Precision Medicine for Lysosomal Disorders
Abstract
:1. Introduction
2. Molecular Diagnosis Advances for Lysosomal Diseases
3. Metabolomics as a New Tool for Diagnosis and Monitoring
4. Next-Generation Treatments
5. Small Molecules
5.1. Pharmacogenomics and Small Molecules
5.2. Substrate Synthesis Inhibition
5.3. Pharmacological Chaperones
5.4. Premature Termination Codon Read-Through
6. Next-Generation ERT
6.1. Intrathecal and Intracerebroventricular ERT
6.2. Intravenous ERT that Bypasses the BBB
6.3. Intravenous ERT with Extended Half-Life
6.4. ERT Administered via Encapsulated Cells Implanted in the Patient
6.5. Intravenous ERT Combined with Oral Pharmacological Chaperones
6.6. Intravenous ERT for Other LDs
7. Gene Therapy/Genome Editing
8. Antisense Oligonucleotide Therapy
9. Combination of Therapies
10. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Pinto, E.V.F.; Lazaridis, K.N. Individualized medicine comes to the liver clinic. J. Hepatol. 2019, 70, 1057–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, Y.C.; Yu, H.C.; Martin, R.; Cirulli, E.T.; Schenker-Ahmed, N.M.; Hicks, M.; Cohen, I.V.; Jönsson, T.J.; Heister, R.; Napier, L.; et al. Precision medicine integrating whole-genome sequencing, comprehensive metabolomics, and advanced imaging. Proc. Natl. Acad. Sci. USA 2020, 117, 3053–3062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease; National Academies Press: Washington, DC, USA, 2011. [CrossRef]
- Platt, F.M.; d’Azzo, A.; Davidson, B.L.; Neufeld, E.F.; Tifft, C.J. Lysosomal storage diseases. Nat. Rev. Dis. Primers 2018, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Fuller, M.; Meikle, P.J.; Hopwood, J.J. Epidemiology of lysosomal storage diseases: An overview. In Fabry Disease: Perspectives from 5 Years of FOS; Mehta, A., Beck, M., Sunder-Plassmann, G., Eds.; Oxford PharmaGenesis Ltd.: Oxford, UK, 2006. [Google Scholar]
- Giugliani, R.; Federhen, A.; Michelin-Tirelli, K.; Riegel, M.; Burin, M. Relative frequency and estimated minimal frequency of Lysosomal Storage Diseases in Brazil: Report from a Reference Laboratory. Genet. Mol. Biol. 2017, 40, 31–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, M. Treatment strategies for lysosomal storage disorders. Dev. Med. Child Neurol. 2018, 60, 13–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mynarek, M.; Tolar, J.; Albert, M.H.; Escolar, M.L.; Boelens, J.J.; Cowan, M.J.; Finnegan, N.; Glomstein, A.; Jacobsohn, D.A.; Kühl, J.S.; et al. Allogeneic Hematopoietic SCT for Alpha-Mannosidosis: An Analysis of 17 Patients. Bone Marrow Transplant. 2012, 47, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Somaraju, U.R.; Tadepalli, K. ‘Cochrane Database of Systematic Reviews Hematopoietic Stem Cell Transplantation for Gaucher Disease (Review) Hematopoietic Stem Cell Transplantation for Gaucher Disease. Hematop. Stem Cell Transplant. Gauch. Dis. 2017, 10. [Google Scholar] [CrossRef]
- Gramatges, M.M.; Dvorak, C.C.; Regula, D.P.; Enns, G.M.; Weinberg, K.; Agarwal, R. Pathological Evidence of Wolman’s Disease Following Hematopoietic Stem Cell Transplantation despite Correction of Lysosomal Acid Lipase Activity. Bone Marrow Transplant. 2009, 449–450. [Google Scholar] [CrossRef]
- Aldenhoven, M.; Van Den Broek, B.T.A.; Wynn, R.F.; O’Meara, A.; Veys, P.; Rovelli, A.; Jones, S.A.; Parini, R.; Van Hasselt, P.M.; Renard, M.; et al. Quality of Life of Hurler Syndrome Patients after Successful Hematopoietic Stem Cell Transplantation. Blood Adv. 2017, 1, 2236–2242. [Google Scholar] [CrossRef]
- Barth, A.L.; Horovitz, D.D.G. Hematopoietic Stem Cell Transplantation in Mucopolysaccharidosis Type II. J. Inborn Errors Metab. Screen. 2018, 6, e180008. [Google Scholar] [CrossRef]
- Barth, L.; de Magalhães, T.S.P.C.; Reis, A.B.R.; de Oliveira, M.L.; Scalco, F.B.; Cavalcanti, N.C.; Silva, D.S.E.; Torres, D.A.; Costa, A.A.P.; Bonfim, C.; et al. Early Hematopoietic Stem Cell Transplantation in a Patient with Severe Mucopolysaccharidosis II: A 7 Years Follow-Up. Mol. Genet. Metab. Rep. 2017, 12, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Yabe, H.; Tanaka, A.; Chinen, Y.; Kato, S.; Sawamoto, K.; Yasuda, E.; Shintaku, H.; Suzuki, Y.; Orii, T.; Tomatsu, S. Hematopoietic Stem Cell Transplantation for Morquio A Syndrome. Mol. Genet. Metab. 2016, 117, 84–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turbeville, S.; Nicely, H.; Douglas Rizzo, J.; Pedersen, T.L.; Orchard, P.J.; Horwitz, M.E.; Horwitz, E.M.; Veys, P.; Bonfim, C.; Al-Seraihy, A. Clinical Outcomes Following Hematopoietic Stem Cell Transplantation for the Treatment of Mucopolysaccharidosis VI. Mol. Genet. Metab. 2011, 102, 111–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orii, K.; Suzuki, Y.; Tomatsu, S.; Orii, T.; Fukao, T. Long-Term Follow-up Posthematopoietic Stem Cell Transplantation in a Japanese Patient with Type-VII Mucopolysaccharidosis. Diagnostics 2020, 10, 105. [Google Scholar] [CrossRef] [Green Version]
- Jameson, J.L.; Longo, D.L. Precision medicine--personalized, problematic, and promising. N. Engl. J. Med. 2015, 372, 2229–2234. [Google Scholar] [CrossRef] [Green Version]
- Brusius-Facchin, A.C.; Rojas Malaga, D.; Leistner-Segal, S.; Giugliani, R. Recent advances in molecular testing to improve early diagnosis in children with mucopolysaccharidoses. Expert Rev. Mol. Diagn. 2018, 18, 855–866. [Google Scholar] [CrossRef]
- Nashabat, M.; Al-Khenaizan, S.; Alfadhel, M. Report of a Case that Expands the Phenotype of Infantile Krabbe Disease. Am. J. Case Rep. 2019, 20, 643–646. [Google Scholar] [CrossRef]
