# Spin-Polarized Electron Transmission in DNA-Like Systems

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Results

#### 2.1. Tight-Binding Model with Generalized Rashba Interaction

#### 2.2. Band Structure of a Molecule with Site-Independent SOC

#### 2.3. Transmission and Spin Polarization

#### 2.4. Analysis of Symmetries

## 3. Discussion

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Göhler, B.; Hamelbeck, V.; Markus, T.Z.; Kettner, M.; Hanne, G.F.; Vager, Z.; Naaman, R.; Zacharias, H. Spin Selectivity in Electron Transmission Through Self-Assembled Monolayers of Double-Stranded DNA. Science
**2011**, 331, 894. [Google Scholar] [CrossRef] [PubMed] - Xie, Z.; Markus, T.Z.; Cohen, S.R.; Vager, Z.; Gutierrez, R.; Naaman, R. Spin Specific Electron Conduction Through DNA Oligomers. Nano Lett.
**2011**, 11, 4652. [Google Scholar] [CrossRef] [PubMed] - Kessler, J. Polarized Electrons; Springer: Berlin, Germany, 1976. [Google Scholar]
- Kiran, V.; Mathew, S.P.; Cohen, S.R.; Hernández Delgado, I.; Lacour, J.; Naaman, R. Helicenes—A New Class of Organic Spin Filter. Adv. Mat.
**2016**, 28, 1957. [Google Scholar] [CrossRef] [PubMed] - Michaeli, K.; Kantor-Uriel, N.; Naaman, R.; Waldeck, D.H. The Electron’s Spin and Molecular Chirality—How are They Related and How do They Affect Life Processes? Chem. Soc. Rev.
**2016**, 45, 6478. [Google Scholar] [CrossRef] [PubMed] - Mishra, D.; Markus, T.Z.; Naaman, R.; Kettner, M.; Göhler, B.; Zacharias, H.; Friedman, N.; Sheves, M.; Fontanesi, C. Spin-Dependent Electron Transmission Through Bacteriorhodopsin Embedded in Purple Membrane. Proc. Nat. Acad. Sci. USA
**2013**, 110, 14872. [Google Scholar] [CrossRef] [PubMed][Green Version] - Kiran, V.; Cohen, S.R.; Naaman, R. Structure Dependent Spin Selectivity in Electron Transport Through Oligopeptides. J. Chem. Phys.
**2017**, 146, 92302. [Google Scholar] [CrossRef] - Aragonès, A.C.; Medina, E.; Ferrer-Huerta, M.; Gimeno, N.; Teixidó, M.; Palma, J.L.; Tao, N.; Ugalde, J.M.; Giralt, E.; Díez-Pérez, I.; et al. Measuring the Spin-Polarization Power of a Single Chiral Molecule. Small
**2017**, 13, 1602519. [Google Scholar] [CrossRef] - Kumar, A.; Capua, E.; Kesharwani, M.K.; Martin, J.M.L.; Sitbon, E.; Waldeck, D.H.; Naaman, R. Chirality-Induced Spin Polarization Places Symmetry Constraints on Biomolecular Interactions. Proc. Natl. Acad. Sci. USA
**2017**, 114, 2474. [Google Scholar] [CrossRef][Green Version] - Mondal, P.C.; Fontanesi, C.; Waldeck, D.H.; Naaman, R. Field and Chirality Effects on Electrochemical Charge Transfer Rates: Spin Dependent Electrochemistry. ACS Nano
**2015**, 9, 3377. [Google Scholar] [CrossRef][Green Version] - Kettner, M.; Göhler, B.; Zacharias, H.; Mishra, D.; Kiran, V.; Naaman, R.; Fontanesi, C.; Waldeck, D.H.; Sȩk, S.; Pawłowski, J.; et al. Spin Filtering in Electron Transport Through Chiral Oligopeptides. J. Phys. Chem. C
**2015**, 119, 14542. [Google Scholar] [CrossRef] - Naaman, R.; Waldeck, D.H. Spintronics and Chirality: Spin Selectivity in Electron Transport Through Chiral Molecules. Annu. Rev. Phys. Chem.
