Leptin-Responsive MiR-4443 Is a Small Regulatory RNA Independent of the Canonic MicroRNA Biogenesis Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells and Cell Culture
2.2. RNA Isolation
2.3. qRT-PCR
2.4. Bioinformatics and Online Datasets
2.5. Statistics
3. Results and Discussion
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Meerson, A.; Yehuda, H. Leptin and insulin up-regulate miR-4443 to suppress NCOA1 and TRAF4, and decrease the invasiveness of human colon cancer cells. BMC Cancer 2016, 16, 882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.; Xu, J.; Lin, J.; Lin, R.; Chen, K.; Kong, J.; Shui, X. Long Noncoding RNA FEZF1-AS1 Promotes Osteosarcoma Progression by Regulating the miR-4443/NUPR1 Axis. Oncol. Res. 2018, 26, 1335–1343. [Google Scholar]
- Gong, J.; Gong, J.; Wang, J.; Wang, J.; Liu, T.; Liu, T.; Hu, J.; Hu, J.; Zheng, J.; Zheng, J. lncRNA FEZF1-AS1 contributes to cell proliferation, migration and invasion by sponging miR-4443 in hepatocellular carcinoma. Mol. Med. Rep. 2018, 18, 5614–5620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebrahimi, S.O.; Reiisi, S. Downregulation of miR-4443 and miR-5195-3p in ovarian cancer tissue contributes to metastasis and tumorigenesis. Arch. Gynecol. Obstet. 2019, 299, 1453–1458. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, Y.; Wang, J.; Yang, X.; Wen, L.; Feng, J. lncRNA MNX1-AS1 Promotes Glioblastoma Progression Through Inhibition of miR-4443. Oncol. Res. 2019, 27, 341–347. [Google Scholar] [CrossRef]
- Zhang, W.; Qiao, B.; Fan, J. Overexpression of miR-4443 Promotes the Resistance of Non-Small Cell Lung Cancer Cells to Epirubicin by Targeting INPP4A and Regulating the Activation of JAK2/STAT3 Pathway. Pharmazie 2018, 73, 386–392. [Google Scholar]
- Chen, X.; Zhong, S.; Lu, P.; Wang, D.; Zhou, S.; Yang, S.; Shen, H.; Zhang, L.; Zhang, X.; Zhao, J.; et al. miR-4443 Participates in the Malignancy of Breast Cancer. PLoS ONE 2016, 11, e0160780. [Google Scholar] [CrossRef]
- Drusco, A.; Fadda, P.; Nigita, G.; Fassan, M.; Bottoni, A.; Gardiman, M.P.; Sacchi, D.; Calore, F.; Carosi, M.; Antenucci, A.; et al. Circulating Micrornas Predict Survival of Patients with Tumors of Glial Origin. E. Bio. Medicine 2018, 30, 105–112. [Google Scholar] [CrossRef]
- Qi, Y.; Zhou, Y.; Chen, X.; Ye, L.; Zhang, Q.; Huang, F.; Cui, B.; Lin, D.; Ning, G.; Wang, W.; et al. MicroRNA-4443 Causes CD4+ T Cells Dysfunction by Targeting TNFR-Associated Factor 4 in Graves’ Disease. Front. Immunol. 2017, 8, 1440. [Google Scholar] [CrossRef] [Green Version]
- Shefler, I.; Salamon, P.; Levi-Schaffer, F.; Mor, A.; Hershko, A.Y.; Mekori, Y.A. MicroRNA-4443 regulates mast cell activation by T cell–derived microvesicles. J. Allergy Clin. Immunol. 2017. [Google Scholar] [CrossRef] [Green Version]
- Pallarès-Albanell, J.; Zomeño-Abellán, M.T.; Escaramís, G.; Pantano, L.; Soriano, A.; Segura, M.F.; Martí, E. A High-Throughput Screening Identifies MicroRNA Inhibitors That Influence Neuronal Maintenance and/or Response to Oxidative Stress. Mol. Ther. Nucleic Acids 2019, 17, 374–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Z.; Du, R.; Edwards, A.; Flemington, E.K.; Zhang, K. The Sequence Structures of Human MicroRNA Molecules and Their Implications. PLoS ONE 2013, 8, e54215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zeng, Y. The terminal loop region controls microRNA processing by Drosha and Dicer. Nucleic Acids Res. 2010, 38, 7689–7697. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, J.; Li, G.; Wang, H.-W. Structure of precursor microRNA’s terminal loop regulates human Dicer’s dicing activity by switching DExH/D domain. Protein Cell 2015, 6, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Cullen, B.R. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res. 2004, 32, 4776–4785. [Google Scholar] [CrossRef] [Green Version]
- Fromm, B.; Billipp, T.; Peck, L.E.; Johansen, M.; Tarver, J.E.; King, B.L.; Newcomb, J.M.; Sempere, L.F.; Flatmark, K.; Hovig, E.; et al. A Uniform System for the Annotation of Vertebrate microRNA Genes and the Evolution of the Human microRNAome. Annu. Rev. Genet. 2015, 49, 213–242. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-K.; Kim, B.; Kim, V.N. Re-evaluation of the roles of DROSHA, Exportin 5, and DICER in microRNA biogenesis. Proc. Natl. Acad. Sci. USA 2016, 113, E1881–E1889. [Google Scholar] [CrossRef] [Green Version]
