Structural Insights into the Heme Pocket and Oligomeric State of Non-Symbiotic Hemoglobins from Arabidopsis thaliana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Protein Production and Sample Preparation
2.3. Spectroscopic Measurements
2.4. Size Exclusion Chromatography
2.5. Evaluation of Dimer Dissociation Constant (Kd) Values
2.6. Native PAGE
3. Results
3.1. Oligomeric State of AHb1 and AHb2
3.2. Mutational Analysis in the Dimerization Interface of AHb1
3.3. Effects of Quaternary Structure on the Hexacoordination Process in AHb1
3.4. CD spectra of AHb1 and AHb2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vinogradov, S.N.; Hoogewijs, D.; Bailly, X.; Arredondo-Peter, R.; Gough, J.; Dewilde, S.; Moens, L.; Vanfleteren, J.R. A phylogenomic profile of globins. BMC Evol. Biol. 2006, 6, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, C.R.; Jensen, E.O.; LLewellyn, D.J.; Dennis, E.S.; Peacock, W.J. A new hemoglobin gene from soybean: A role for hemoglobin in all plants. Proc. Natl. Acad. Sci. USA 1996, 93, 5682–5687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smagghe, B.J.; Hoy, J.A.; Percifield, R.; Kundu, S.; Hargrove, M.S.; Sarath, G.; Hilbert, J.E.; Watts, R.A.; Dennis, E.S.; Peacock, W.J.; et al. Review: Correlations between oxygen affinity and sequence classifications of plant hemoglobins. Biopolymers 2009, 91, 1083–1096. [Google Scholar] [CrossRef] [PubMed]
- Garrocho-Villegas, V.; Gopalasubramaniam, S.K.; Arredondo-Peter, R. Plant hemoglobins: What we know six decades after their discovery. Gene 2007, 398, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Watts, R.A.; Hunt, P.W.; Hvitved, A.N.; Hargrove, M.S.; Peacock, W.J.; Dennis, E.S. A hemoglobin from plants homologous to truncated hemoglobins of microorganisms. Proc. Natl. Acad. Sci. USA 2001, 98, 10119–10124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trevaskis, B.; Watts, R.A.; Andersson, C.R.; Llewellyn, D.J.; Hargrove, M.S.; Olson, J.S.; Dennis, E.S.; Peacock, W.J. Two hemoglobin genes in Arabidopsis thaliana: The evolutionary origins of leghemoglobins. Proc. Natl. Acad. Sci. USA 1997, 94, 12230–12234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Guegler, K.; LaBrie, S.T.; Crawford, N.M. Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 2000, 12, 1491–1509. [Google Scholar] [CrossRef] [PubMed]
- Arredondo-Peter, R.; Hargrove, M.S.; Moran, J.F.; Sarath, G.; Klucas, R.V. Plant Hemoglobins. Plant Physiol. 1998, 118, 1121–1125. [Google Scholar] [CrossRef] [Green Version]
- Sturms, R.; Kakar, S.; Trent, J.; Hargrove, M.S. Trema and Parasponia Hemoglobins Reveal Convergent Evolution of Oxygen Transport in Plants. Biochemistry 2010, 49, 4085–4093. [Google Scholar] [CrossRef] [PubMed]
- Abbruzzetti, S.; Faggiano, S.; Spyrakis, F.; Bruno, S.; Mozzarelli, A.; Astegno, A.; Dominici, P.; Viappiani, C. Oxygen and nitric oxide rebinding kinetics in nonsymbiotic hemoglobin AHb1 from Arabidopsis thaliana. IUBMB Life 2011, 63, 1094–1100. [Google Scholar] [CrossRef]
- Perazzolli, M.; Dominici, P.; Puertas, M.C.R.; Zago, E.; Zeier, J.; Sonoda, M.; Lamb, C.; Delledonne, M. Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell 2004, 16, 2785–2794. [Google Scholar] [CrossRef] [PubMed]
- Kakar, S.; Hoffman, F.G.; Storz, J.F.; Fabian, M.; Hargrove, M.S. Structure and reactivity of hexacoordinate hemoglobins. Biophys. Chem. 2010, 152, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, P.W.; Watts, R.A.; Trevaskis, B.; Llewelyn, D.J.; Burnell, J.; Dennis, E.S.; Peacock, W.J. Expression and evolution of functionally distinct haemoglobin genes in plants. Plant. Mol. Biol. 2001, 47, 677–692. [Google Scholar] [CrossRef]