- Kondo, H.; Maksimova, N.; Otomo, T.; Kato, H.; Imai, A.; Asano, Y.; Kobayashi, K.; Nojima, S.; Nakaya, A.; Hamada, Y.; et al. Mutation in VPS33A affects metabolism of glycosaminoglycans: A new type of mucopolysaccharidosis with severe systemic symptoms. Hum. Mol. Genet. 2017, 26, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Dursun, A.; Yalnizoglu, D.; Gerdan, O.F.; Yucel-Yilmaz, D.; Sagiroglu, M.S.; Yuksel, B.; Gucer, S.; Sivri, S.; Ozgul, R.K. A probable new syndrome with the storage disease phenotype caused by the VPS33A gene mutation. Clin. Dysmorphol. 2017, 26, 1–12. [Google Scholar] [CrossRef]
- Nikkel, S.M.; Huang, L.; Lachman, R.; Beaulieu, C.L.; Schwartzentruber, J.; Majewski, J.; Geraghty, M.T.; Boycott, K.M.; Consortium, F.C. Whole-exome sequencing expands the phenotype of Hunter syndrome. Clin. Genet. 2014, 86, 172–176. [Google Scholar] [CrossRef]
- Zeng, Q.; Fan, Y.; Wang, L.; Huang, Z.; Gu, X.; Yu, Y. Molecular defects identified by whole exome sequencing in a child with atypical mucopolysaccharidosis IIIB. J. Pediatr. Endocrinol. Metab. 2017, 30, 463–469. [Google Scholar] [CrossRef]
- Kaissi, A.A.; Hofstaetter, J.; Weigel, G.; Grill, F.; Ganger, R.; Kircher, S.G. The constellation of skeletal deformities in a family with mixed types of mucopolysaccharidoses: Case report. Medicine 2016, 95, e4561. [Google Scholar] [CrossRef] [PubMed]
- Vairo, F.P.; Boczek, N.J.; Cousin, M.A.; Kaiwar, C.; Blackburn, P.R.; Conboy, E.; Lanpher, B.C.; Gavrilova, R.H.; Pichurin, P.N.; Lazaridis, K.N.; et al. The prevalence of diseases caused by lysosome-related genes in a cohort of undiagnosed patients. Mol. Genet. Metab. Rep. 2017, 13, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Hu, C.; Moufawad El Achkar, C.; Black, L.E.; Douville, J.; Larson, A.; Pendergast, M.K.; Goldkind, S.F.; Lee, E.A.; Kuniholm, A.; et al. Patient-Customized Oligonucleotide Therapy for a Rare Genetic Disease. N. Engl. J. Med. 2019, 381, 1644–1652. [Google Scholar] [CrossRef] [PubMed]
- Blomqvist, M.; Smeland, M.F.; Lindgren, J.; Sikora, P.; Riise Stensland, H.M.F.; Asin-Cayuela, J. beta-Mannosidosis caused by a novel homozygous intragenic inverted duplication in MANBA. Cold Spring Harb. Mol. Case Stud. 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Ashton-Prolla, P.; Goldim, J.R.; Vairo, F.P.; da Silveira Matte, U.; Sequeiros, J. Genomic analysis in the clinic: Benefits and challenges for health care professionals and patients in Brazil. J. Community Genet. 2015, 6, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Pinto, E.V.F.; Conboy, E.; de Souza, C.F.M.; Jones, A.; Barnett, S.S.; Klee, E.W.; Lanpher, B.C. Diagnosis of Attenuated Mucopolysaccharidosis VI: Clinical, Biochemical, and Genetic Pitfalls. Pediatrics 2018, 142. [Google Scholar] [CrossRef] [Green Version]
- Bravo, H.; Neto, E.C.; Schulte, J.; Pereira, J.; Filho, C.S.; Bittencourt, F.; Sebastiao, F.; Bender, F.; de Magalhaes, A.P.S.; Guidobono, R.; et al. Investigation of newborns with abnormal results in a newborn screening program for four lysosomal storage diseases in Brazil. Mol. Genet. Metab. Rep. 2017, 12, 92–97. [Google Scholar] [CrossRef]
- Pant, D.C.; Dorboz, I.; Schluter, A.; Fourcade, S.; Launay, N.; Joya, J.; Aguilera-Albesa, S.; Yoldi, M.E.; Casasnovas, C.; Willis, M.J.; et al. Loss of the sphingolipid desaturase DEGS1 causes hypomyelinating leukodystrophy. J. Clin. Investig. 2019, 129, 1240–1256. [Google Scholar] [CrossRef]
- Li, D.; Lin, Y.; Huang, Y.; Zhang, W.; Jiang, M.; Li, X.; Zhao, X.; Sheng, H.; Yin, X.; Su, X.; et al. Early prenatal diagnosis of lysosomal storage disorders by enzymatic and molecular analysis. Prenat. Diagn. 2018, 38, 779–787. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Kornreich, R.; Yu, C. Prenatal Diagnosis of Tay-Sachs Disease. Methods Mol. Biol. 2019, 1885, 233–250. [Google Scholar] [CrossRef] [PubMed]
- Ou, L.; Przybilla, M.J.; Whitley, C.B. SAAMP 2.0: An algorithm to predict genotype-phenotype correlation of lysosomal storage diseases. Clin. Genet. 2018, 93, 1008–1014. [Google Scholar] [CrossRef]
- Scott, H.S.; Litjens, T.; Nelson, P.V.; Brooks, D.A.; Hopwood, J.J.; Morris, C.P. alpha-L-iduronidase mutations (Q70X and P533R) associate with a severe Hurler phenotype. Hum. Mutat. 1992, 1, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Hein, L.K.; Bawden, M.; Muller, V.J.; Sillence, D.; Hopwood, J.J.; Brooks, D.A. alpha-L-iduronidase premature stop codons and potential read-through in mucopolysaccharidosis type I patients. J. Mol. Biol. 2004, 338, 453–462. [Google Scholar] [CrossRef]
- Nowak, A.; Huynh-Do, U.; Krayenbuehl, P.A.; Beuschlein, F.; Schiffmann, R.; Barbey, F. Fabry disease genotype, phenotype, and migalastat amenability: Insights from a national cohort. J. Inherit. Metab. Dis. 2020, 43, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Fiehn, O. Metabolomics—The link between genotypes and phenotypes. Plant Mol. Biol. 2002, 48, 155–171. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.K.; Holmes, E.; Kinross, J.M.; Darzi, A.W.; Takats, Z.; Lindon, J.C. Metabolic phenotyping in clinical and surgical environments. Nature 2012, 491, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Mussap, M.; Zaffanello, M.; Fanos, V. Metabolomics: A challenge for detecting and monitoring inborn errors of metabolism. Ann. Transl. Med. 2018, 6, 338. [Google Scholar] [CrossRef]
- Gonzalez-Dominguez, A.; Duran-Guerrero, E.; Fernandez-Recamales, A.; Lechuga-Sancho, A.M.; Sayago, A.; Schwarz, M.; Segundo, C.; Gonzalez-Dominguez, R. An Overview on the Importance of Combining Complementary Analytical Platforms in Metabolomic Research. Curr. Top. Med. Chem. 2017, 17, 3289–3295. [Google Scholar] [CrossRef]
- Tebani, A.; Abily-Donval, L.; Afonso, C.; Marret, S.; Bekri, S. Clinical Metabolomics: The New Metabolic Window for Inborn Errors of Metabolism Investigations in the Post-Genomic Era. Int. J. Mol. Sci. 2016, 17, 1167. [Google Scholar] [CrossRef] [Green Version]
