Next Article in Journal
Meridianins and Lignarenone B as Potential GSK3β Inhibitors and Inductors of Structural Neuronal Plasticity
Previous Article in Journal
New Therapeutic Strategies for Osteoarthritis by Targeting Sialic Acid Receptors
Previous Article in Special Issue
Reduced Local Response to Corticosteroids in Eosinophilic Chronic Rhinosinusitis with Asthma
Open AccessReview

Possible Mechanisms of Eosinophil Accumulation in Eosinophilic Pneumonia

by Kazuyuki Nakagome 1,2,* and Makoto Nagata 1,2
1
Department of Respiratory Medicine, Saitama Medical University, Saitama 350-0495, Japan
2
Allergy Center, Saitama Medical University, Saitama 350-0495, Japan
*
Author to whom correspondence should be addressed.
Biomolecules 2020, 10(4), 638; https://doi.org/10.3390/biom10040638
Received: 10 February 2020 / Revised: 12 April 2020 / Accepted: 20 April 2020 / Published: 21 April 2020
(This article belongs to the Special Issue Eosinophilic Inflammation)
Eosinophilic pneumonia (EP), including acute EP and chronic EP, is characterized by the massive pulmonary infiltration of eosinophils into the lung. However, the mechanisms underlying the selective accumulation of eosinophils in EP have not yet been fully elucidated. We reported that bronchoalveolar lavage fluid (BALF) from EP patients induced the transmigration of eosinophils across endothelial cells in vitro. The concentrations of eotaxin-2 (CCL24) and monocyte chemotactic protein (MCP)-4 (CCL13), which are CC chemokine receptor (CCR) 3 ligands, were elevated in the BALF of EP patients, and anti-CCR3 monoclonal antibody inhibited the eosinophil transmigration induced by the BALF of EP patients. The concentration of macrophage inflammatory protein 1β (CCL4), a CCR5 ligand that induces eosinophil migration, was increased in the BALF of EP patients. Furthermore, the concentration of interleukin (IL) 5 was increased in the BALF of EP patients, and it has been reported that anti-IL-5 antibody treatment resulted in remission and the reduction of glucocorticoid use in some cases of chronic EP. The concentrations of lipid mediators, such as leukotriene (LT) B4, damage-associated molecular pattern molecules (DAMPs), such as uric acid, or extracellular matrix proteins, such as periostin, were also increased in the BALF of EP patients. These findings suggest that chemokines, such as CCR3/CCR5 ligands, cytokines, such as IL-5, lipid mediators, such as LTB4, DAMPs, and extracellular matrix proteins may play roles in the accumulation or activation of eosinophils in EP. View Full-Text
Keywords: chemokines; cytokines; eosinophilic pneumonia; eosinophils; pneumonia chemokines; cytokines; eosinophilic pneumonia; eosinophils; pneumonia
Show Figures

Figure 1

MDPI and ACS Style

Nakagome, K.; Nagata, M. Possible Mechanisms of Eosinophil Accumulation in Eosinophilic Pneumonia. Biomolecules 2020, 10, 638.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop