Mechanisms of Resistance to Immunotoxins Containing Pseudomonas Exotoxin A in Cancer Therapy
Abstract
:1. Introduction
2. Mechanism of PE-based Immunotoxins
3. Antigen Binding and Internalization (Step 1)
4. Immunotoxin Processing and Trafficking (Step 2)
5. Inhibition of Protein Synthesis (Step 3)
6. Induction of Apoptosis (Step 4)
7. Other Synergistic Agents
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PE | Pseudomonas exotoxin A |
EF2 | elongation factor 2 |
PARP | poly (ADP-ribose) polymerase |
Fv | fragment variable |
PE38 | truncated PE fragment |
TGF | transforming growth factor |
ALL | acute lymphoblastic leukemia |
CSPG4 | chondroitin sulfate proteoglycan 4 |
MRP | multidrug resistance-associated protein |
CAS | cellular apoptosis susceptibility gene |
References
- Weldon, J.; Pastan, I. A guide to taming a toxin—Recombinant immunotoxins constructed from Pseudomonas exotoxin A for the treatment of cancer. FEBS J. 2011, 278, 4683–4700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalle, I.A.; Ravandi, F. Moxetumomab pasudotox for the treatment of relapsed and/or refractory hairy cell leukemia. Expert Rev. Hematol. 2019, 12, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Hollevoet, K.; Mason-Osann, E.; Liu, X.-F.; Imhof-Jung, S.; Niederfellner, G.; Pastan, I. In vitro and in vivo activity of the low-immunogenic antimesothelin immunotoxin RG7787 in pancreatic cancer. Mol. Cancer Ther. 2014, 13, 2040–2049. [Google Scholar] [CrossRef] [Green Version]
- Onda, M.; Kobayashi, K.; Pastan, I. Depletion of regulatory T cells in tumors with an anti-CD25 immunotoxin induces CD8 T cell-mediated systemic antitumor immunity. Proc. Natl. Acad. Sci. USA 2019, 116, 4575–4582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klimka, A.; Barth, S.; Matthey, B.; Roovers, R.C.; Lemke, H.; Hansen, H.; Arends, J.W.; Diehl, V.; Hoogenboom, H.R.; Engert, A. An anti-CD30 single-chain Fv selected by phage display and fused to Pseudomonas exotoxin A (Ki-4(scFv)-ETA’) is a potent immunotoxin against a Hodgkin-derived cell line. Br. J. Cancer 1999, 80, 1214–1222. [Google Scholar] [CrossRef] [Green Version]
- Schwemmlein, M.; Peipp, M.; Barbin, K.; Saul, D.; Stockmeyer, B.; Repp, R.; Birkmann, J.; Oduncu, F.; Emmerich, B.; Fey, G.H. A CD33-specific single-chain immunotoxin mediates potent apoptosis of cultured human myeloid leukaemia cells. Br. J. Haematol. 2006, 133, 141–151. [Google Scholar] [CrossRef]
- Wang, C.; Gao, W.; Feng, M.; Pastan, I.; Ho, M. Construction of an immunotoxin, HN3-mPE24, targeting glypican-3 for liver cancer therapy. Oncotarget 2016, 8, 32450–32460. [Google Scholar] [CrossRef] [Green Version]
- Akamatsu, Y.; Murphy, J.C.; Nolan, K.F.; Thomas, P.; Kreitman, R.J.; O Leung, S.; Junghans, R.P. A single-chain immunotoxin against carcinoembryonic antigen that suppresses growth of colorectal carcinoma cells. Clin. Cancer Res. 1998, 4, 2825–2832. [Google Scholar]