- Balcells, I.; Cirera, S.; Busk, P.K. Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnol. 2011, 11, 70. [Google Scholar] [CrossRef] [Green Version]
- Busk, P.K. A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinform. 2014, 15, 29. [Google Scholar] [CrossRef] [Green Version]
- Krell, J.; Stebbing, J.; Carissimi, C.; Dabrowska, A.F.; Giorgio, A.; de Frampton, A.E.; Harding, V.; Fulci, V.; Macino, G.; Colombo, T.; et al. TP53 regulates miRNA association with AGO2 to remodel the miRNA–mRNA interaction network. Genome Res. 2016, 26, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019, 47, D155–D162. [Google Scholar] [CrossRef] [PubMed]
- Ellwanger, D.C.; Büttner, F.A.; Mewes, H.-W.; Stümpflen, V. The sufficient minimal set of miRNA seed types. Bioinformatics 2011, 27, 1346–1350. [Google Scholar] [CrossRef] [PubMed]
- Abdelfattah, A.M.; Park, C.; Choi, M.Y. Update on non-canonical microRNAs. Biomol. Concepts 2014, 5, 275–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cifuentes, D.; Xue, H.; Taylor, D.W.; Patnode, H.; Mishima, Y.; Cheloufi, S.; Ma, E.; Mane, S.; Hannon, G.J.; Lawson, N.D.; et al. A Novel miRNA Processing Pathway Independent of Dicer Requires Argonaute2 Catalytic Activity. Science 2010, 328, 1694–1698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.; Tan, Y.S.; Cheng, W.-C.; Kingsbury, T.J.; Heimfeld, S.; Civin, C.I. MIR144 and MIR451 regulate human erythropoiesis via RAB14. Br. J. Haematol. 2015, 168, 583–597. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.-S.; Maurin, T.; Robine, N.; Rasmussen, K.D.; Jeffrey, K.L.; Chandwani, R.; Papapetrou, E.P.; Sadelain, M.; O’Carroll, D.; Lai, E.C. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc. Natl. Acad. Sci. USA 2010, 107, 15163–15168. [Google Scholar] [CrossRef] [Green Version]
- Cheloufi, S.; Dos Santos, C.O.; Chong, M.M.W.; Hannon, G.J. A Dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 2010, 465, 584–589. [Google Scholar] [CrossRef] [Green Version]
- Havens, M.A.; Reich, A.A.; Duelli, D.M.; Hastings, M.L. Biogenesis of mammalian microRNAs by a non-canonical processing pathway. Nucleic Acids Res. 2012, 40, 4626–4640. [Google Scholar] [CrossRef] [Green Version]
Forward Primer | Reverse Primer | |
---|---|---|
miR-4443 | GTTGGAGGCGTGGGT | GGTCCAGTTTTTTTTTTTTTTTAAAACC |
let-7f-5p | CGCAGTGAGGTAGTAGATTG | GGTCCAGTTTTTTTTTTTTTTTAACTATAC |
miR-21-1 | GCAGTAGCTTATCAGACTGATG | GGTCCAGTTTTTTTTTTTTTTTCAAC |
Organism | miRNA Name | Sequence | 5p/3p | |
---|---|---|---|---|
1 | Homo sapiens | hsa-miR-4443 | UUGGAGGCGUGGGUUUU | 5p |
2 | Homo sapiens | hsa-miR-6515-5p | UUGGAGGGUGUGGAAGACAUC | 5p |
3 | Mus musculus | mmu-miR-1843b-5p | AUGGAGGUCUCUGUCUGACUU | 5p |
4 | Mus musculus | mmu-miR-6982-5p | CUGGAGGAUCGCAGGGGUGGCCUGG | 5p |
5 | Rattus norvegicus | rno-miR-1843b-5p | AUGGAGGUCUCUGUCUGACUUAG | 5p |
6 | Bos taurus | bta-miR-2893 | GUGGAGGAGAAUGCCCGGGG | 5p |
7 | Bos taurus | bta-miR-12054 | CUGGAGGUGGGGAUGCAC | 3p |
8 | Gallus gallus | gga-miR-3532-3p | UUGGAGGCUGCAGUGUCAUGGU | 3p |
9 | Echinococcus granulosus | egr-miR-10242-3p | GUGGAGGCCAUCCAAGUAGC | 3p |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meerson, A. Leptin-Responsive MiR-4443 Is a Small Regulatory RNA Independent of the Canonic MicroRNA Biogenesis Pathway. Biomolecules 2020, 10, 293. https://doi.org/10.3390/biom10020293
Meerson A. Leptin-Responsive MiR-4443 Is a Small Regulatory RNA Independent of the Canonic MicroRNA Biogenesis Pathway. Biomolecules. 2020; 10(2):293. https://doi.org/10.3390/biom10020293
Chicago/Turabian StyleMeerson, Ari. 2020. "Leptin-Responsive MiR-4443 Is a Small Regulatory RNA Independent of the Canonic MicroRNA Biogenesis Pathway" Biomolecules 10, no. 2: 293. https://doi.org/10.3390/biom10020293
APA StyleMeerson, A. (2020). Leptin-Responsive MiR-4443 Is a Small Regulatory RNA Independent of the Canonic MicroRNA Biogenesis Pathway. Biomolecules, 10(2), 293. https://doi.org/10.3390/biom10020293