutic concentrations of drugs likely plays a minor role, as healthy hospital workers do not seem to have significantly altered gut microbiota [14].
5. The Effect of Dysbiosis on Critically Ill Patients—Closing the Vicious Cycle
- Dysbiosis reduces fermentation of dietary fibers into SCFA—the main energy source for the colonic epithelium, which preserves gut integrity. In sepsis, there is an association between fecal butyrate concentration, pathogen translocation, and increased epithelial apoptosis [16]. Epithelial apoptosis results in diarrhea, malabsorption of nutrients, and fecal energy loss [10].
- Impaired intestinal barrier function leads to uncontrolled translocation of luminal contents into the body. The microbial products can cross the blood–brain barrier and contribute to the development of delirium and sepsis-associated encephalopathy [17].
- Dysbiosis reduces specific microbial stimulatory signals for T-helper cells and dysregulates the immune system, resulting in infectious complications [10]. These are made even more difficult to treat due to resistance genes preserved in the metagenome.
- Indeed, dysbiosis and MDRO colonization alters the bacterial ecology of ICUs and hospital floors, expanding its effect beyond the level of an individual patient.
6. Dysbiosis Therapy in ICU
7. Fecal Microbial Transplantation: Principle and Use Outside of the Critical Care Setting
8. Use of FMT in the Intensive Care Unit
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CD | Clostridium difficile |
CDI | Clostridium difficile infection |
FMT | Fecal microbiota transplantation |
IBD | Inflammatory bowel disease |
ICU | Intensive care unit |
MDROs | Multidrug-resistant organisms |
SCFA | Short chain fatty acids |
References
- Lamarche, D.; Johnstone, J.; Zytaruk, N.; Clarke, F.; Hand, L.; Loukov, D.; Szamosi, J.C.; Rossi, L.; Schenck, L.P.; Verschoor, C.P.; et al. Microbial Dysbiosis and Mortality during Mechanical Ventilation: A Prospective Observational Study. Respir. Res. 2018, 19, 245. [Google Scholar] [CrossRef]
- Khanna, S. Microbiota Replacement Therapies: Innovation in Gastrointestinal Care. Clin. Pharmacol. Ther. 2018, 103, 102–111. [Google Scholar] [CrossRef]
- Carvalho, B.M.; Abdalla Saad, M.J. Influence of Gut Microbiota on Subclinical Inflammation and Insulin Resistance. Mediat. Inflamm. 2013, 2013, 986734. [Google Scholar] [CrossRef] [Green Version]
- Wen, L.; Duffy, A. Factors Influencing the Gut Microbiota, Inflammation, and Type 2 Diabetes. J. Nutr. 2017, 147, 1468S–1475S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rastelli, M.; Knauf, C.; Cani, P.D. Gut Microbes and Health: A Focus on the Mechanisms Linking Microbes, Obesity, and Related Disorders. Obesity 2018, 26, 792–800. [Google Scholar] [CrossRef] [PubMed]
- McLean, M.H.; Dieguez, D.; Miller, L.M.; Young, H.A. Does the Microbiota Play a Role in the Pathogenesis of Autoimmune Diseases? Gut 2015, 64, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Kverka, M.; Tlaskalova-Hogenova, H. Two Faces of Microbiota in Inflammatory and Autoimmune Diseases: Triggers and Drugs. APMIS J. Pathol. Microbiol. Immunol. 2013, 121, 403–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClave, S.A.; Patel, J.; Bhutiani, N. Should Fecal Microbial Transplantation Be Used in the ICU? Curr. Opin. Crit. Care 2018, 24, 105–111. [Google Scholar] [CrossRef] [PubMed]
- McClave, S.A.; Lowen, C.C.; Martindale, R.G. The 2016 ESPEN Arvid Wretlind Lecture: The Gut in Stress. Clin. Nutr. 2018, 37, 19–36. [Google Scholar] [CrossRef]
- Nakov, R.; Segal, J.P.; Settanni, C.R.S.; Bibb, S.; Barrini, A.G.; Cammarota, G.; Ianiro, G. Microbiome: What Intensivists Should Know. Minerva Anestesiol. 2020, 86, 777–785. [Google Scholar] [CrossRef]
- Zaborin, A.; Smith, D.; Garfield, K.; Quensen, J.; Shakhsheer, B.; Kade, M.; Tirrell, M.; Tiedje, J.; Gilbert, J.A.; Zaborina, O.; et al. Membership and Behavior of Ultra-Low-Diversity Pathogen Communities Present in the Gut of Humans during Prolonged Critical Illness. mBio 2014, 5, e01361-14. [Google Scholar] [CrossRef] [Green Version]
- Wischmeyer, P.E.; McDonald, D.; Knight, R. Role of the Microbiome, Probiotics, and “dysbiosis Therapy” in Critical Illness. Curr. Opin. Crit. Care 2016, 22, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Vincent, J.-L.; Rello, J.; Marshall, J.; Silva, E.; Anzueto, A.; Martin, C.D.; Moreno, R.; Lipman, J.; Gomersall, C.; Sakr, Y.; et al. International Study of the Prevalence and Outcomes of Infection in Intensive Care Units. JAMA 2009, 302, 2323–2329. [Google Scholar] [CrossRef] [Green Version]
- Wiström, J.; Norrby, S.R.; Myhre, E.B.; Eriksson, S.; Granström, G.; Lagergren, L.; Englund, G.; Nord, C.E.; Svenungsson, B. Frequency of Antibiotic-Associated Diarrhoea in 2462 Antibiotic-Treated hospitalized Patients: A Prospective Study. J. Antimicrob. Chemother. 2001, 50, 43–50. [Google Scholar] [CrossRef]
- Prescott, H.C.; Dickson, R.P.; Rogers, M.A.M.; Langa, K.M.; Iwashyna, T.J. Hospitalization Type and Subsequent Severe Sepsis. Am. J. Respir. Crit. Care Med. 2015, 192, 581–588. [Google Scholar] [CrossRef] [Green Version]
- Schuijt, T.J.; van der Poll, T.; de Vos, W.M.; Wiersinga, W.J. The Intestinal Microbiota and Host Immune Interactions in the Critically Ill. Trends Microbiol. 2013, 21, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Lv, J.; Li, J.; Zhao, Z.; Guo, H.; Zhang, Y.; Cheng, S.; Sun, J.; Pan, H.; Fan, S.; et al. Intestinal Microbiota Impact Sepsis Associated Encephalopathy via the Vagus Nerve. Neurosci. Lett. 2018, 662, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Scott Fridkin, M. Morbidity and Mortality Weekly Report. CDC 2016, 9, 235–241. [Google Scholar]
- Batra, P.; Soni, K.D.; Mathur, P. Efficacy of Probiotics in the Prevention of VAP in Critically Ill ICU Patients: An Updated Systematic Review and Meta-Analysis of Randomized Control Trials. J. Intensive Care 2020, 8, 1–14. [Google Scholar]
- Manzanares, W.; Lemieux, M.; Langlois, P.L.; Wischmeyer, P.E. Probiotic and Symbiotic Therapy in Critical Illness: A Systematic Review and Meta-Analysis. Crit. Care 2016, 20, 262. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, P.; Bouza, E.; Cuenca-Estrella, M.; María, E.J.; Jesús, P.M.; Sánchez-Somolinos, M.; Rincón, C.; Hortal, J.; Peláez, T. Saccharomyces Cerevisiae Fungemia: An Emerging Infectious Disease. Clin. Infect. Dis. 2005, 40, 1625–1634. [Google Scholar] [CrossRef] [PubMed]
- Bongaerts, G.P.A.; Severijnen, R.S.V.M. A Reassessment of the PROPATRIA Study and Its Implications for Probiotic Therapy. Nat. Biotechnol. 2016, 34, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Allegretti, J.R.; Mullish, B.H.; Kelly, C.; Fischer, M. Therapeutics the Evolution of the Use of Faecal Microbiota Transplantation and Emerging Therapeutic Indications. Lancet 2019, 394, 420–431. [Google Scholar] [CrossRef]
- Ott, S.J.; Waetzig, G.H.; Rehman, A.; Moltzau-Anderson, J.; Bharti, R.; Grasis, J.A.; Cassidy, L.; Tholey, A.; Fickenscher, H.; Seegert, D.; et al. Efficacy of Sterile Fecal Filtrate Transfer for Treating Patients with Clostridium difficile Infection. Gastroenterology 2017, 152, 799–811.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, L.C.; Gerding, D.N.; Johnson, S.; Bakken, J.S.; Carroll, K.C.; Coffin, S.E.; Dubberke, E.R.; Garey, K.W.; Gould, C.V.; Kelly, C.; et al. Clinical Practice Guidelines for Clostridium Difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 2018, 66, e1–e48. [Google Scholar] [CrossRef]
- Quraishi, M.N.; Widlak, M.; Bhala, N.; Moore, D.; Price, M.; Sharma, N.; Iqbal, T.H. Systematic Review with Meta-Analysis: The Efficacy of Faecal Microbiota Transplantation for the Treatment of Recurrent and Refractory Clostridium difficile Infection. Aliment. Pharmacol. Ther. 2017, 46, 479–493. [Google Scholar] [CrossRef] [Green Version]
- Cammarota, G.; Ianiro, G.; Kelly, C.R.; Mullish, B.H.; Allegretti, J.R.; Kassam, Z.; Putignani, L.; Fischer, M.; Keller, J.J.; Costello, S.P.; et al. International Consensus Conference on Stool Banking for Faecal Microbiota Transplantation in Clinical Practice. Gut 2019, 68, 2111–2121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wurm, P.; Spindelboeck, W.; Krause, R.; Plank, J.; Fuchs, G.; Bashir, M.; Petritsch, W.; Halwachs, B.; Langner, C.; Högenauer, C.; et al. Antibiotic-Associated Apoptotic Enterocolitis in the Absence of a Defined Pathogen: The Role of Intestinal Microbiota Depletion. Crit. Care Med. 2017, 45, e600–e606. [Google Scholar] [CrossRef] [Green Version]
- Kelly, C.R.; Ihunnah, C.; Fischer, M.; Khoruts, A.; Surawicz, C.; Afzali, A.; Aroniadis, O.; Barto, A.; Borody, T.; Giovanelli, A.; et al. Fecal Microbiota Transplant for Treatment of Clostridium difficile Infection in Immunocompromised Patients. Am. J. Gastroenterol. 2014, 109, 1065–1071. [Google Scholar] [CrossRef] [Green Version]
- Levy, A.N.; Allegretti, J.R. Insights into the Role of Fecal Microbiota Transplantation for the Treatment of Inflammatory Bowel Disease. Ther. Adv. Gastroenterol. 2019, 12, 1756284819836893. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, M.; Martin-Loeches, I.; Dimopoulos, G.; Gasbarrini, A.; Vallecoccia, M.S. Clostridioides difficile (Formerly Clostridium difficile) Infection in the Critically Ill: An Expert Statement. Intensive Care Med. 2020, 46, 215–224. [Google Scholar] [CrossRef]
- Zhang, D.; Prabhu, V.S.; Marcella, S.W. Attributable Healthcare Resource Utilization and Costs for Patients with Primary and Recurrent Clostridium difficile Infection in the United States. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2018, 66, 1326–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.-W.; Xu, H.; Phelps, E.; Rogers, N.; Sagi, S.; Bohm, M.; Kassam, Z.; Allegretti, J.; Fishcer, M. Fecal Microbiota Transplant Decreases Mortality in Patients with Refractory Severe and Severe Complicated Clostridium difficile Infection Not Eligible for Colectomy. Am. J. Gastroenterol. 2017, 112, 100. [Google Scholar]
- Zilberberg, M.D.; Nathanson, B.H.; Sadigov, S.; Higgins, T.L.; Kollef, M.H.; Shorr, A.F. Epidemiology and Outcomes of Clostridium difficile-Associated Disease among Patients on Prolonged Acute Mechanical Ventilation. Chest 2009, 136, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Ro, Y.; Eun, C.S.; Kim, H.S.; Kim, J.Y.; Byun, Y.J.; Yoo, K.S.; Han, D.S. Risk of Clostridium difficile Infection with the Use of a Proton Pump Inhibitor for Stress Ulcer Prophylaxis in Critically Ill Patients. Gut Liver 2016, 10, 581–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maseda, D.; Zackular, J.P.; Trindade, B.; Kirk, L.; Roxas, J.L.; Rogers, L.M.; Washington, M.K.; Du, L.; Koyama, T.; Viswanathan, V.K.; et al. Nonsteroidal Anti-Inflammatory Drugs Alter the Microbiota and Exacerbate Clostridium difficile Colitis while Dysregulating the Inflammatory Response. mBio 2019, 10, e02282-18. [Google Scholar] [CrossRef] [Green Version]
- Marra, A.R.; Edmond, M.B.; Wenzel, R.P.; Bearman, G.M.L. Hospital-Acquired Clostridium difficile-associated Disease in the Intensive Care Unit Setting: Epidemiology, Clinical Course and Outcome. BMC Infect. Dis. 2007, 7, 42. [Google Scholar] [CrossRef] [Green Version]
- Schneider, K.M.; Wirtz, T.H.; Kroy, D.; Albers, S.; Neumann, U.P.; Strowig, T.; Sellge, G.; Trautwein, C. Successful Fecal Microbiota Transplantation in a Patient with Severe Complicated Clostridium difficile Infection after Liver Transplantation. Case Rep. Gastroenterol. 2018, 12, 76–84. [Google Scholar] [CrossRef]
- Al Momani, L.A.; Abughanimeh, O.; Boonpherg, B.; Gabriel, J.G.; Young, M. Fidaxomicin vs. Vancomycin for the Treatment of a First Episode of Clostridium difficile Infection: A Meta-Analysis and Systematic Review. Cureus 2018, 10, e2778. [Google Scholar] [CrossRef] [Green Version]
- Penziner, S.; Dubrovskaya, Y.; Press, R.; Safdar, A. Fidaxomicin Therapy in Critically Ill Patients with Clostridium difficile Infection. Antimicrob. Agents Chemother. 2015, 59, 1776–1781. [Google Scholar] [CrossRef] [Green Version]
- Sayedy, L. Toxic Megacolon Associated Clostridium difficile Colitis. World J. Gastrointest. Endosc. 2010, 2, 293. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.W.; Phelps, E.; Nemes, S.; Rogers, N.; Sagi, S.; Bohm, M.; El-Halabi, M.; Allegretti, J.R.; Kassam, Z.; Xu, H.; et al. Fecal Microbiota Transplant Decreases Mortality in Patients with Refractory Severe or Fulminant Clostridioides difficile Infection. Clin. Gastroenterol. Hepatol. 2020, 18, 2234–2243.e1. [Google Scholar] [CrossRef] [PubMed]
- Ianiro, G.; Masucci, L.; Quaranta, G.; Simonelli, C.; Lopetuso, L.R.; Sanguinetti, M.; Gasbarrini, A.; Cammarota, G. Randomised Clinical Trial: Faecal Microbiota Transplantation by Colonoscopy plus Vancomycin for the Treatment of Severe Refractory Clostridium difficile Infection—Single versus Multiple Infusions. Aliment. Pharmacol. Ther. 2018, 48, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Hocquart, M.; Lagier, J.C.; Cassir, N.; Saidani, N.; Eldin, C.; Kerbaj, J.; Delord, M.; Valles, C.; Brouqui, P.; Raoult, D.; et al. Early Fecal Microbiota Transplantation Improves Survival in Severe Clostridium difficile Infections. Clin. Infect. Dis. 2018, 66, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; Sipe, B.; Cheng, Y.W.; Phelps, E.; Rogers, N.; Sagi, S.; Bohm, M.; Xu, H.; Kassam, Z. Fecal Microbiota Transplant in Severe and Severe-Complicated Clostridium difficile: A Promising Treatment Approach. Gut Microbes 2017, 8, 289–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zainah, H.; Hassan, M.; Shiekh-Sroujieh, L.; Hassan, S.; Alangaden, G.; Ramesh, M. Intestinal Microbiota Transplantation, a Simple and Effective Treatment for Severe and Refractory Clostridium difficile Infection. Dig. Dis. Sci. 2015, 60, 181–185. [Google Scholar] [CrossRef]
- Luo, Y.; Tixier, E.N.; Grinspan, A.M. Fecal Microbiota Transplantation for Clostridioides difficile in High-Risk Older Adults Is Associated with Early Recurrence. Dig. Dis. Sci. 2020, 65, 3647–3651. [Google Scholar] [CrossRef]
- Aroniadis, O.C.; Brandt, L.J.; Greenberg, A.; Borody, T.; Kelly, C.R.; Mellow, M.; Surawicz, C.; Cagle, L.; Neshatian, L.; Stollman, N.; et al. Long-Term Follow-up Study of Fecal Microbiota Transplantation for Severe and/or Complicated Clostridium difficile Infection: A Multicenter Experience. J. Clin. Gastroenterol. 2016, 50, 398–402. [Google Scholar] [CrossRef]
- Alukal, J.; Dutta, S.K.; Surapaneni, B.K.; Le, M.; Tabbaa, O.; Phillips, L.; Mattar, M.C. Safety and Efficacy of Fecal Microbiota Transplant in 9 Critically Ill Patients with Severe and Complicated Clostridium difficile Infection with Impending Colectomy. J. Dig. Dis. 2019, 20, 301–307. [Google Scholar] [CrossRef]
- Fischer, M.; Kao, D.; Mehta, S.R.; Martin, T.; Dimitry, J.; Keshteli, A.H.; Cook, G.K.; Phelps, E.; Sipe, B.W.; Xu, H.; et al. Predictors of Early Failure after Fecal Microbiota Transplantation for the Therapy of Clostridium difficile Infection: A Multicenter Study. Am. J. Gastroenterol. 2016, 111, 1024–1031. [Google Scholar] [CrossRef]
- Ianiro, G.; Valerio, L.; Masucci, L.; Pecere, S.; Bibbò, S.; Quaranta, G.; Posteraro, B.; Currò, D.; Sanguinetti, M.; Gasbarrini, A.; et al. Predictors of Failure after Single Faecal Microbiota Transplantation in Patients with Recurrent Clostridium difficile Infection: Results from a 3-Year, Single-Centre Cohort Study. Clin. Microbiol. Infect. 2017, 23, 337.e1–337.e3. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.W.; Phelps, E.; Ganapini, V.; Khan, N.; Ouyang, F.; Xu, H.; Khanna, S.; Tariq, R.; Friedman-Moraco, R.J.; Woodworth, M.H.; et al. Fecal Microbiota Transplantation for the Treatment of Recurrent and Severe Clostridium difficile Infection in Solid Organ Transplant Recipients: A Multicenter Experience. Am. J. Transplant. 2019, 19, 501–511. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, M.; Aroniadis, O.C.; Brandt, L.J.; Kelly, C.; Freeman, S.; Surawicz, C.; Broussard, E.; Stollman, N.; Giovanelli, A.; Smith, B.; et al. The Long-Term Efficacy and Safety of Fecal Microbiota Transplant for Recurrent, Severe, and Complicated Clostridium difficile Infection in 146 Elderly Individuals. J. Clin. Gastroenterol. 2016, 50, 403–407. [Google Scholar] [CrossRef]
- Fischer, M.; Sipe, B.W.; Rogers, N.A.; Cook, G.K.; Robb, B.W.; Vuppalanchi, R.; Rex, D.K. Faecal Microbiota Transplantation plus Selected Use of Vancomycin for Severe-Complicated Clostridium difficile Infection: Description of a Protocol with High Success Rate. Aliment. Pharmacol. Ther. 2015, 42, 470–476. [Google Scholar] [CrossRef] [Green Version]
- Giovanni, C. Decrease in Surgery for Clostridium difficile Infection After Starting a Program to Transplant Fecal Microbiota. Ann. Intern. Med. 2015, 162, 533–541. [Google Scholar]
- Weingarden, A.R.; Hamilton, M.J.; Sadowsky, M.J.; Khoruts, A. Resolution of Severe Clostridium difficile Infection Following Sequential Fecal Microbiota Transplantation. J. Clin. Gastroenterol. 2013, 47, 735–737. [Google Scholar] [CrossRef] [Green Version]
- Berro, Z.Z.; Hamdan, R.H.; Dandache, I.H.; Saab, M.N.; Karnib, H.H.; Younes, M.H. Fecal Microbiota Transplantation for Severe Clostridium difficile Infection after Left Ventricular Assist Device Implantation: A Case Control Study and Concise Review on the Local and Regional Therapies. BMC Infect. Dis. 2016, 16, 234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, D.M.; Franzos, M.A.; Holman, R.P. Successful Treatment of Fulminant Clostridium difficile Infection with Fecal Bacteriotherapy. Ann. Intern. Med. 2008, 148, 632–633. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Abdelkarim, A.; Nawras, A.; Hinch, B.T.; Mbaso, C.; Valavoor, S.; Safi, F.; Hammersley, J.; Tang, J.; Assaly, R. Fecal Transplant. for Treatment of Toxic Megacolon Associated with Clostridium difficile Colitis in a Patient with Duchenne Muscular Dystrophy. Am. J. Ther. 2016, 23, e609–e613. [Google Scholar] [CrossRef] [PubMed]
- Trubiano, J.A.; Gardiner, B.; Kwong, J.C.; Ward, P.; Testro, A.G.; Charles, P.G.P. Faecal Microbiota Transplantation for Severe Clostridium difficile Infection in the Intensive Care Unit. Eur. J. Gastroenterol. Hepatol. 2013, 25, 255–257. [Google Scholar] [CrossRef] [PubMed]
- Brechmann, T.; Swol, J.; Knop-Hammad, V.; Willert, J.; Aach, M.; Cruciger, O.; Schmiegel, W.; Schildhauer, T.A.; Hamsen, U. Complicated Fecal Microbiota Transplantation in a Tetraplegic Patient with Severe Clostridium difficile Infection. World J. Gastroenterol. 2015, 21, 3736–3740. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.L.; Ramakrishna, B.; Moss, A.C.; Gold, H.S.; Branch-Elliman, W. Successful Treatment of Fulminant Clostridioides difficile Infection with Emergent Fecal Microbiota Transplantation in a Patient with Acute Myeloid Leukemia and Prolonged, Severe Neutropenia. Transplant. Infect. Dis. 2020, 22, e13216. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ayala, P.; González-Hernández, L.A.; Amador-Lara, F.; Andrade-Villanueva, J.; Ramos-Solano, M. Trasplante de Microbiota Fecal En El Tratamiento de Colitis Grave Complicada Por, C. difficile En Un Paciente Con Síndrome de Inmunodeficiencia Adquirida. Rev. Gastroenterol. Méx. 2019, 84, 110–112. [Google Scholar] [CrossRef]
- Neemann, K.; Eichele, D.D.D.; Smith, P.P.W.; Bociek, R.; Akhtari, M.; Freifeld, A. Fecal Microbiota Transplantation for Fulminant Clostridium difficile Infection in an Allogeneic Stem Cell Transplant Patient. Transplant. Infect. Dis. 2012, 14, E161–E165. [Google Scholar] [CrossRef]
- Krajicek, E.; Bohm, M.; Sagi, S.; Fischer, M. Fulminant Clostridium difficile Infection Cured by Fecal Microbiota Transplantation in a Bone Marrow Transplant Recipient with Critical Neutropenia. ACG Case Rep. J. 2019, 6, e00198. [Google Scholar] [CrossRef] [PubMed]
- Gallegos-Orozco, J.F.; Paskvan-Gawryletz, C.D.; Gurudu, S.R.; Orenstein, R. Successful Colonoscopic Fecal Transplant for Severe Acute Clostridium difficile Pseudomembranous Colitis. Rev. Gastroenterol. Mex. 2012, 77, 40–42. [Google Scholar] [PubMed]
- Zuo, T.; Ng, S.C. The Gut Microbiota in the Pathogenesis and Therapeutics of Inflammatory Bowel Disease. Front. Microbiol. 2018, 9, 2247. [Google Scholar] [CrossRef] [PubMed]
- Oka, A.; Sartor, R.B. Microbial-Based and Microbial-Targeted Therapies for Inflammatory Bowel Diseases. Dig. Dis. Sci. 2020, 65, 757–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucio, C.M.K. Clostridium difficile Infection and Chronic Inflammatory Bowel Disease. World J. Gastroenterol. 2013, 9, 7577–7585. [Google Scholar]
- Khoruts, A.; Rank, K.M.; Newman, K.M.; Viskocil, K.; Vaughn, B.P.; Hamilton, M.J.; Sadowsky, M.J. Inflammatory Bowel Disease Affects the Outcome of Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection. Clin. Gastroenterol. Hepatol. 2016, 14, 1433–1438. [Google Scholar] [CrossRef] [Green Version]
- Cui, B.; Feng, Q.; Wang, H.; Wang, M.; Peng, Z.; Li, P.; Huang, G.; Liu, Z.; Wu, P.; Fan, Z.; et al. Fecal Microbiota Transplantation through Mid-Gut for Refractory Crohn’s Disease: Safety, Feasibility, and Efficacy Trial Results. J. Gastroenterol. Hepatol. 2015, 30, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.; Li, X.; Shen, J.; Feng, Q. Fecal Microbiota Transplantation for the Treatment of Inflammatory Bowel Disease: An Update. Front. Pharmacol. 2020, 11, 1409. [Google Scholar] [CrossRef]
- Moayyedi, P.; Surette, M.G.; Kim, P.T.; Libertucci, J.; Wolfe, M.; Onischi, C.; Armstrong, D.; Marshall, J.K.; Kassam, Z.; Reinisch, W.; et al. Fecal Microbiota Transplantation Induces Remission in Patients with Active Ulcerative Colitis in a Randomized Controlled Trial. Gastroenterology 2015, 149, 102–109.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paramsothy, S.; Paramsothy, R.; Rubin, D.T.; Kamm, M.A.; Kaakoush, N.O.; Mitchell, H.M.; Castaño-Rodríguez, N. Faecal Microbiota Transplantation for Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. J. Crohn’s Colitis 2017, 11, 1180–1199. [Google Scholar] [CrossRef] [Green Version]
- Basso, P.J.; Saraiva Câmara, N.O.; Sales-Campos, H. Microbial-Based Therapies in the Treatment of Inflammatory Bowel Disease—An Overview of Human Studies. Front. Pharmacol. 2019, 9, 1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uygun, A.; Ozturk, K.; Demirci, H.; Oger, C.; Avci, I.Y.; Turker, T.; Gulsen, M. Fecal Microbiota Transplantation Is a Rescue Treatment Modality for Refractory Ulcerative Colitis. Medicine 2017, 96, e6479. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, D.; Sasaki, T.; Osada, T.; Kuwahara-Arai, K.; Haga, K.; Shibuya, T.; Hiramatsu, K.; Watanabe, S. Changes in Intestinal Microbiota Following Combination Therapy with Fecal Microbial Transplantation and Antibiotics for Ulcerative Colitis. Inflamm. Bowel Dis. 2017, 23, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Kump, P.; Wurm, P.; Gröchenig, H.P.; Wenzl, H.; Petritsch, W.; Halwachs, B.; Wagner, M.; Stadlbauer, V.; Eherer, A.; Hoffmann, K.M.; et al. The Taxonomic Composition of the Donor Intestinal Microbiota Is a Major Factor Influencing the Efficacy of Faecal Microbiota Transplantation in Therapy Refractory Ulcerative Colitis. Aliment. Pharmacol. Ther. 2018, 47, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Okahara, K.; Ishikawa, D.; Nomura, K.; Ito, S.; Haga, K.; Takahashi, M.; Shibuya, T.; Osada, T.; Nagahara, A. Matching between Donors and Ulcerative Colitis Patients Is Important for Long-Term Maintenance after Fecal Microbiota Transplantation. J. Clin. Med. 2020, 9, 1650. [Google Scholar] [CrossRef]
- Vermeire, S.; Joossens, M.; Verbeke, K.; Wang, J.; Machiels, K.; Sabino, J.; Ferrante, M.; van Assche, G.; Rutgeerts, P.; Raes, J. Donor Species Richness Determines Faecal Microbiota Transplantation Success in Inflammatory Bowel Disease. J. Crohn’s Colitis 2016, 10, 387–394. [Google Scholar] [CrossRef] [Green Version]
- Karakan, T.; İbiş, M.; Cindoruk, M.; Sargin, Z.G.; Alizadeh, N.; Colman, R.; Rubin, D. P639 Faecal Microbiota Transplantation as a Rescue Therapy for Steroid-Dependent and/or Non-Responsive Patients with Ulcerative Colitis: A Pilot Study. P640 Co-Detection of Infliximab and Antibodies in an ECLIA Assay amongst IBD Patients Treated with Infliximab. Curr. Drug. Targets 2020, 21, 1440–1447. [Google Scholar]
- Borody, T.J.; Warren, E.F.; Leis, S.; Surace, R.; Ashman, O. Treatment of Ulcerative Colitis Using Fecal Bacteriotherapy. J. Clin. Gastroenterol. 2003, 37, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Liu, X.L.; Zhang, Y.J.; Nie, Y.Z.; Wu, K.C.; Shi, Y.Q. Efficacy and Safety of Fecal Microbiota Transplantation by Washed Preparation in Patients with Moderate to Severely Active Ulcerative Colitis. J. Dig. Dis. 2020, 21, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Dang, X.-F.; Wang, Q.-X.; Yin, Z.; Sun, L.; Yang, W.-H. Recurrence of Moderate to Severe Ulcerative Colitis after Fecal Microbiota Transplantation Treatment and the Efficacy of Re-FMT: A Case Series. BMC Gastroenterol. 2020, 20, 88. [Google Scholar] [CrossRef]
- Fischer, M.; Kao, D.; Kelly, C.; Kuchipudi, A.; Jafri, S.M.; Blumenkehl, M.; Rex, D.; Mellow, M.; Kaur, N.; Sokol, H.; et al. Fecal Microbiota Transplantation Is Safe and Efficacious for Recurrent or Refractory Clostridium difficile Infection in Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2016, 22, 2402–2409. [Google Scholar] [CrossRef] [Green Version]
- Sood, A.; Singh, A.; Mahajan, R.; Midha, V.; Kaur, K.; Singh, D.; Bansal, N.; Dharni, K. Clinical Predictors of Response to Faecal Microbiota Transplantation in Patients with Active Ulcerative Colitis. J. Crohn’s Colitis 2021, 15, 238–243. [Google Scholar] [CrossRef]
- Mizuno, S.; Nanki, K.; Matsuoka, K.; Saigusa, K.; Ono, K.; Arai, M.; Sugimoto, S.; Kiyohara, H.; Nakashima, M.; Takeshita, K.; et al. Single Fecal Microbiota Transplantation Failed to Change Intestinal Microbiota and Had Limited Effectiveness against Ulcerative Colitis in Japanese Patients. Intest. Res. 2017, 15, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ren, R.; Sun, G.; Peng, L.; Tian, Y.; Yang, Y. Pilot Study of Cytokine Changes Evaluation after Fecal Microbiota Transplantation in Patients with Ulcerative Colitis. Int. Immunopharmacol. 2020, 85, 106661. [Google Scholar] [CrossRef] [PubMed]
- Costello, S.P.; Day, A.; Yao, C.K.; Bryant, R.V. Faecal Microbiota Transplantation (FMT) with Dietary Therapy for Acute Severe Ulcerative Colitis. BMJ Case Rep. 2020, 13, e233135. [Google Scholar] [CrossRef]
- Li, Q.; Wang, C.; Tang, C.; He, Q.; Zhao, X.; Li, N.; Li, J. Successful Treatment of Severe Sepsis and Diarrhea after Vagotomy Utilizing Fecal Microbiota Transplantation: A Case Report. Crit. Care 2015, 19, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Y.; Yang, J.; Wang, J.; Yang, Y.; Huang, J.; Gong, H.; Cui, H.; Chen, D. Successful Treatment with Fecal Microbiota Transplantation in Patients with Multiple Organ Dysfunction Syndrome and Diarrhea Following Severe Sepsis. Crit. Care 2016, 20, 332. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Li, N.; Xing, H.; Guo, T.; Gong, H.; Chen, D. Effectiveness of Fecal Microbiota Transplantation for Severe Diarrhea after Drug-Induced Hypersensitivity Syndrome. Medicine 2019, 98, e18476. [Google Scholar] [CrossRef]
- Dai, M.; Liu, Y.; Chen, W.; Buch, H.; Shan, Y.; Chang, L.; Bai, Y.; Shen, C.; Zhang, X.; Huo, Y.; et al. Rescue Fecal Microbiota Transplantation for Antibiotic-Associated Diarrhea in Critically Ill Patients. Crit. Care 2019, 23, 284. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wang, C.; Tang, C.; He, Q.; Zhao, X.; Li, N.; Li, J. Therapeutic Modulation and Reestablishment of the Intestinal Microbiota with Fecal Microbiota Transplantation Resolves Sepsis and Diarrhea in a Patient. Am. J. Gastroenterol. 2014, 109, 1832–1834. [Google Scholar] [CrossRef]
- Gopalsamy, S.N.; Sherman, A.; Woodworth, M.H.; Lutgring, J.D.; Kraft, C.S. Fecal Microbiota Transplant for Multidrug-Resistant Organism Decolonization Administered during Septic Shock. Infect. Control Hosp. Epidemiol. 2018, 39, 490–492. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Gong, J.; Zhu, W.; Guo, D.; Gu, L.; Li, N.; Li, J. Fecal Microbiota Transplantation Restores Dysbiosis in Patients with Methicillin Resistant Staphylococcus aureus Enterocolitis. BMC Infect. Dis. 2015, 15, 265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueckermann, V.; Hoosien, E.; de Villiers, N.; Geldenhuys, J. Fecal Microbial Transplantation for the Treatment of Persistent Multidrug-Resistant Klebsiella pneumoniae Infection in a Critically Ill Patient. Case Rep. Infect. Dis. 2020, 2020, 8462659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spindelboeck, W.; Schulz, E.; Uhl, B.; Kashofer, K.; Aigelsreiter, A.; Zinke-Cerwenka, W.; Mulabecirovic, A.; Kump, P.K.; Halwachs, B.; Gorkiewicz, G.; et al. Repeated Fecal Microbiota Transplantations Attenuate Diarrhea and Lead to Sustained Changes in the Fecal Microbiota in Acute, Refractory Gastrointestinal Graft-versus-Host-Disease. Haematologica 2017, 102, e210–e213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ubeda, C.; Bucci, V.; Caballero, S.; Djukovic, A.; Toussaint, N.C.; Equinda, M.; Lipuma, L.; Ling, L.; Gobourne, A.; No, D.; et al. Intestinal Microbiota Containing Barnesiella Species Cures Vancomycin-Resistant Enterococcus faecium Colonization. Infect. Immun. 2013, 81, 965–973. [Google Scholar] [CrossRef] [Green Version]
- Bilinski, J.; Grzesiowski, P.; Sorensen, N.; Madry, K.; Muszynski, J.; Robak, K.; Wroblewska, M.; Dzieciatkowski, T.; Dulny, G.; Dwilewicz-Trojaczek, J.; et al. Fecal Microbiota Transplantation in Patients with Blood Disorders Inhibits Gut Colonization with Antibiotic-Resistant Bacteria: Results of a Prospective, Single-Center Study. Clin. Infect. Dis. 2017, 65, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Huttner, B.D.; de Lastours, V.; Wassenberg, M.; Maharshak, N.; Mauris, A.; Galperine, T.; Zanichelli, V.; Kapel, N.; Bellanger, A.; Olearo, F.; et al. A 5-Day Course of Oral Antibiotics Followed by Faecal Transplantation to Eradicate Carriage of Multidrug-Resistant Enterobacteriaceae: A Randomized Clinical Trial. Clin. Microbiol. Infect. 2019, 25, 830–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ref. | Study Type | Patients | Intervention (Fecal Microbial Transplantation) | Controls | Outcomes | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N (FMT/Controls)//Critically Ill | Diagnosis | Age | Sex | Route of Administration | Frequency | Donor | No FMT Therapy | Beneficial | Adverse Events (Severe/Mild) | ||
R = Related, U = Unrelated, ? = Unknown; Fresh, Frozen, ? = Unknown | |||||||||||
[43] | Open label randomized clinical trial | 56/0 | sCDI | 75 | 17M/39F | Lg-C | 1 × 28 pt, multiple 28 pt | U (71%), R (29%)/mostly fresh | x | ↓ AS, ↓ D | x/AS |
[42] | Retrospective cohort study | 225 (50 pt FMT)/205 | fCDI, sCDI | 61.2 | 123M/102F | Lg-C (98%) | median of 2 FMT | U/Fresh (10%) and Frozen | ATB therapy | ↓ M | no comment |
[33] | 17/15 | sCDI, cCDI | 66,4 | 18M/14F | no comments | average 1.83 ± 0.7 | ?/? | no more details | ↓ M | no comment | |
[44] | 66/45 | sCDI, scCDI | 81 (69–87) | 23M/43F | Ug-NGS | 1 × 51 pt, 2 × 14 pt, 3 × 1 pt | R and U/Fresh (46%) and Frozen | Vanco p.o. +/– Metro i.v. or p.o. +/− FDX p.o. | ↓ M | x/AS, F | |
[45] | 16/32 | sCDI, fCDI | 62,6 | 7M/9F | Lg-C,S | every 3–5 days until resolution | R and U/? | Vanco p.o. +/− Metro i.v. | ↓ M | 1 × bacteremia (6.3%), 1 × perforation (6.3%)/no comment | |
[46] | Case series | 14/0 | sCDI, refCDI | 73.4 (52–92) | 5M/9F | Ug-Ngt (93%), Lg-C (7%) | 1 × 10 pt, 2 × 2 pt, 3 × 2 pt | R (85.7 %) and U/Fresh. | not applicable | ↓ AS, ↓ D | x/no comment |
[47] | 75/0 | rCDI | 76.4 | 21M/54F | Lg-C (88%), Lg-S (9.3%) | no comments | R (13.5%) and U/? | ↓ AS, ↓ D | 3 pt post-procedural hypotension, one case of perforation. | ||
[48] | 17/0 | sCDI, cCDI | 66.4 (38–89) | 4M/13F | Lg-C (94%), E,S Ug-Njt | 1 × 14 pt, 2 × 3 pt | R (58.8%) and U/? | ↓ AS, ↓ D | x/AS | ||
[49] | 9/0 | sCDI, cCDI | 67.78 | 6M/3F | Ug-Njt (3×), Peg (1×) Lg-C (1×), Ug + Lg (C + Ngt) 4× | 1 × 8 pt, 2 × 1 pt | U and R/? | ↓ AS, ↓ D, ↓ Ilf, ↑ SA | x/no comment | ||
[50] | 328/0//42 pt sCDI | sCDI, rCDI | 61.4 ± 19.3 | 87M/241F | Lg-C (76.9%) | no comments | ?/? | no comment | no comment | ||
[51] | 64/0//26 pt sCDI | rCDI | 74 (29–94) | 25M/39F | Lg-C | 1 × 44 pt, multifecal infusion 20 pt | R (44%) and U/Fresh (83%) and Frozen | ↓ D | no comment | ||
[52] | 94/0 | sCDI, fCDI + SOTp | 56,3 | 47M/47F | Ug-Njt, Lg-C (81%), E (17%), S, Caps. | no details | R and U/Fresh (41%) and Frozen | ↓ AS, ↓ D | 3.2% severe diarrhea, AKI, fever, CMV reactivation/22,3% AS,D | ||
[29] | 80/0//36 pt sCDI, cCDI, refCDI | sCDI, refCD, recCDI + IC | 53 (20–88) | 42M/38F | Lg mostly | 1 × 62 pt, no more comments | ?/? | ↓ AS, ↓ D | aspiration, mucosal tear caused by the colonoscopy/15% any SAE (AS, IBD flare.) | ||
[45] | 57/0 | sCDI, scCDI | 72 (60–79; 25–99) | 23M/34F | Lg-C | 1 × 30 pt, 2 × 16 pt, 3 × 4 pt, 4–5 × 2 pt | R and U/Fresh (51%) and Frozen | ↓ AS, ↓ D, ↑ SA | x/no comment | ||
[53] | 146/0///s,cCDI 57(38.4%) | rCDI, sCDI, cCDI | 78.6 (65 to 97) | 46M/100F | Lg-C (80,8%), E,S Ug-Gfs, Ent | 1 × 130 pt, multiple 16 pt | ?/? | ↓ AS, ↓ D | x/D, AS 11 pt (7,5%) | ||
[54] | 29/0 | sCDI, scCDI | 65,2 (25–92) | 12M/17F | Lg-C | 1 × 18 pt, 2 × 9 pt, 3 × 2 pt | R (36%) and U/? | ↓ D, ↑ SA | x/no comment | ||
[55] | 35/0 | sCDI | 69 (29–91) | 17M/18F | Lg-C | 1 × 27 pt, multiple 8 pt | R (54%) and U/? | ↓ AS, ↓ D, ↑ SA | no comment | ||
[56] | 4/0 | sCDI | 66–83 | 1M/3F | Lg-C | 1 × 2 pt, 2 × 2 pt | U/Fresh (25%) and Frozen | ↓ AS, ↓ D | no comment | ||
[57] | Case report | 1/0 | sCDI | 65 | 1M | Ug-Njt | 1 × 1 pt | U/? | ↓ AS, ↓ D | x/no comment | |
[58] | 1/0 | fCDI | 69 | 1M | LG-E | 1 × 1 pt | R/Fresh | ↓ AS, ↓ D, ↓ Ilf | x/no comment | ||
[59] | 1/0 | fCDI | 26 | 1M | Lg-C | 2 × 1 pt | R/Fresh | ↓ AS, ↓ D, ↑ SA | x/no comment | ||
[60] | 1/0 | sCDI | 75 | 1F | Ug-Njt | 1 × 1 pt | R/Fresh | ↓ D, ↓ Ilf | x/no comment | ||
[61] | 1/0 | sCDI, rCDI | 65 | 1M | Lg-C | 1 × 1 pt | R/Fresh | x | SIRS 4 days subsequent to the FMT without detecting an infectious cause | ||
[62] | 1/0 | fCDI + AML | 27 | 1M | Lg-S | 1 × 1 pt | U/Frozen | ↓ AS, ↓ D | x/no comment | ||
[63] | 1/0 | CDI + HIV stage3 | 27 | 1M | Ug-Njt | 1 × 1 pt | R/Fresh | ↓ AS, ↓ D, ↓ Ilf | x/no comment | ||
[38] | 1/0 | sCDI − liver Tx | 47 | 1W | Ug-caps, Lg-S | 2 × 1 pt | R/? | ↓ AS, ↓ D, ↓ Ilf | x/no comment | ||
[64] | 1/0 | sCDI + SCTx | 21 | 1W | Ug-Njt | 1 × 1 pt | R/? | ↓ AS, ↓ D | x/no comment | ||
[65] | 1/0 | fCDI + pBMcht | 56 | 1M | Ug- Njt, Lg-C | 11 × 1 pt (7 × C (days 2, 7, 8, 11, 12, 45, 48) + 4 × Njt (days 13, 14, 21, and 24) | U/Frozen | ↓ AS, ↓ D | x/no comment | ||
[66] | 1/0 | sCDI | 71 | 1M | Lg-C | 1×1 pt | R/Fresh | ↓ AS, ↓ D | x/no comment |
Patient | Intervention (Fecal Microbial Transplantation) | Controls | Outcomes | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Study Type | N (FMT /Controls)//Critically Ill | Diagnosis | Age | Sex | Route of Administration | Frequency | Donor | No FMT Therapy | Beneficial | Adverse Events (Severe/Mild) | |
R = Related, U = Unrelated, ? = Unknown; Fresh, Frozen, ? = Unknown | |||||||||||
[73] | Double-blind placebo-controlled randomized trial | 38/37 | aUC | 42.2 (FMT)/35.8 (placebo) | 44M/31F | Lg-E | once weekly for 6 weeks | U/? | enema with placebo (water) | ↑ R | 1 pt in placebo gr urgent colectomy, 3 pt (1 pt in placebo gr 2 pt in FMT gr) rectal abscess, 1 pt in FMT gr CDI |
[77] | Cohort study | 17/19 | mUC, sUC | 40.4 y (FMT), 44.8 y (ATB) | 13M/4F (FMT) 12M/7F (ATB) | Lg-C | 1 × 17 pt | U and R/Fresh | ATB therapy | ↓ AS | x/AS |
[78] | 17/10 pt//5 pt sUC | refUC | 44 ± 18 (FMT), 36 ± 13 (ATB) | 14M/3F (FMT), 3M/7F (ATB) | Lg-C + S | 5× for 14 days (1 × C-4 × S) | U and R/Fresh | ATB therapy | ↓ AS, ↑ R | no comment | |
[79] | 55/37//52 pt (56%) extensive colitis | refUC, mUC, sUC | 41.1 ± 13.9 | 56M/36F | Lg-C | 1 × 55 pt | U and R/Fresh | ATB therapy | ↓ AS | x/12 pt (13.0%) AS,D | |
[79] | Case series | 30/0//20 pt (66.7 %) sIBD | refUC | 34.6 | 14M/16F | Lg-C | 1 × 27 pt, 2 × 3 pt | U (77%) and R/? | not applicable | ↓ AS, ↓ D, ↑ R | x/AS 7 pt (23.3%) |
[80] | 14/0 | refIBD (8 UC, 6 CD) | 28–50 y | 7M/7F | Ug-Njt (64%), Lg-C, E | 2 × 5 pt, 4 × 9 pt (2 × Njt + 2 × C) | U (71%) and R/? | X (CD), ↑ R (UC) | 1 pt aspiration pneumonia/4 pt high fever | ||
[81] | 14/0 | refUC | 47 ± 11 | no details | Lg-C | 1 × 5 pt, 2 × 1 pt, 4 × 3 pt, 6 × 2 pt | ?/? | ↓ AS | no comment | ||
[82] | 6/0 | sUC, recUC | 25–53 | 3M, 3F | Lg-E | daily for 5 days | U/? | ↓ AS | no comment | ||
[83] | 9/0//6 pt (66%) sUC | mUC, sUC | 47.90 (31–61) | 7M, 2F | Lg-C (55.6%), Ug-Njt (44.4%) | 3× (day 1, 3 and 5) | U/? | ↓ AS, ↑ R | x/AS 33.3% (3/9) | ||
[71] | 30/0 | refCD | 38.0 ± 13.83 | 19M/11F | Ug-Njt | 1 × 30 pt | U and R/? | ↓ AS, ↑ R, ↑ BMI | x/F 2 pt | ||
[84] | 12/0//7 pt (58.3%) sUC | mUC, sUC | 50.5 years (41–65) | M8/4F | Lg-C | multiple (no more comments) | U/? | ↓ AS, ↑ R | x/x | ||
[85] | 67/0//15 pt (22.4%) sIBD | UC, CD + recCDI | 45.42 ± 17.33 | 28M, 39F | Lg-C,S | 1 × 60 pt, 2 × 6 pt, 3 × 1 pt | U/Fresh (88.1%) | ↓ AS, ↓ D | x/AS | ||
[86] | 93/0 | refUC, mUC, sUC | 34.96 ± 11.27 | 58M/35F | Lg-C | 7× (week 0, 2, 6, 10, 14, 18, 22) | U/Fresh | ↓ AS | x/AS (30%) | ||
[87] | 10/0//7 pt (70%) sUC | aUC | 31 (17–48) | 7M/3F | Lg-C | 1 × 10 pt | R/Fresh | x | x/6 pt exacerbation of the UC | ||
[88] | 16/0 | aUC | 37 (18–66) | 10M, 6F | Ug-Gfs, Lg-C | 3× for 2–3 months | U/? | ↓ AS, ↓ Ilf, ↑ R | x/no comment | ||
[89] | Case report | 1/0 | sUC | 19 | 1M | Lg-C,E | 3 × 1 pt | U/? | ↓ AS, ↑ R | x/no comment |
Patient | Intervention | Controls | Outcomes | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Study Type | N (FMT/Controls)//Critically Ill) | Diagnosis | Age | Sex | Route of Administration | Frequency | Donor | No FMT Therapy | Beneficial | Adverse Events (Severe/Mild) | |
R = Related, U = Unrelated, ? = Unknown; Fresh, Frozen, ? = Unknown | |||||||||||
[93] | case series | 18/0 | Antibiotic-associated diarrhea, critical illness | 55 (2–91) | 12M/6F | Ug-Njt (13), Gfs (4), Lg-E (1) | 1 × 8 pt, 2 × 7 pt, 3 × 1 pt, 4 × 2 pt | U/? | Not applicable | ↓ SS, ↓ D, ↓ Ilf | x/7 pt (38.9%) FMT-related AEs (D,AS) |
[90] | case report | 1/0 | Septic shock, watery diarrhea | 44 | 1W | Ug-Njt | 1 × 1 pt | R/Fresh | ↓ SS, ↓ D | x/no comment | |
[91] | 2/0 | MODS, septic shock, severe diarrhea | 65, 84 | 2M | Ug-Ngi | 1 × 2 pt | U/? | ↓ SS, ↓ D, ↓ F | x/no comment | ||
[92] | 1/0 | MODS, drug-induced hypersensitivity syndrome | 32 | 1F | Ug-Ngi | 4×—every 6 days | U/? | ↓ SS, ↓ D | x/no comment | ||
[94] | 1/0 | Septic shock, severe diarrhea, UC | 29 | 1F | Ug-Njt | 1 × 1 pt | ?/? | ↓ SS, ↓ D, ↓ F, ↓ Ilf | x/no comment | ||
[95] | 1/0 | MDRO infection, septic shock | 57 | 1M | Ug-Peg | 1 × 1 pt | ?/? | ------ | the patient died the same day FMT was done | ||
[28] | 1/0 | High-volume diarrhea (Apoptotic Enterocolitis) on ICU | 16 | 1F | Lg-C | 1 × 1 pt | R/? | ↓ D | x/no comment | ||
[96] | 5/0 | MRSA enteritis, septic shock | 28 (19–45) | 3M/2F | Ug-Njt | 3×—once a day for 3 consecutive days | U and R/Fresh | ↓ AS, ↓ D | x/no comment | ||
[97] | 1/0 | MDRO Klebsiella, MODS | 60 | 1M | Ug-Njt | 2×—repeated after two weeks. | R/? | ↓ SS, ↓ Ilf | x/no comment |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cibulková, I.; Řehořová, V.; Hajer, J.; Duška, F. Fecal Microbial Transplantation in Critically Ill Patients—Structured Review and Perspectives. Biomolecules 2021, 11, 1459. https://doi.org/10.3390/biom11101459
Cibulková I, Řehořová V, Hajer J, Duška F. Fecal Microbial Transplantation in Critically Ill Patients—Structured Review and Perspectives. Biomolecules. 2021; 11(10):1459. https://doi.org/10.3390/biom11101459
Chicago/Turabian StyleCibulková, Ivana, Veronika Řehořová, Jan Hajer, and František Duška. 2021. "Fecal Microbial Transplantation in Critically Ill Patients—Structured Review and Perspectives" Biomolecules 11, no. 10: 1459. https://doi.org/10.3390/biom11101459
APA StyleCibulková, I., Řehořová, V., Hajer, J., & Duška, F. (2021). Fecal Microbial Transplantation in Critically Ill Patients—Structured Review and Perspectives. Biomolecules, 11(10), 1459. https://doi.org/10.3390/biom11101459