- Simon, N.; Fitzgerald, D. Immunotoxin therapies for the treatment of epidermal growth factor receptor-dependent cancers. Toxins 2016, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Joshi, B.H.; Suzuki, A.; Leland, P.; Lababidi, S.; Varrichio, F.; Kreitman, R.; Puri, R.K. Interleukin-4 receptor targeted immunotherapy of human bladder cancer in animal models. J. Immunother. Cancer 2014, 2, P184. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.-J.; Han, J.-S.; Li, Y.-S.; Liu, Z.-S.; Lu, S.-Y.; Ren, H.-L. In vitro and in vivo antitumor effects of the recombinant immunotoxin IL6(T23)-PE38KDEL in multiple myeloma. Oncol. Lett. 2012, 4, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Jakubzick, C.; Choi, E.S.; Joshi, B.H.; Keane, M.P.; Kunkel, S.L.; Puri, R.K.; Hogaboam, C.M. Therapeutic attenuation of pulmonary fibrosis via targeting of IL-4- and IL-13-responsive cells. J. Immunol. 2003, 171, 2684–2693. [Google Scholar] [CrossRef] [PubMed]
- Kreitman, R.J.; Tallman, M.S.; Robak, T.; Coutre, S.; Wilson, W.H.; Stetler-Stevenson, M.; Fitzgerald, D.J.; Lechleider, R.; Pastan, I. Phase I trial of anti-CD22 recombinant immunotoxin Moxetumomab Pasudotox (CAT-8015 or HA22) in patients with hairy cell leukemia. J. Clin. Oncol. 2012, 30, 1822–1828. [Google Scholar] [CrossRef]
- Hazes, B.; Read, R.J. Accumulating evidence suggests that several AB-Toxins subvert the endoplasmic reticulum-associated protein degradation pathway to enter target cells. Biochemistry 1997, 36, 11051–11054. [Google Scholar] [CrossRef] [PubMed]
- Iglewski, B.H.; Kabat, D. NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin. Proc. Natl. Acad. Sci. USA 1975, 72, 2284–2288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, X.; Youle, R.J.; Fitzgerald, D.J.; Pastan, I. Pseudomonas exotoxin A-mediated apoptosis is Bak dependent and preceded by the degradation of Mcl-1. Mol. Cell. Biol. 2010, 30, 3444–3452. [Google Scholar] [CrossRef] [Green Version]
- Antignani, A.; Segal, D.; Simon, N.; Kreitman, R.J.; Huang, D.C.S.; Fitzgerald, D.J. Essential role for Bim in mediating the apoptotic and antitumor activities of immunotoxins. Oncogene 2017, 36, 4953–4962. [Google Scholar] [CrossRef]
- Andersson, Y.; Juell, S. Downregulation of the antiapoptotic MCL-1 protein and apoptosis in MA-11 breast cancer cells induced by an anti-epidermal growth factor receptor-Pseudomonas exotoxin A immunotoxin. Int. J. Cancer 2004, 112, 475–483. [Google Scholar] [CrossRef]
- Andersson, Y.; Le, H.; Juell, S.; Fodstad, O. AMP-activated protein kinase protects against anti-epidermal growth factor receptor-Pseudomonas exotoxin A immunotoxin-induced MA11 breast cancer cell death. Mol. Cancer Ther. 2006, 5, 1050–1059. [Google Scholar] [CrossRef] [Green Version]
- El-Behaedi, S.; Landsman, R.; Rudloff, M.; Kolyvas, E.; Albalawy, R.; Zhang, X.; Bera, T.; Collins, K.; Kozlov, S.; Alewine, C. Protein synthesis inhibition activity of mesothelin targeting immunotoxin LMB-100 decreases concentrations of oncogenic signaling molecules and secreted growth factors. Toxins 2018, 10, 447. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Qiu, S.; Zhang, Y.; Merino, M.; Fetsch, P.; Avital, I.; Filie, A.; Pastan, I.; Hassan, R. Loss of mesothelin expression by mesothelioma cells grown in vitro determines sensitivity to anti-mesothelin immunotoxin SS1P. Anticancer. Res. 2012, 32, 5151–5158. [Google Scholar] [PubMed]
- Hollevoet, K.; Mason-Osann, E.; Müller, F.; Pastan, I. Methylation-associated partial down-regulation of mesothelin causes resistance to anti-mesothelin immunotoxins in a pancreatic cancer cell line. PLOS ONE 2015, 10, e0122462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali-Rahmani, F.; Fitzgerald, D.J.; Martin, S.; Patel, P.; Prunotto, M.; Ormanoglu, P.; Thomas, C.; Pastan, I. Anticancer effects of mesothelin-targeted immunotoxin therapy are regulated by tyrosine kinase DDR1. Cancer Res. 2015, 76, 1560–1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garnett, C.T. Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res. 2004, 64, 7985–7994. [Google Scholar] [CrossRef]
- Hassan, R.; Xin, X.; Abrams, T.J.; Hollenbach, P.W.; Rendahl, K.G.; Tang, Y.; Oei, Y.; Embry, M.G.; Swinarski, D.E.; Garrett, E.N.; et al. Tumor-directed radiation and the immunotoxin SS1P in the treatment of mesothelin-expressing tumor xenografts. Clin. Cancer Res. 2006, 12, 4983–4988. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chertov, O.; Zhang, J.; Hassan, R.; Pastan, I. Cytotoxic activity of immunotoxin SS1P is modulated by TACE-dependent mesothelin shedding. Cancer Res. 2011, 71, 5915–5922. [Google Scholar] [CrossRef] [Green Version]
- Awuah, P.; Bera, T.K.; Folivi, M.; Chertov, O.; Pastan, I. Reduced shedding of surface mesothelin improves efficacy of mesothelin-targeting recombinant immunotoxins. Mol. Cancer Ther. 2016, 15, 1648–1655. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xiang, L.; Hassan, R.; Pastan, I. Immunotoxin and Taxol synergy results from a decrease in shed mesothelin levels in the extracellular space of tumors. Proc. Natl. Acad. Sci. USA 2007, 104, 17099–17104. [Google Scholar] [CrossRef] [Green Version]
- Alewine, C.C.; Hassan, R.; Ahmad, M.I.; Trepel, J.B.; Peer, C.; Figg, W.D.; Pastan, I. A phase I study of mesothelin-targeted immunotoxin LMB-100 in combination with nab-paclitaxel for patients with previously treated advanced pancreatic cancer. J. Clin. Oncol. 2019, 37, 307. [Google Scholar] [CrossRef]
- Mansfield, E.; Chiron, M.F.; Amlot, P.; Pastan, I.; Fitzgerald, D.J. Recombinant RFB4 single-chain immunotoxin that is cytotoxic towards CD22-positive cells. Biochem. Soc. Trans. 1997, 25, 709–714. [Google Scholar] [CrossRef]
- Chiron, M.F.; Fryling, C.M.; Fitzgerald, D. Furin-mediated cleavage of Pseudomonas exotoxin-derived chimeric toxins. J. Biol. Chem. 1997, 272, 31707–31711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.F.; Fitzgerald, D.J.; Pastan, I. The insulin receptor negatively regulates the action of Pseudomonas toxin-based immunotoxins and native Pseudomonas toxin. Cancer Res. 2013, 73, 2281–2288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.-F.; Xiang, L.; Fitzgerald, D.J.; Pastan, I. Antitumor effects of immunotoxins are enhanced by lowering HCK or treatment with SRC kinase inhibitors. Mol. Cancer Ther. 2013, 13, 82–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weldon, J.; Xiang, L.; Chertov, O.; Margulies, I.; Kreitman, R.J.; Fitzgerald, D.J.; Pastan, I. A protease-resistant immunotoxin against CD22 with greatly increased activity against CLL and diminished animal toxicity. Blood 2009, 113, 3792–3800. [Google Scholar] [CrossRef] [Green Version]
- Tortorella, L.L.; Pipalia, N.H.; Mukherjee, S.; Pastan, I.; Fitzgerald, D.; Maxfield, F.R. Efficiency of immunotoxin cytotoxicity is modulated by the intracellular itinerary. PLOS ONE 2012, 7, e47320. [Google Scholar] [CrossRef]
- Akiyama, S.; Seth, P.; Pirker, R.; Fitzgerald, D.; Gottesman, M.M.; Pastan, I. Potentiation of cytotoxic activity of immunotoxins on cultured human cells. Cancer Res. 1985, 45, 1005–1007. [Google Scholar]
- Pirker, R.; Fitzgerald, D.J.; Raschack, M.; Frank, Z.; Willingham, M.C.; Pastan, I. Enhancement of the activity of immunotoxins by analogues of verapamil. Cancer Res. 1989, 49, 4791–4795. [Google Scholar]
- Pasetto, M.; Antignani, A.; Ormanoglu, P.; Buehler, E.; Guha, R.; Pastan, I.; Martin, S.E.; Fitzgerald, D.J. Whole-genome RNAi screen highlights components of the endoplasmic reticulum/Golgi as a source of resistance to immunotoxin-mediated cytotoxicity. Proc. Natl. Acad. Sci. USA 2015, 112, E1135–E1142. [Google Scholar] [CrossRef] [Green Version]
- Kreitman, R.J.; Pastan, I. Importance of the glutamate residue of KDEL in increasing the cytotoxicity of Pseudomonas exotoxin derivatives and for increased binding to the KDEL receptor. Biochem. J. 1995, 307, 29–37. [Google Scholar] [CrossRef]
- E Jackson, M.; Simpson, J.C.; Girod, A.; Pepperkok, R.; Roberts, L.M.; Lord, J.M. The KDEL retrieval system is exploited by Pseudomonas exotoxin A, but not by Shiga-like toxin-1, during retrograde transport from the Golgi complex to the endoplasmic reticulum. J. Cell Sci. 1999, 112, 467–475. [Google Scholar]
- Traini, R.; Ben-Josef, G.; Pastrana, D.V.; Moskatel, E.; Sharma, A.K.; Antignani, A.; Fitzgerald, D.J. ABT-737 Overcomes Resistance to Immunotoxin-Mediated Apoptosis and Enhances the Delivery of Pseudomonas Exotoxin-Based Proteins to the Cell Cytosol. Mol. Cancer Ther. 2010, 9, 2007–2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Risberg, K.; Fodstad, Ø.; Andersson, Y. Synergistic anticancer effects of the 9.2.27PE immunotoxin and ABT-737 in melanoma. PLOS ONE 2011, 6, e24012. [Google Scholar] [CrossRef] [PubMed]
- Antignani, A.; Sarnovsky, R.; Fitzgerald, D. ABT-737 promotes the dislocation of ER luminal proteins to the cytosol, including Pseudomonas exotoxin. Mol. Cancer Ther. 2014, 13, 1655–1663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noll, T.; Schultze-Seemann, S.; Kuckuck, I.; Michalska, M.; Wolf, P. Synergistic cytotoxicity of a prostate cancer-specific immunotoxin in combination with the BH3 mimetic ABT-737. Cancer Immunol. Immunother. 2017, 67, 413–422. [Google Scholar] [CrossRef]
- Yu, X.; Dobrikov, M.; Keir, S.T.; Gromeier, M.; Pastan, I.H.; Reisfeld, R.; Bigner, D.D.; Chandramohan, V. Synergistic antitumor effects of 9.2.27-PE38KDEL and ABT-737 in primary and metastatic brain tumors. PLOS ONE 2019, 14, e0210608. [Google Scholar] [CrossRef]
- Zhang, Y.-K.; Wang, Y.-J.; Gupta, P.; Chen, Z.-S. Multidrug Resistance Proteins (MRPs) and Cancer Therapy. AAPS J. 2015, 17, 802–812. [Google Scholar] [CrossRef] [Green Version]
- De Jong, M.C.; Scheffer, G.L.; Broxterman, H.J.; Hooijberg, J.H.; Slootstra, J.W.; Meloen, R.H.; Kreitman, R.J.; Husain, S.R.; Joshi, B.H.; Puri, R.; et al. Multidrug-resistant tumor cells remain sensitive to a recombinant interleukin-4-Pseudomonas exotoxin, except when overexpressing the multidrug resistance protein MRP1. Clin. Cancer Res. 2003, 9, 347–355. [Google Scholar]
- Mayer, K.; Mundigl, O.; Kettenberger, H.; Birzele, F.; Stahl, S.; Pastan, I.; Brinkmann, U. Diphthamide affects selenoprotein expression: Diphthamide deficiency reduces selenocysteine incorporation, decreases selenite sensitivity and pre-disposes to oxidative stress. Redox Biol. 2019, 20, 146–156. [Google Scholar] [CrossRef]