- Sandlers, Y. The future perspective: Metabolomics in laboratory medicine for inborn errors of metabolism. Transl. Res. 2017, 189, 65–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vazquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [Google Scholar] [CrossRef] [PubMed]
- Mandal, R.; Chamot, D.; Wishart, D.S. The role of the Human Metabolome Database in inborn errors of metabolism. J. Inherit. Metab. Dis. 2018, 41, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Auray-Blais, C.; Boutin, M.; Gagnon, R.; Dupont, F.O.; Lavoie, P.; Clarke, J.T. Urinary globotriaosylsphingosine-related biomarkers for Fabry disease targeted by metabolomics. Anal. Chem. 2012, 84, 2745–2753. [Google Scholar] [CrossRef]
- Auray-Blais, C.; Boutin, M. Novel gb(3) isoforms detected in urine of fabry disease patients: A metabolomic study. Curr. Med. Chem. 2012, 19, 3241–3252. [Google Scholar] [CrossRef]
- Manwaring, V.; Boutin, M.; Auray-Blais, C. A metabolomic study to identify new globotriaosylceramide-related biomarkers in the plasma of Fabry disease patients. Anal. Chem. 2013, 85, 9039–9048. [Google Scholar] [CrossRef]
- Dupont, F.O.; Gagnon, R.; Boutin, M.; Auray-Blais, C. A metabolomic study reveals novel plasma lyso-Gb3 analogs as Fabry disease biomarkers. Curr. Med. Chem. 2013, 20, 280–288. [Google Scholar] [CrossRef]
- Mashima, R.; Okuyama, T.; Ohira, M. Biomarkers for Lysosomal Storage Disorders with an Emphasis on Mass Spectrometry. Int. J. Mol. Sci. 2020, 21, 2704. [Google Scholar] [CrossRef] [Green Version]
- Janeckova, H.; Hron, K.; Wojtowicz, P.; Hlidkova, E.; Baresova, A.; Friedecky, D.; Zidkova, L.; Hornik, P.; Behulova, D.; Prochazkova, D.; et al. Targeted metabolomic analysis of plasma samples for the diagnosis of inherited metabolic disorders. J. Chromatogr. A 2012, 1226, 11–17. [Google Scholar] [CrossRef]
- Jacob, M.; Malkawi, A.; Albast, N.; Al Bougha, S.; Lopata, A.; Dasouki, M.; Abdel Rahman, A.M. A targeted metabolomics approach for clinical diagnosis of inborn errors of metabolism. Anal. Chim. Acta 2018, 1025, 141–153. [Google Scholar] [CrossRef]
- Coene, K.L.M.; Kluijtmans, L.A.J.; van der Heeft, E.; Engelke, U.F.H.; de Boer, S.; Hoegen, B.; Kwast, H.J.T.; van de Vorst, M.; Huigen, M.; Keularts, I.; et al. Next-generation metabolic screening: Targeted and untargeted metabolomics for the diagnosis of inborn errors of metabolism in individual patients. J. Inherit. Metab. Dis. 2018, 41, 337–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gertsman, I.; Barshop, B.A. Promises and pitfalls of untargeted metabolomics. J. Inherit. Metab. Dis. 2018, 41, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Hajduk, J.; Matysiak, J.; Kokot, Z.J. Challenges in biomarker discovery with MALDI-TOF MS. Clin. Chim. Acta 2016, 458, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Hinderer, C.; Katz, N.; Louboutin, J.P.; Bell, P.; Tolar, J.; Orchard, P.J.; Lund, T.C.; Nayal, M.; Weng, L.; Mesaros, C.; et al. Abnormal polyamine metabolism is unique to the neuropathic forms of MPS: Potential for biomarker development and insight into pathogenesis. Hum. Mol. Genet. 2017, 26, 3837–3849. [Google Scholar] [CrossRef]
- Fu, H.; Meadows, A.S.; Ware, T.; Mohney, R.P.; McCarty, D.M. Near-Complete Correction of Profound Metabolomic Impairments Corresponding to Functional Benefit in MPS IIIB Mice after IV rAAV9-hNAGLU Gene Delivery. Mol. Ther. 2017, 25, 792–802. [Google Scholar] [CrossRef] [Green Version]
- Poswar, F.O.; Vairo, F.; Burin, M.; Michelin-Tirelli, K.; Brusius-Facchin, A.C.; Kubaski, F.; Souza, C.F.M.; Baldo, G.; Giugliani, R. Lysosomal diseases: Overview on current diagnosis and treatment. Genet. Mol. Biol. 2019, 42, 165–177. [Google Scholar] [CrossRef]
- Weinshilboum, R. Inheritance and drug response. N. Engl. J. Med. 2003, 348, 529–537. [Google Scholar] [CrossRef] [Green Version]
- Van Driest, S.L.; Shi, Y.; Bowton, E.A.; Schildcrout, J.S.; Peterson, J.F.; Pulley, J.; Denny, J.C.; Roden, D.M. Clinically actionable genotypes among 10,000 patients with preemptive pharmacogenomic testing. Clin. Pharmacol. Ther. 2014, 95, 423–431. [Google Scholar] [CrossRef] [Green Version]
- Cox, T.M.; Aerts, J.M.; Andria, G.; Beck, M.; Belmatoug, N.; Bembi, B.; Chertkoff, R.; Vom Dahl, S.; Elstein, D.; Erikson, A.; et al. The role of the iminosugar N-butyldeoxynojirimycin (miglustat) in the management of type I (non-neuronopathic) Gaucher disease: A position statement. J. Inherit. Metab. Dis. 2003, 26, 513–526. [Google Scholar] [CrossRef]
- Shapiro, B.E.; Pastores, G.M.; Gianutsos, J.; Luzy, C.; Kolodny, E.H. Miglustat in late-onset Tay-Sachs disease: A 12-month, randomized, controlled clinical study with 24 months of extended treatment. Genet. Med. 2009, 11, 425–433. [Google Scholar] [CrossRef] [Green Version]
- Peterschmitt, M.J.; Cox, G.F.; Ibrahim, J.; MacDougall, J.; Underhill, L.H.; Patel, P.; Gaemers, S.J.M. A pooled analysis of adverse events in 393 adults with Gaucher disease type 1 from four clinical trials of oral eliglustat: Evaluation of frequency, timing, and duration. Blood Cells Mol. Dis. 2018, 68, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Ariceta, G.; Giordano, V.; Santos, F. Effects of long-term cysteamine treatment in patients with cystinosis. Pediatr. Nephrol. 2019, 34, 571–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Megias-Vericat, J.E.; Garcia-Robles, A.; Company-Albir, M.J.; Fernandez-Megia, M.J.; Perez-Miralles, F.C.; Lopez-Briz, E.; Casanova, B.; Poveda, J.L. Early experience with compassionate use of 2 hydroxypropyl-beta-cyclodextrin for Niemann-Pick type C disease: Review of initial published cases. Neurol. Sci. 2017, 38, 727–743. [Google Scholar] [CrossRef] [PubMed]