- Vinogradov, S.N.; Hoogewijs, D.; Arredondo-Peter, R. What are the origins and phylogeny of plant hemoglobins? Commun. Integr. Biol. 2011, 4, 443–445. [Google Scholar] [CrossRef] [Green Version]
- Bruno, S.; Faggiano, S.; Spyrakis, F.; Mozzarelli, A.; Abbruzzetti, S.; Grandi, E.; Viappiani, C.; Feis, A.; Mackowiak, S.; Smulevich, G.; et al. The reactivity with CO of AHb1 and AHb2 from Arabidopsis thaliana is controlled by the distal HisE7 and internal hydrophobic cavities. J. Am. Chem. Soc. 2007, 129, 2880–2889. [Google Scholar] [CrossRef] [PubMed]
- Faggiano, S.; Abbruzzetti, S.; Spyrakis, F.; Grandi, E.; Viappiani, C.; Bruno, S.; Mozzarelli, A.; Cozzini, P.; Astegno, A.; Dominici, P.; et al. Structural plasticity and functional implications of internal cavities in distal mutants of type 1 non-symbiotic hemoglobin AHb1 from Arabidopsis thaliana. J. Phys. Chem. B. 2009, 113, 16028–16038. [Google Scholar] [CrossRef] [PubMed]
- Spyrakis, F.; Faggiano, S.; Abbruzzetti, S.; Dominici, P.; Cacciatori, E.; Astegno, A.; Droghetti, E.; Feis, A.; Smulevich, G.; Bruno, S.; et al. Histidine E7 dynamics modulates ligand exchange between distal pocket and solvent in AHb1 from Arabidopsis thaliana. J. Phys. Chem. B 2011, 115, 4138–4146. [Google Scholar] [CrossRef]
- Nienhaus, K.; Dominici, P.; Astegno, A.; Abbruzzetti, S.; Viappiani, C.; Nienhaus, G.U. Ligand migration and binding in nonsymbiotic hemoglobins of Arabidopsis thaliana. Biochemistry 2010, 49, 7448–7458. [Google Scholar] [CrossRef]
- Merchant, K.A.; Noid, W.G.; Akiyama, R.; Finkelstein, I.J.; Goun, A.; McClain, B.L.; Loring, R.F.; Fayer, M.D. Myoglobin-CO Substate Structures and Dynamics: Multidimensional Vibrational Echoes and Molecular Dynamics Simulations. J. Am. Chem. Soc. 2003, 125, 13804–13818. [Google Scholar] [CrossRef] [Green Version]
- Mukhi, N.; Dhindwal, S.; Uppal, S.; Kapoor, A.; Arya, R.; Kumar, P.; Kaur, J.; Kundu, S. Structural and Functional Significance of the N- and C-Terminal Appendages in Arabidopsis Truncated Hemoglobin. Biochemistry 2016, 55, 1724–1740. [Google Scholar] [CrossRef]
- Mukhi, N.; Dhindwal, S.; Uppal, S.; Kumar, P.; Kaur, J.; Kundu, S. X-Ray crystallographic structural characteristics of Arabidopsis hemoglobin I and their functional implications. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2013, 1834, 1944–1956. [Google Scholar] [CrossRef] [PubMed]
- Reeder, B.J.; Hough, M.A. The structure of a class 3 nonsymbiotic plant haemoglobin from Arabidopsis thaliana reveals a novel N-terminal helical extension. Acta Cryst. D Biol. Cryst. 2014, 70, 1411–1418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, N.; Astegno, A.; Chen, J.; Giorgetti, A.; Dominici, P. Residues in the Distal Heme Pocket of Arabidopsis Non-Symbiotic Hemoglobins: Implication for Nitrite Reductase Activity. Int. J. Mol. Sci. 2016, 17, 640. [Google Scholar] [CrossRef] [PubMed]
- Trande, M.; Pedretti, M.; Bonza, M.C.; Di Matteo, A.; D’Onofrio, M.; Dominici, P.; Astegno, A. Cation and peptide binding properties of CML7, a calmodulin-like protein from Arabidopsis thaliana. J. Inorg. Biochem. 2019, 199, 110796. [Google Scholar] [CrossRef] [PubMed]
- Astegno, A.; Bonza, M.C.; Vallone, R.; La Verde, V.; D’Onofrio, M.; Luoni, L.; Molesini, B.; Dominici, P. Arabidopsis calmodulin-like protein CML36 is a calcium (Ca2+) sensor that interacts with the plasma membrane Ca2+-ATPase isoform ACA8 and stimulates its activity. J. Biol. Chem. 2017, 292, 15049–15061. [Google Scholar] [CrossRef] [Green Version]
- Astegno, A.; Giorgetti, A.; Allegrini, A.; Cellini, B.; Dominici, P. Characterization of C-S Lyase from C. diphtheriae: A possible target for new antimicrobial drugs. Biomed. Res. Int. 2013, 2013, 701536. [Google Scholar] [CrossRef] [Green Version]
- La Verde, V.; Dominici, P.; Astegno, A. Determination of Hydrodynamic Radius of Proteins by Size Exclusion Chromatography. Bio-Protocol 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Manning, L.R.; Jenkins, W.T.; Hess, J.R.; Vandegriff, K.; Winslow, R.M.; Manning, J.M. Subunit dissociations in natural and recombinant hemoglobins. Protein Sci. 1996, 5, 775–781. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, J.K.; Ackers, G.K. Molecular Sieve Studies of Interacting Protein Systems: X. Behavior of small zone profiles for reversibly self-associating solutes. J. Biol. Chem. 1971, 246, 7289–7292. [Google Scholar]
- Ferguson, K.A. Starch-gel electrophoresis–application to the classification of pituitary proteins and polypeptides. Metabolism 1964, 13, 985–1002. [Google Scholar] [CrossRef]
- Astegno, A.; Capitani, G.; Dominici, P. Functional roles of the hexamer organization of plant glutamate decarboxylase. Biochim. Biophys. Acta 2015, 1854, 1229–1237. [Google Scholar] [CrossRef] [PubMed]
- Smagghe, B.J.; Sarath, G.; Ross, E.; Hilbert, J.-l.; Hargrove, M.S. Slow Ligand Binding Kinetics Dominate Ferrous Hexacoordinate Hemoglobin Reactivities and Reveal Differences between Plants and Other Species. Biochemistry 2006, 45, 561–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, M.C.; Woody, R.W. The origin of the heme Cotton effects in myoglobin and hemoglobin. J. Am. Chem. Soc. 1971, 93, 3515–3525. [Google Scholar] [PubMed]
- Blauer, G.; Sreerama, N.; Woody, R.W. Optical activity of hemoproteins in the Soret region. Circular dichroism of the heme undecapeptide of cytochrome c in aqueous solution. Biochemistry 1993, 32, 6674–6679. [Google Scholar] [CrossRef] [PubMed]
- Lohr, L.L. Theoretical band shapes for vibrionically induced electronic transitions. J. Am. Chem. Soc. 1970, 92, 2210–2216. [Google Scholar] [CrossRef]
- Kaca, W.; Roth, R.I.; Vandegriff, K.D.; Chen, G.C.; Kuypers, F.A.; Winslow, R.M.; Levin, J. Effects of bacterial endotoxin on human cross-linked and native hemoglobins. Biochemistry 1995, 34, 11176–11185. [Google Scholar] [CrossRef] [PubMed]
- Boffi, A.; Wittenberg, J.B.; Chiancone, E. Circular dichroism spectroscopy of Lucina I hemoglobin. FEBS Lett. 1997, 411, 335–338. [Google Scholar] [CrossRef] [Green Version]
- Nicola, N.A.; Minasian, E.; Appleby, C.A.; Leach, S.J. Circular dichroism studies of myoglobin and leghemoglobin. Biochemistry 1975, 14, 5141–5149. [Google Scholar] [CrossRef]
- Dragomir, I.; Hagarman, A.; Wallace, C.; Schweitzer-Stenner, R. Optical band splitting and electronic perturbations of the heme chromophore in cytochrome C at room temperature probed by visible electronic circular dichroism spectroscopy. Biophys. J. 2007, 92, 989–998. [Google Scholar] [CrossRef] [Green Version]
- Schweitzer-Stenner, R.; Gorden, J.P.; Hagarman, A. Asymmetric band profile of the Soret band of deoxymyoglobin is caused by electronic and vibronic perturbations of the heme group rather than by a doming deformation. J. Chem. Phys. 2007, 127, 135103. [Google Scholar] [CrossRef]
- Willick, G.E.; Schobaum, G.R.; Kay, C.M. Circular dichroism and absorption spectra of horse radish peroxidase and sperm whale myoglobin in the Soret region. Biochemistry 1969, 8, 3729–3734. [Google Scholar] [CrossRef] [PubMed]
- Eaton, W.A.; Hofrichter, J. Polarized absorption and linear dichroism spectroscopy of hemoglobin. Methods Enzymol. 1981, 76, 175–261. [Google Scholar] [PubMed]
- O’Connor, E.R.; Harrington, J.P.; Herskovits, T.T. Solution studies on heme proteins. Circular dichroism and optical rotation of Glycera dibranchiata hemoglobins. Biochim. Biophys. Acta 1980, 624, 346–362. [Google Scholar] [PubMed]
- Geraci, G.; Parkhurst, L.J. Circular dichroism spectra of hemoglobins. Methods Enzymol. 1981, 76, 262–275. [Google Scholar] [PubMed]
- Sugita, Y.; Nagai, M.; Yoneyama, Y. Circular dichroism of hemoglobin in relation to the structure surrounding the heme. J. Biol. Chem. 1971, 246, 383–388. [Google Scholar]
- Chiancone, E.; Vecchini, P.; Verzili, D.; Ascoli, F.; Antonini, E. Dimeric and tetrameric hemoglobins from the mollusc Scapharca inaequivalvis. Structural and functional properties. J. Mol. Biol. 1981, 152, 577–592. [Google Scholar] [CrossRef]
- Hurrell, J.G.; Nicola, N.A.; Broughton, W.J.; Dilworth, M.J.; Minasian, E.; Leach, S.J. Comparative structural and immunochemical properties of leghaemoglobins. Eur. J. Biochem. 1976, 66, 389–399. [Google Scholar] [CrossRef]
- Urry, D.W. Model systems for interacting heme moieties. I. The heme undecapeptide of cytochrome c. J. Am. Chem. Soc. 1967, 89, 4190–4196. [Google Scholar] [CrossRef]
- Goodman, M.D.; Hargrove, M.S. Quaternary structure of rice nonsymbiotic hemoglobin. J. Biol. Chem. 2001, 276, 6834–6839. [Google Scholar] [CrossRef] [Green Version]
- Duff, S.M.; Wittenberg, J.B.; Hill, R.D. Expression, purification, and properties of recombinant barley (Hordeum sp.) hemoglobin. Optical spectra and reactions with gaseous ligands. J. Biol. Chem. 1997, 272, 16746–16752. [Google Scholar] [CrossRef] [Green Version]
- Morzan, U.N.; Capece, L.; Marti, M.A.; Estrin, D.A. Quaternary structure effects on the hexacoordination equilibrium in rice hemoglobin rHb1: Insights from molecular dynamics simulations. Proteins 2013, 81, 863–873. [Google Scholar] [CrossRef] [PubMed]
- Capece, L.; Marti, M.A.; Bidon-Chanal, A.; Nadra, A.; Luque, F.J.; Estrin, D.A. High pressure reveals structural determinants for globin hexacoordination: Neuroglobin and myoglobin cases. Proteins 2009, 75, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Nadra, A.D.; Martí, M.A.; Pesce, A.; Bolognesi, M.; Estrin, D.A. Exploring the molecular basis of heme coordination in human neuroglobin. Proteins 2008, 71, 695–705. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astegno, A.; Conter, C.; Bertoldi, M.; Dominici, P. Structural Insights into the Heme Pocket and Oligomeric State of Non-Symbiotic Hemoglobins from Arabidopsis thaliana. Biomolecules 2020, 10, 1615. https://doi.org/10.3390/biom10121615
Astegno A, Conter C, Bertoldi M, Dominici P. Structural Insights into the Heme Pocket and Oligomeric State of Non-Symbiotic Hemoglobins from Arabidopsis thaliana. Biomolecules. 2020; 10(12):1615. https://doi.org/10.3390/biom10121615
Chicago/Turabian StyleAstegno, Alessandra, Carolina Conter, Mariarita Bertoldi, and Paola Dominici. 2020. "Structural Insights into the Heme Pocket and Oligomeric State of Non-Symbiotic Hemoglobins from Arabidopsis thaliana" Biomolecules 10, no. 12: 1615. https://doi.org/10.3390/biom10121615
APA StyleAstegno, A., Conter, C., Bertoldi, M., & Dominici, P. (2020). Structural Insights into the Heme Pocket and Oligomeric State of Non-Symbiotic Hemoglobins from Arabidopsis thaliana. Biomolecules, 10(12), 1615. https://doi.org/10.3390/biom10121615