- Su, X.; Lin, Z.; Lin, H. The biosynthesis and biological function of diphthamide. Crit. Rev. Biochem. Mol. Biol. 2013, 48, 515–521. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Wei, H.; Xiang, L.; Chertov, O.; Wayne, A.S.; Bera, T.K.; Pastan, I. Methylation of the DPH1 promoter causes immunotoxin resistance in acute lymphoblastic leukemia cell line KOPN-8. Leuk. Res. 2013, 37, 1551–1556. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Xiang, L.; Wayne, A.S.; Chertov, O.; Fitzgerald, D.J.; Bera, T.K.; Pastan, I. Immunotoxin resistance via reversible methylation of the DPH4 promoter is a unique survival strategy. Proc. Natl. Acad. Sci. USA 2012, 109, 6898–6903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, H.; Bera, T.K.; Wayne, A.S.; Xiang, L.; Colantonio, S.; Chertov, O.; Pastan, I. A modified form of diphthamide causes immunotoxin resistance in a lymphoma cell line with a deletion of the WDR85 gene*. J. Biol. Chem. 2013, 288, 12305–12312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stahl, S.; Seidl, A.R.D.S.M.; Ducret, A.; Van Geijtenbeek, S.K.; Michel, S.; Racek, T.; Birzele, F.; Haas, A.K.; Rueger, R.; Gerg, M.; et al. Loss of diphthamide pre-activates NF-κB and death receptor pathways and renders MCF7 cells hypersensitive to tumor necrosis factor. Proc. Natl. Acad. Sci. USA 2015, 112, 10732–10737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, F.; Cunningham, T.; Stookey, S.; Tai, C.-H.; Burkett, S.; Jailwala, P.; Stevenson, M.S.; Cam, M.C.; Wayne, A.S.; Pastan, I. 5-Azacytidine prevents relapse and produces long-term complete remissions in leukemia xenografts treated with Moxetumomab pasudotox. Proc. Natl. Acad. Sci. USA 2018, 115, E1867–E1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, X.; Xiang, L.; Mackall, C.; Pastan, I. Killing of resistant cancer cells with low Bak by a combination of an antimesothelin immunotoxin and a TRAIL Receptor 2 agonist antibody. Clin. Cancer Res. 2011, 17, 5926–5934. [Google Scholar] [CrossRef] [Green Version]
- Brinkmann, U.; Brinkmann, E.; Pastan, I. Expression cloning of cDNAs that render cancer cells resistant to Pseudomonas and diphtheria toxin and immunotoxins. Mol. Med. 1995, 1, 206–216. [Google Scholar] [CrossRef] [Green Version]
- Brinkmann, U.; Brinkmann, E.; Gallo, M.; Scherf, U.; Pastan, I. Role of CAS, a human homologue to the yeast chromosome segregation gene CSE1, in toxin and tumor necrosis factor mediated apoptosis. Biochemistry 1996, 35, 6891–6899. [Google Scholar] [CrossRef]
- Kim, H.-E.; Jiang, X.; Du, F.; Wang, X. PHAPI, CAS, and Hsp70 promote apoptosome formation by preventing Apaf-1 aggregation and enhancing nucleotide exchange on Apaf-1. Mol. Cell 2008, 30, 239–247. [Google Scholar] [CrossRef]
- Monian, P.; Jiang, X. The cellular apoptosis susceptibility protein (CAS) promotes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis and cell proliferation*. J. Biol. Chem. 2015, 291, 2379–2388. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.-F.; Zhou, Q.; Hassan, R.; Pastan, I. Panbinostat decreases cFLIP and enhances killing of cancer cells by immunotoxin LMB-100 by stimulating the extrinsic apoptotic pathway. Oncotarget 2017, 8, 87307–87316. [Google Scholar] [CrossRef] [Green Version]
- Hollevoet, K.; Antignani, A.; Fitzgerald, D.J.; Pastan, I. Combining the antimesothelin immunotoxin SS1P with the BH3-mimetic ABT-737 induces cell death in SS1P-resistant pancreatic cancer cells. J. Immunother. 2014, 37, 8–15. [Google Scholar] [CrossRef]
- Mattoo, A.; Fitzgerald, D.J. Combination treatments with ABT-263 and an immunotoxin produce synergistic killing of ABT-263-resistant small cell lung cancer cell lines. Int. J. Cancer 2012, 132, 978–987. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Müller, F.; Wayne, A.S.; Pastan, I. Protein kinase inhibitor H89 enhances the activity of Pseudomonas exotoxin A-based immunotoxins. Mol. Cancer Ther. 2016, 15, 1053–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Q.; He, X.; Hsu, J.-M.; Xia, W.; Chen, C.-T.; Li, L.-Y.; Lee, D.-F.; Liu, J.-C.; Zhong, Q.; Wang, X.; et al. Degradation of Mcl-1 by β-TrCP mediates glycogen synthase kinase 3-induced tumor suppression and chemosensitization. Mol. Cell. Biol. 2006, 27, 4006–4017. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.F.; Xiang, L.; Zhou, Q.; Carralot, J.-P.; Prunotto, M.; Niederfellner, G.; Pastan, I. Actinomycin D enhances killing of cancer cells by immunotoxin RG7787 through activation of the extrinsic pathway of apoptosis. Proc. Natl. Acad. Sci.USA 2016, 113, 10666–10671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antignani, A.; Griner, L.M.; Guha, R.; Simon, N.; Pasetto, M.; Keller, J.; Huang, M.; Angelus, E.; Pastan, I.; Ferrer, M.; et al. Chemical screens identify drugs that enhance or mitigate cellular responses to antibody-toxin fusion proteins. PLOS ONE 2016, 11, e0161415. [Google Scholar] [CrossRef]
Pathway Step: | Resistance Mechanism: | Combination Therapies and Strategies to Overcome Resistance: | References: |
---|---|---|---|
Binding to antigen and internalization | Antigen shedding | Paclitaxel (reduces shed mesothelin)TACE inhibitors (reduces shed mesothelin) | [26,27,28,29] |
Decreased antigen expression | Target multiple antigens, modulate antigen expression if possible | [21,22,23,24,25] | |
Trafficking and processing | Impaired cleavage by furin | Bosutinib (Src inhibitor) | [30,31,32,33] |
Lysosomal destruction | Optimize antigen choice, modulate lysosomal activity | [35,36,37] | |
Trafficking inefficiencies | ABT-737 | [38,40,41,42,43,44,45] | |
Protein synthesis inhibition | Loss of diphthamide residue | 5-azacytidine (to reverse methylation of diphthamide synthesis gene promoters) | [50,51,52,53,54] |
Induction of apoptosis | Low levels of Bak, Bim, or CAS | Activators of the extrinsic apoptotic pathway (panbinostat, TRAIL, etc.) | [16,17,55,56,57] |
High levels of Mcl-1 | [16] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dieffenbach, M.; Pastan, I. Mechanisms of Resistance to Immunotoxins Containing Pseudomonas Exotoxin A in Cancer Therapy. Biomolecules 2020, 10, 979. https://doi.org/10.3390/biom10070979
Dieffenbach M, Pastan I. Mechanisms of Resistance to Immunotoxins Containing Pseudomonas Exotoxin A in Cancer Therapy. Biomolecules. 2020; 10(7):979. https://doi.org/10.3390/biom10070979
Chicago/Turabian StyleDieffenbach, Michael, and Ira Pastan. 2020. "Mechanisms of Resistance to Immunotoxins Containing Pseudomonas Exotoxin A in Cancer Therapy" Biomolecules 10, no. 7: 979. https://doi.org/10.3390/biom10070979