- Donida, B.; Raabe, M.; Tauffner, B.; de Farias, M.A.; Machado, A.Z.; Timm, F.; Kessler, R.G.; Hammerschmidt, T.G.; Reinhardt, L.S.; Brito, V.B.; et al. Nanoparticles containing beta-cyclodextrin potentially useful for the treatment of Niemann-Pick C. J. Inherit. Metab. Dis. 2020, 43, 586–601. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.M.; Yum, M.S.; Heo, S.H.; Kim, T.; Jin, H.K.; Bae, J.S.; Seo, G.H.; Oh, A.; Yoon, H.M.; Lim, H.T.; et al. Pharmacologic properties of high-dose ambroxol in four patients with Gaucher disease and myoclonic epilepsy. J. Med. Genet. 2020, 57, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Aflaki, E.; Borger, D.K.; Moaven, N.; Stubblefield, B.K.; Rogers, S.A.; Patnaik, S.; Schoenen, F.J.; Westbroek, W.; Zheng, W.; Sullivan, P.; et al. A New Glucocerebrosidase Chaperone Reduces alpha-Synuclein and Glycolipid Levels in iPSC-Derived Dopaminergic Neurons from Patients with Gaucher Disease and Parkinsonism. J. Neurosci. 2016, 36, 7441–7452. [Google Scholar] [CrossRef]
- Chen, Y.; Jian, J.; Hettinghouse, A.; Zhao, X.; Setchell, K.D.R.; Sun, Y.; Liu, C.J. Progranulin associates with hexosaminidase A and ameliorates GM2 ganglioside accumulation and lysosomal storage in Tay-Sachs disease. J. Mol. Med. 2018, 96, 1359–1373. [Google Scholar] [CrossRef]
- Jian, J.; Hettinghouse, A.; Liu, C.J. Progranulin acts as a shared chaperone and regulates multiple lysosomal enzymes. Genes Dis. 2017, 4, 125–126. [Google Scholar] [CrossRef]
- Giugliani, R.; Vairo, F.; Kubaski, F.; Poswar, F.; Riegel, M.; Baldo, G.; Saute, J.A. Neurological manifestations of lysosomal disorders and emerging therapies targeting the CNS. Lancet Child Adolesc. Health 2018, 2, 56–68. [Google Scholar] [CrossRef]
- Kishnani, P.; Tarnopolsky, M.; Roberts, M.; Sivakumar, K.; Dasouki, M.; Dimachkie, M.M.; Finanger, E.; Goker-Alpan, O.; Guter, K.A.; Mozaffar, T.; et al. Duvoglustat HCl Increases Systemic and Tissue Exposure of Active Acid alpha-Glucosidase in Pompe Patients Co-administered with Alglucosidase alpha. Mol. Ther. 2017, 25, 1199–1208. [Google Scholar] [CrossRef] [Green Version]
- Mayer, F.Q.; Artigalas, O.A.; Lagranha, V.L.; Baldo, G.; Schwartz, I.V.; Matte, U.; Giugliani, R. Chloramphenicol enhances IDUA activity on fibroblasts from mucopolysaccharidosis I patients. Curr. Pharm. Biotechnol. 2013, 14, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Luddi, A.; Crifasi, L.; Capaldo, A.; Piomboni, P.; Costantino-Ceccarini, E. Suppression of galactocerebrosidase premature termination codon and rescue of galactocerebrosidase activity in twitcher cells. J. Neurosci. Res. 2016, 94, 1273–1283. [Google Scholar] [CrossRef] [PubMed]
- Thada, V.; Miller, J.N.; Kovacs, A.D.; Pearce, D.A. Tissue-specific variation in nonsense mutant transcript level and drug-induced read-through efficiency in the Cln1(R151X) mouse model of INCL. J. Cell. Mol. Med. 2016, 20, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Brasell, E.J.; Chu, L.; El Kares, R.; Seo, J.H.; Loesch, R.; Iglesias, D.M.; Goodyer, P. The aminoglycoside geneticin permits translational readthrough of the CTNS W138X nonsense mutation in fibroblasts from patients with nephropathic cystinosis. Pediatr. Nephrol. 2019, 34, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Baradaran-Heravi, A.; Balgi, A.D.; Zimmerman, C.; Choi, K.; Shidmoossavee, F.S.; Tan, J.S.; Bergeaud, C.; Krause, A.; Flibotte, S.; Shimizu, Y.; et al. Novel small molecules potentiate premature termination codon readthrough by aminoglycosides. Nucleic Acids Res. 2016, 44, 6583–6598. [Google Scholar] [CrossRef] [PubMed]
- Giugliani, R.; Dalla Corte, A.; Poswar, F.; Vancella, C.; Horovitz, D.; Riegel, M.; Baldo, G.; Vairo, F. Intrathecal/Intracerebroventricular enzyme replacement therapy for the mucopolysaccharidoses: Efficacy, safety, and prospects. Exp. Opin. Orphan Drugs 2018, 6, 403–411. [Google Scholar] [CrossRef]
- Giugliani, R.; Giugliani, L.; de Oliveira Poswar, F.; Donis, K.C.; Corte, A.D.; Schmidt, M.; Boado, R.J.; Nestrasil, I.; Nguyen, C.; Chen, S.; et al. Neurocognitive and somatic stabilization in pediatric patients with severe Mucopolysaccharidosis Type I after 52 weeks of intravenous brain-penetrating insulin receptor antibody-iduronidase fusion protein (valanafusp alpha): An open label phase 1-2 trial. Orphanet J. Rare Dis. 2018, 13, 110. [Google Scholar] [CrossRef]
- Okuyama, T.; Eto, Y.; Sakai, N.; Minami, K.; Yamamoto, T.; Sonoda, H.; Yamaoka, M.; Tachibana, K.; Hirato, T.; Sato, Y. Iduronate-2-Sulfatase with Anti-human Transferrin Receptor Antibody for Neuropathic Mucopolysaccharidosis II: A Phase 1/2 Trial. Mol. Ther. 2019, 27, 456–464. [Google Scholar] [CrossRef] [Green Version]
- Schiffmann, R.; Goker-Alpan, O.; Holida, M.; Giraldo, P.; Barisoni, L.; Colvin, R.B.; Jennette, C.J.; Maegawa, G.; Boyadjiev, S.A.; Gonzalez, D.; et al. Pegunigalsidase alfa, a novel PEGylated enzyme replacement therapy for Fabry disease, provides sustained plasma concentrations and favorable pharmacodynamics: A 1-year Phase 1/2 clinical trial. J. Inherit. Metab. Dis. 2019, 42, 534–544. [Google Scholar] [CrossRef]
- Baldo, G.; Mayer, F.Q.; Martinelli, B.; Meyer, F.S.; Burin, M.; Meurer, L.; Tavares, A.M.; Giugliani, R.; Matte, U. Intraperitoneal implant of recombinant encapsulated cells overexpressing alpha-L-iduronidase partially corrects visceral pathology in mucopolysaccharidosis type I mice. Cytotherapy 2012, 14, 860–867. [Google Scholar] [CrossRef]
- Xu, S.; Lun, Y.; Frascella, M.; Garcia, A.; Soska, R.; Nair, A.; Ponery, A.S.; Schilling, A.; Feng, J.; Tuske, S.; et al. Improved efficacy of a next-generation ERT in murine Pompe disease. JCI Insight 2019, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasserstein, M.P.; Diaz, G.A.; Lachmann, R.H.; Jouvin, M.H.; Nandy, I.; Ji, A.J.; Puga, A.C. Olipudase alfa for treatment of acid sphingomyelinase deficiency (ASMD): Safety and efficacy in adults treated for 30 months. J. Inherit Metab. Dis. 2018, 41, 829–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohashi, T. Gene therapy for lysosomal storage diseases and peroxisomal diseases. J. Hum. Genet. 2019, 64, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez E, B.G. Gene Therapy for Lysosomal Storage Disorders: Recent Advances and Limitations. J. Inborn Errors Metab. Screen. 2017, 5, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Corti, M.; Liberati, C.; Smith, B.K.; Lawson, L.A.; Tuna, I.S.; Conlon, T.J.; Coleman, K.E.; Islam, S.; Herzog, R.W.; Fuller, D.D.; et al. Safety of Intradiaphragmatic Delivery of Adeno-Associated Virus-Mediated Alpha-Glucosidase (rAAV1-CMV-hGAA) Gene Therapy in Children Affected by Pompe Disease. Hum. Gene Ther. Clin. Dev. 2017, 28, 208–218. [Google Scholar] [CrossRef]
- Tardieu, M.; Zerah, M.; Gougeon, M.L.; Ausseil, J.; de Bournonville, S.; Husson, B.; Zafeiriou, D.; Parenti, G.; Bourget, P.; Poirier, B.; et al. Intracerebral gene therapy in children with mucopolysaccharidosis type IIIB syndrome: An uncontrolled phase 1/2 clinical trial. Lancet Neurol. 2017, 16, 712–720. [Google Scholar] [CrossRef]
- Sessa, M.; Lorioli, L.; Fumagalli, F.; Acquati, S.; Redaelli, D.; Baldoli, C.; Canale, S.; Lopez, I.D.; Morena, F.; Calabria, A.; et al. Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: An ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. Lancet 2016, 388, 476–487. [Google Scholar] [CrossRef]
- Poletto, E.; Baldo, G.; Gomez-Ospina, N. Genome Editing for Mucopolysaccharidoses. Int. J. Mol. Sci. 2020, 21, 500. [Google Scholar] [CrossRef] [Green Version]
- Sheridan, C. Sangamo’s landmark genome editing trial gets mixed reception. Nat. Biotechnol. 2018, 36, 907–908. [Google Scholar] [CrossRef]
- Rinaldi, C.; Wood, M.J.A. Antisense oligonucleotides: The next frontier for treatment of neurological disorders. Nat. Rev. Neurol. 2018, 14, 9–21. [Google Scholar] [CrossRef]
- Dardis, A.; Buratti, E. Impact, Characterization, and Rescue of Pre-mRNA Splicing Mutations in Lysosomal Storage Disorders. Genes 2018, 9, 73. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Pascau, L.; Coll, M.J.; Vilageliu, L.; Grinberg, D. Antisense oligonucleotide treatment for a pseudoexon-generating mutation in the NPC1 gene causing Niemann-Pick type C disease. Hum. Mutat. 2009, 30, E993–E1001. [Google Scholar] [CrossRef] [PubMed]
- van der Wal, E.; Bergsma, A.J.; Pijnenburg, J.M.; van der Ploeg, A.T.; Pijnappel, W. Antisense Oligonucleotides Promote Exon Inclusion and Correct the Common c.-32-13T>G GAA Splicing Variant in Pompe Disease. Mol. Ther. Nucleic Acids 2017, 7, 90–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matos, L.; Goncalves, V.; Pinto, E.; Laranjeira, F.; Prata, M.J.; Jordan, P.; Desviat, L.R.; Perez, B.; Alves, S. Functional analysis of splicing mutations in the IDS gene and the use of antisense oligonucleotides to exploit an alternative therapy for MPS II. Biochim. Biophys. Acta 2015, 1852, 2712–2721. [Google Scholar] [CrossRef] [PubMed]
- Parenti, G.; Andria, G.; Ballabio, A. Lysosomal storage diseases: From pathophysiology to therapy. Annu. Rev. Med. 2015, 66, 471–486. [Google Scholar] [CrossRef] [PubMed]
- Macauley, S.L. Combination Therapies for Lysosomal Storage Diseases: A Complex Answer to a Simple Problem. Pediatr. Endocrinol. Rev. 2016, 13 (Suppl. 1), 639–648. [Google Scholar] [PubMed]
- Eisengart, J.B.; Jarnes, J.; Ahmed, A.; Nestrasil, I.; Ziegler, R.; Delaney, K.; Shapiro, E.; Whitley, C. Long-term cognitive and somatic outcomes of enzyme replacement therapy in untransplanted Hurler syndrome. Mol. Genet. Metab. Rep. 2017, 13, 64–68. [Google Scholar] [CrossRef]
- Ng, M.; Gupta, A.; Lund, T.; Orchard, P. Impact of extended post-HSCT enzyme replacement therapy (ERT) on linear growth in mucopolysaccharidosis type IH (MPS IH). Mol. Genet. Metab. 2020, 129, S115–S116. [Google Scholar] [CrossRef]
- Schiffmann, R.; Cox, T.M.; Ida, H.; Mengel Mistry, P.; Crawford, N.; Gaemers, S.; Jih, A.; Peterschmitt, M.J.; Sharma, J.; Zhang, Q.; et al. Venglustat combined with imiglucerase positively affects neurological features and brain connectivity in adults with Gaucher disease type 3. Mol. Genet. Metab. 2020, 129, S144–S145. [Google Scholar] [CrossRef]
- Roberts, M.S.; Macauley, S.L.; Wong, A.M.; Yilmas, D.; Hohm, S.; Cooper, J.D.; Sands, M.S. Combination small molecule PPT1 mimetic and CNS-directed gene therapy as a treatment for infantile neuronal ceroid lipofuscinosis. J. Inherit. Metab. Dis. 2012, 35, 847–857. [Google Scholar] [CrossRef]
- Hawkins-Salsbury, J.A.; Shea, L.; Jiang, X.; Hunter, D.A.; Guzman, A.M.; Reddy, A.S.; Qin, E.Y.; Li, Y.; Gray, S.J.; Ory, D.S.; et al. Mechanism-based combination treatment dramatically increases therapeutic efficacy in murine globoid cell leukodystrophy. J. Neurosci. 2015, 35, 6495–6505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disease | Product | Manufacturer | FDA or EMA* Approval | Prescribing Information | Comments on HSCT |
---|---|---|---|---|---|
Alpha-Mannosidosis | Lamzede® | Chiesi | 2018* | https://www.ema.europa.eu/en/documents/product-information/lamzede-epar-product-information_en.pdf | Effective, maybe an alternative to ERT [8] |
Fabry disease | Replagal® | Takeda/Shire | 2001 | https://www.ema.europa.eu/en/documents/product-information/replagal-epar-product-information_en.pdf | Not effective |
Fabrazyme® | Sanofi/Genzyme | 2001 | www.fabrazyme.com/hcp/pi/fz_us_hc_pi.pdf | ||
Fabagal®# | ISU ABXIS | 2014# | http://www.abxis.com/eng/product/doc_fabagal.pdf | ||
Gaucher type I | Cerezyme®* | Sanofi/Genzyme | 1994 | www.cerezyme.com/~/media/Files/CerezymeUS/pdf/cerezyme_pi.pdf | Effective, maybe an alternative to ERT [9] |
Velaglucerase alfa | Takeda/Shire | 2010 | www.accessdata.fda.gov/drugsatfda_docs/label/2010/022575lbl.pdf | ||
Elelyso™ | Pfizer/Protalix | 2012 | www.elelyso.com/pdf/ELELYSO_Prescribing_Information.pdf | ||
Abcertin®# | ISU ABXIS | 2012# | http://www.abxis.com/eng/product/doc_abcertin.pdf | ||
Lysosomal acid lipase deficiency | Kanuma™ | Alexion | 2015 | https://kanuma.com/hcp | High mortality rate due to transplant related complications, liver failure or sinusoidal obstruction syndrome [10] |
Mucopolysaccharidosis I | Aldurazyme® | Sanofi/Genzyme | 2003 | www.aldurazyme.com/pdf/az_us_hc_pi.pdf | Effective, maybe an alternative to ERT; recommended for patients with the Hurler phenotype if performed early [11] |
Mucopolysaccharidosis II | Elaprase® | Takeda/Shire | 2006 | www.elaprase.com/pdf/Elaprase_US_PI_v6.pdf | Effective if performed in early disease stages before irreversible disease manifestations have occurred [12,13] |
Hunterase® | GC Pharma/Nanolek LLC | 2012# | https://www.nanolek.ru/en/product/biotekhnologicheskie/khanteraza/ | ||
Mucopolysaccharidosis IVA | Vimizin® | BioMarin | 2014 | https://vimizim.com/hcp/prescribing-information/ | Reported in a few cases, may be an alternative treatment if performed early [14] |
Mucopolysaccharidosis VI | Naglazyme™ | BioMarin | 2005 | www.naglazyme.com/en/documents/Naglazyme_Prescribing_Information.pdf | Effective, maybe an alternative to ERT [15] |
Mucopolysaccharidosis type VII | Mepsevii™ | Ultragenyx | 2017 | https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761047s000lbl.pdf | Reported in a few cases, may be an alternative treatment if performed early [16] |
Neuronal ceroid lipofuscinosis type 2 | Brineura™ | BioMarin | 2017 | https://www.brineura.com/wp-content/themes/jupiter-child/assets/pdfs/resources/Brineura-Dosing-and-Administration-Guide.pdf | Not effective |
Pompe disease | Myozyme® | Sanofi/Genzyme | 2006 | www.accessdata.fda.gov/drugsatfda_docs/label;/2008/125141_74lbl.pdf | Not effective |
Lumizyme® | Sanofi/Genzyme | 2010 | www.accessdata.fda.gov/drugsatfda_docs/label/2010/125291lbl.pdf |
Disease | Treatment | Product | Expected outcomes | Cons | Status | EudraCT number | NCT Number | Sponsor |
---|---|---|---|---|---|---|---|---|
Acid Sphingomyelinase Deficiency | Intravenous enzyme replacement therapy | Olipudase alfa | Overall disease improvement | Efficacy to be determined | Terminated | n/a | NCT00410566 | Genzyme, a Sanofi Company |
Intrathecal administration of cell therapy | Umbilical cord blood-derived oligodendrocyte-like cells | Rapid delivery of donor cells in the CNS; constant enzyme secretion; one-time treatment | Conditioning side-effects; safety and efficacy still to be determined | Recruiting | n/a | NCT02254863 | Duke University, Durham, NC | |
Alpha-mannosidosis | Intrathecal administration of cell therapy | Umbilical cord blood-derived oligodendrocyte-like cells | Rapid delivery of donor cells in the CNS; constant enzyme secretion; one-time treatment | Conditioning side-effects; safety and efficacy still to be determined | Recruiting | n/a | NCT02254863 | Duke University, Durham, NC |
Aspartylglucosaminuria | Chaperone therapy | Betaine | Overall disease improvement | Efficacy and safety to be determined | Ongoing | 2017-000645-48 | n/a | Orphan Europe SARL |
Cystinosis | Stop codon read-through | ELX-02 | Overall disease improvement | Efficacy and safety to be determined | Terminated | n/a | NCT04069260 | Eloxx Pharmaceuticals, Inc. |
ex vivo gene therapy | Lentiviral vector (CTNS-RD-04) | Overall disease improvement | Efficacy and safety to be determined | Recruiting | n/a | NCT03897361 | University of California, San Diego | |
Danon Disease | Gene therapy | AAV9 vector (RP-A501) | Overall disease improvement | Efficacy and safety to be determined | Recruiting | n/a | NCT03882437 | Rocket Pharmaceuticals Inc. |
Fabry disease | Liver directed gene therapy | AAV Vector (FLT190) | One-time treatment; broad enzyme distribution | Efficacy to be determined | Recruiting | n/a | NCT04040049 | Freeline Therapeutics |
Gene therapy | AAV 2/6 vector (ST-920) | One-time treatment; broad enzyme distribution | Efficacy to be determined | Recruiting | n/a | NCT04046224 | Sangamo Therapeutics | |
Substrate reduction therapy combined with enzyme replacement therapy | Venglustat + agalsidase beta | Overall disease improvement | Efficacy and safety to be determined | Completed | n/a | NCT02228460 | Genzyme, a Sanofi Company | |
Enzyme replacement therapy | Pegunigalsidase alfa | Overall disease improvement | Efficacy and safety to be determined | Active, not recruiting | n/a | NCT03018730 | Protalix | |
Substrate reduction therapy combined with enzyme replacement therapy | Lucerastat+ Fabrazymeor Replagal | Overall disease improvement | Efficacy and safety to be determined | Completed | n/a | NCT02930655 | Idorsia Pharmaceuticals Ltd. | |
ex vivo gene therapy | Lentiviral vector (AVR-RD-01) | One-time treatment; broad enzyme distribution; less immune response due to the autologous process | Efficacy to be determined | Recruiting | n/a | NCT03454893 | AvroBio | |
Gaucher disease | Chaperone therapy | Ambroxol | Overall disease improvement due to higher enzyme levels | Efficacy and safety to be determined | Recruiting | n/a | NCT03950050 | Shaare Zedek Medical Center |
Substrate reduction therapy combined with enzyme replacement therapy | Venglustat + imiglucerase | Overall disease improvement | Efficacy and safety to be determined | Recruiting | n/a | NCT02843035 | Genzyme, a Sanofi Company | |
ex vivo gene therapy | Lentiviral vector (AVR-RD-02) | Overall disease improvement | Efficacy and safety to be determined | Recruiting | n/a | NCT04145037 | AvroBio | |
Krabbe disease | Intrathecal administration of cell therapy | Umbilical cord blood-derived oligodendrocyte-like cells | Rapid delivery of donor cells in the CNS; constant enzyme secretion; one-time treatment | Conditioning side-effects; safety and efficacy still to be determined | Recruiting | n/a | NCT02254863 | Duke University, Durham, NC |
GM1 gangliosidosis | Intracisternal gene therapy | AAV9 vector (LYS-GM101) | Overall disease improvement | Efficacy to be determined | Not yet recruiting | n/a | NCT04273269 | Lysogene |
Intracisternal gene therapy | AAVhu68 (PBGM01) | Overall disease improvement | Efficacy and safety to be determined | Not yet recruiting | n/a | n/a | PassageBio | |
Intravenous gene therapy | AAV9 vector (AAV9-GLB1) | Overall disease improvement | Efficacy to be determined | Recruiting | n/a | NCT03952637 | National Human Genome Research Institute | |
GM2 gangliosidosis | Substrate reduction therapy | Miglustat | Overall disease improvement | Efficacy to be determined | Recruiting | n/a | NCT03822013 | Tehran University of Medical Sciences |
Substrate reduction therapy | Venglugstat | Recruiting | n/a | NCT04221451 | Genzyme, a Sanofi Company | |||
Intrathecal gene therapy | rAAVrh8-HEXA/B | Overall disease improvement | Efficacy and safety to be determined | not yet recruiting | n/a | n/a | Axovant | |
Intrathecal administration of cell therapy | Umbilical cord blood-derived oligodendrocyte-like cells | Rapid delivery of donor cells in the CNS; constant enzyme secretion; one-time treatment | Conditioning side-effects; safety and efficacy still to be determined | Recruiting | n/a | NCT02254863 | Duke University, Durham, NC | |
Metachromatic leukodystrophy | Intrathecal enzyme replacement therapy | SHP 611 | Overall disease improvement | Efficacy to be determined | Recruiting | 2018-003291-12 | NCT03771898 | Takeda |
Hematopoieitic stem cell gene therapy | Lentiviral vector (OTL-200) | Improvement in enzyme levels with sulfatide storage reduction; able to prevent disease if administered in presymptomatic patients; no signs of genotoxicity. | It might not be able to rescue progression in symptomatic patients; long-term follow up is needed to determine possible complications | Active, not recruiting | n/a | NCT01560182 | Orchard Therapeutics | |
Intrathecal administration of cell therapy | Umbilical cord blood-derived oligodendrocyte-like cells | Rapid delivery of donor cells in the CNS; constant enzyme secretion; one-time treatment | Conditioning side-effects; safety and efficacy still to be determined | Recruiting | n/a | NCT02254863 | Duke University, Durham, NC | |
Mucopolysaccharidosis type I | Enzyme replacement therapy with fusion protein | Valanafusp alfa | Improvement in enzyme levels with reduction in GAG storage in urine, plasma and CSF; drug likely penetrates the BBB | Immune responses that can possibly neutralize the enzyme; efficacy to be determined | Completed | n/a | NCT03053089 | ArmaGen, Inc |
Autologous CD34+ HSCT transduced ex vivo gene therapy | Lentiviral vector | Overall disease improvement due to higher enzyme levels | Efficacy and safety to be determined | Recruiting | n/a | NCT03488394 | IRCCS San Raffaele | |
Enzyme replacement therapy with fusion protein | JR-171 | Improvement in enzyme levels with reduction in GAG storage in urine, plasma and CSF; drug likely penetrates the BBB | Immune responses that can possibly neutralize the enzyme; efficacy to be determined | Not yet recruiting | n/a | NCT04227600 | JCR Pharmaceuticals Co., Ltd. | |
Intracisternal gene therapy | AAV9 vector (RGX-111) | Improvement in enzyme levels with reduction in GAG storage; improvement in CNS | Efficacy to be determined | Recruiting | n/a | NCT03580083 | Regenxbio Inc. | |
Mucopolysaccharidosis type II | Intracisternal gene therapyB32:I38 | AAV9 vector (RGX-121) | Improvement in enzyme levels with reduction in GAG storage in urine, plasma and CSF; drug likely penetrates the BBB | Efficacy to be determined | Recruiting | n/a | NCT03566043 | Regenxbio Inc. |
Intrathecal enzyme replacement therapy | Idursulfase | Improvement in enzyme levels with reduction in GAG storage in the CSF; improvement in neurological impairment | Efficacy and safety to be determined | Completed | n/a | NCT00920647 | Takeda | |
Intracerebroventricular enzyme replacement therapy | Idursulfase beta | Overall disease improvement | Efficacy and safety to be determined | Completed | n/a | NCT01645189 | GC Pharma | |
Enzyme replacement therapy with fusion protein | DNL310 | Overall disease improvement | Efficacy and safety to be determined | Not yet recruiting | n/a | NCT04251026 | Denali Therapeutics Inc. | |
Enzyme replacement therapy with fusion protein | JR-141 | Improvement in enzyme levels with reduction in GAG storage in urine, plasma and CSF; drug likely penetrates the BBB | Immune responses that can possibly neutralize the enzyme; efficacy to be determined | Enrolling by invitation | n/a | NCT04348136 | JCR Pharmaceuticals Co., Ltd. | |
Genome editing | SB-913 | One-time treatment; broad enzyme distribution | Immune responses that can possibly neutralize the enzyme; efficacy to be determined | Active, not recruiting | n/a | NCT03041324 | Sangamo Therapeutics | |
Intrathecal administration of cell therapy** | Umbilical cord blood-derived oligodendrocyte-like cells | Rapid delivery of donor cells in the CNS; constant enzyme secretion; one-time treatment | Conditioning side-effects; safety and efficacy still to be determined | Recruiting | n/a | NCT02254863 | Duke University, Durham, NC | |
Mucopolysaccharidosis type IIIA | Autologous CD34+ HSCT transduced ex vivo gene therapy | Lentiviral vector | One-time treatment; broad enzyme distribution | Efficacy to be determined | Recruiting | n/a | NCT04201405 | University of Manchester |
Intravenous gene therapy | AAV09 vector (ABO-102) | Leads to sustained enzyme production in the brain, likely to be one-time treatment, well tolerated | Possible immune response; efficacy still under testing; long-term follow up is needed to determine possible complications | Recruiting | n/a | NCT04088734 | Abeona Therapeutics, Inc | |
Intracerebral gene therapy | AAV 10 vector (LYS-SAF302) | Recruiting | n/a | NCT03612869 | Lysogene | |||
Intrathecal administration of cell therapy | Umbilical cord blood-derived oligodendrocyte-like cells | Rapid delivery of donor cells in the CNS; constant enzyme secretion; one-time treatment | Conditioning side-effects; safety and efficacy still to be determined | Recruiting | n/a | NCT02254863 | Duke University, Durham, NC | |
Mucopolysaccharidosis type IIIB | Intracerebroventricular enzyme replacement therapy | AX 250 | Overall disease improvement | Efficacy and safety to be determined | enrolling by invitation | n/a | NCT03784287 | Allievex Corporation |
Intravenous gene therapy with adeno-associated virus (AAV) | AAV9 vector (rAAV9.CMV.hNAGLU) | Overall disease improvement | Efficacy to be determined | Recruiting | n/a | NCT03315182 | Abeona Therapeutics, Inc | |
Intracerebral gene therapy | AAV2/5 vector (rAAV2/5-hNaGlu) | Leads to sustained enzyme production in the brain, likely to be one-time treatment, well tolerated | Possible immune response; efficacy still under testing; long-term follow up is needed to determine possible complications | Completed | 2012-000856-33 | n/a | Institut Pasteur | |
Intrathecal administration of cell therapy | Umbilical cord blood-derived oligodendrocyte-like cells | Rapid delivery of donor cells in the CNS; constant enzyme secretion; one-time treatment | Conditioning side-effects; safety and efficacy still to be determined | Recruiting | n/a | NCT02254863 | Duke University, Durham, NC | |
Mucopolysaccharidosis type IVA | Cellular signaling pathway inhibition | Losartan | Improvement on cardiac impairment | Efficacy and safety to be determined | Recruiting | n/a | NCT03632213 | Hospital de Clinicas de Porto Alegre |
Mucopolysaccharidosis type VI | Substrate reduction therapy | Odiparcil | Overall disease improvement | Efficacy and safety to be determined | Completed | n/a | NCT03370653 | Inventiva Pharma |
Cellular signaling pathway inhibition | Losartan | Improvement on cardiac impairment | Efficacy and safety to be determined | Recruiting | n/a | NCT03632213 | Hospital de Clinicas de Porto Alegre | |
Liver directed gene therapy | AAV2/8 vector (AAV2/8.TBG.hARSB) | Overall disease improvement | Efficacy to be determined | Recruiting | n/a | NCT03173521 | Fondazione Telethon | |
Neuronal Ceroid Lipofuscinosis type 2 (CLN2) | Intracerebral gene therapy | AAV vector (AAVrh.10CUhCLN2) | Overall disease improvement | Efficacy to be determined | Active, not recruiting | n/a | NCT01414985 | Weill Medical College of Cornell University |
Neuronal Ceroid Lipofuscinosis type 3 (CLN3) | Intrathecal gene therapy | AAV9 vector (AT-GTX-502) | Overall disease improvement | Efficacy to be determined | Active, not recruiting | n/a | NCT03770572 | Amicus Therapeutics |
Neuronal Ceroid Lipofuscinosis type 6 (CLN6) | Intrathecal gene therapy | AAV9 vector (AT-GTX-501) | Overall disease improvement | Efficacy to be determined | Active, not recruiting | n/a | NCT02725580 | Amicus Therapeutics |
Niemann-pick type C | Intrathecal administration | 2-Hydroxypropyl-Beta-Cyclodextrin | Improvement of liver symptoms | Efficacy and safety to be determined | Recruiting | n/a | NCT03471143 | Washington University School of Medicine |
Pompe disease | Intravenous gene therapy | AAV8 vector (AT845) | Improvement in respiratory function | Efficacy to be determined | Not yet recruiting | n/a | NCT04174105 | Audentes Therapeutics |
Intravenous gene therapy | AAV2/8 vector (AAV2/8LSPhGAA) | Improvement in respiratory function | Efficacy to be determined | Recruiting | n/a | NCT03533673 | Asklepios Biopharmaceutical, Inc. | |
Chaperone + enzyme replacement therapy | AT2221 + ATB200+ alglucosidase alfa | Overall disease improvement | Efficacy to be determined | Ongoing | n/a | NCT03729362 | Amicus Therapeutics | |
Diaphragm delivery gene therapy | AAV 1 vector (rAAV1-CMV-GAA) | Improvement in respiratory function | Limited results in inspiratory pressure; immune responses; long-term follow up is needed to determine possible complications | Completed | n/a | NCT00976352 | University of Florida |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto e Vairo, F.; Rojas Málaga, D.; Kubaski, F.; Fischinger Moura de Souza, C.; de Oliveira Poswar, F.; Baldo, G.; Giugliani, R. Precision Medicine for Lysosomal Disorders. Biomolecules 2020, 10, 1110. https://doi.org/10.3390/biom10081110
Pinto e Vairo F, Rojas Málaga D, Kubaski F, Fischinger Moura de Souza C, de Oliveira Poswar F, Baldo G, Giugliani R. Precision Medicine for Lysosomal Disorders. Biomolecules. 2020; 10(8):1110. https://doi.org/10.3390/biom10081110
Chicago/Turabian StylePinto e Vairo, Filippo, Diana Rojas Málaga, Francyne Kubaski, Carolina Fischinger Moura de Souza, Fabiano de Oliveira Poswar, Guilherme Baldo, and Roberto Giugliani. 2020. "Precision Medicine for Lysosomal Disorders" Biomolecules 10, no. 8: 1110. https://doi.org/10.3390/biom10081110
APA StylePinto e Vairo, F., Rojas Málaga, D., Kubaski, F., Fischinger Moura de Souza, C., de Oliveira Poswar, F., Baldo, G., & Giugliani, R. (2020). Precision Medicine for Lysosomal Disorders. Biomolecules, 10(8), 1110. https://doi.org/10.3390/biom10081110