**2015**, 66, 263. [Google Scholar] [CrossRef] [PubMed] - Zwang, T.J.; Hürlimann, S.; Hill, M.G.; Barton, J.K. Helix-Dependent Spin Filtering Through the DNA Duplex. J. Am. Chem. Soc.
**2016**, 138, 15551. [Google Scholar] [CrossRef] [PubMed][Green Version] - Mtangi, W.; Tassinari, F.; Vankayala, K.; Vargas Jentzsch, A.; Adelizzi, B.; Palmans, A.R.A.; Fontanesi, C.; Meijer, E.W.; Naaman, R. Control of Electrons’ Spin Eliminates Hydrogen Peroxide Formation During Water Splitting. J. Am. Chem. Soc.
**2017**, 139, 2794. [Google Scholar] [CrossRef] [PubMed] - Ben Dor, O.; Yochelis, S.; Radko, A.; Vankayala, K.; Capua, E.; Capua, A.; Yang, S.H.; Baczewski, L.T.; Parkin, S.S.P.; Naaman, R.; et al. Magnetization Switching in Ferromagnets by Adsorbed Chiral Molecules Without Current or External Magnetic Field. Nat. Commun.
**2017**, 8, 14567. [Google Scholar] [CrossRef] [PubMed] - Kettner, M.; Maslyuk, V.V.; Nürenberg, D.; Seibel, J.; Gutierrez, R.; Cuniberti, G.; Ernst, K.H.; Zacharias, H. Chirality-Dependent Electron Spin Filtering by Molecular Monolayers of Helicenes. J. Phys. Chem. Lett.
**2018**, 9, 2025. [Google Scholar] [CrossRef] [PubMed][Green Version] - Abendroth, J.M.; Cheung, K.M.; Stemer, D.M.; El Hadri, M.S.; Zhao, C.; Fullerton, E.E.; Weiss, P.S. Spin-Dependent Ionization of Chiral Molecular Films. J. Am. Chem. Soc.
**2019**, 141, 3863. [Google Scholar] [CrossRef] [PubMed] - Yeganeh, S.; Ratner, M.A.; Medina, E.; Mujica, V. Chiral electron transport: Scattering through helical potentials. J. Chem. Phys.
**2009**, 131, 014707. [Google Scholar] [CrossRef] - Medina, E.; López, F.; Ratner, M.A.; Mujica, V. Chiral molecular films as electron polarizers and polarization modulators. Europhys. Lett.
**2012**, 99, 17006. [Google Scholar] [CrossRef] - Gutiérrez, R.; Díaz, E.; Naaman, R.; Cuniberti, G. Spin-selective transport through helical molecular systems. Phys. Rev. B
**2012**, 85, 081404. [Google Scholar] [CrossRef] - Gutierrez, R.; Díaz, E.; Gaul, C.; Brumme, T.; Domínguez-Adame, F.; Cuniberti, G. Modeling Spin Transport in Helical Fields: Derivation of an Effective Low-Dimensional Hamiltonian. J. Phys. Chem. C
**2013**, 117, 22276. [Google Scholar] [CrossRef][Green Version] - Díaz, E.; Domínguez-Adame, F.; Gutierrez, R.; Cuniberti, G.; Mujica, V. Thermal Decoherence and Disorder Effects on Chiral-Induced Spin Selectivity. J. Phys. Chem. Lett.
**2018**, 9, 5753. [Google Scholar] [CrossRef] [PubMed] - Eremko, A.A.; Loktev, V.M. Spin sensitive electron transmission through helical potentials. Phys. Rev. B
**2013**, 88, 165409. [Google Scholar] [CrossRef][Green Version] - Medina, E.; González-Arraga, L.A.; Finkelstein-Shapiro, D.; Berche, B.; Mujica, V. Continuum model for chiral induced spin selectivity in helical molecules. J. Chem. Phys.
**2015**, 142, 194308. [Google Scholar] [CrossRef] [PubMed] - Caetano, R.A. Spin–Current and Spin–Splitting in Helicoidal Molecules Due to Spin-Orbit Coupling. Sci. Rep.
**2016**, 6, 23452. [Google Scholar] [CrossRef] [PubMed][Green Version] - Guo, A.M.; Sun, Q.F. Spin-selective transport of electrons in DNA double helix. Phys. Rev. Lett.
**2012**, 108, 218102. [Google Scholar] [CrossRef][Green Version] - Guo, A.M.; Díaz, E.; Gaul, C.; Gutierrez, R.; Domínguez-Adame, F.; Cuniberti, G.; Sun, Q.F. Contact effects in spin transport along double-helical molecules. Phys. Rev. B
**2014**, 89, 205434. [Google Scholar] [CrossRef][Green Version] - Díaz, E.; Albares, P.; Estévez, P.G.; Cerveró, J.M.; Gaul, C.; Diez, E.; Domínguez-Adame, F. Spin Dynamics in Helical Molecules with Nonlinear Interactions. New J. Phys.
**2018**, 20, 043055. [Google Scholar] [CrossRef] - Matityahu, S.; Utsumi, Y.; Aharony, A.; Entin-Wohlman, O.; Balseiro, C.A. Spin-dependent transport through a chiral molecule in the presence of spin–orbit interaction and nonunitary effects. Phys. Rev. B
**2016**, 93, 075407. [Google Scholar] [CrossRef][Green Version] - Gersten, J.; Kaasbjerg, K.; Nitzan, A. Induced Spin Filtering in Electron Transmission Through Chiral Molecular Layers Adsorbed on Metals with Strong Spin-Orbit Coupling. J. Chem. Phys.
**2013**, 139, 114111. [Google Scholar] [CrossRef][Green Version] - Hedegard, P.; Dalum, S. Theory of Chiral Induced Spin Selectivity. Nano Lett.
**2019**, 19, 5253. [Google Scholar] - Geyer, M.; Gutierrez, R.; Mujica, V.; Cuniberti, G. Chirality-Induced Spin Selectivity in a Coarse-Grained Tight-Binding Model for Helicene. J. Phys. Chem. C
**2019**, 123, 27230. [Google Scholar] [CrossRef] - Michaeli, K.; Naaman, R. Origin of Spin-Dependent Tunneling Through Chiral Molecules. J. Phys. Chem. C
**2019**, 123, 17043. [Google Scholar] [CrossRef][Green Version] - Fransson, J. Chirality-Induced Spin Selectivity: The Role of Electron Correlations. J. Phys. Chem. Lett.
**2019**, 10, 7126. [Google Scholar] [CrossRef] [PubMed][Green Version] - Maslyuk, V.V.; Gutierrez, R.; Dianat, A.; Mujica, V.; Cuniberti, G. Enhanced Magnetoresistance in Chiral Molecular Junctions. J. Phys. Chem. Lett.
**2018**, 9, 5453. [Google Scholar] [CrossRef] - Zöllner, M.S.; Varela, S.; Medina, E.; Mujica, V.; Herrmann, C. Chiral-Induced Spin Selectivity: A Symmetry Analysis of Electronic Transmission. ChemRxiv
**2019**. [Google Scholar] [CrossRef] - Nürenberg, D.; Zacharias, H. Evaluation of spin–flip scattering in chirality-induced spin selectivity using the Riccati equation. Phys. Chem. Chem. Phys.
**2019**, 21, 3761. [Google Scholar] [CrossRef][Green Version] - Moroz, A.V.; Barnes, C.H.W. Effect of the spin–orbit interaction on the band structure and conductance of quasi-one-dimensional systems. Phys. Rev. B
**1999**, 60, 14272–14285. [Google Scholar] [CrossRef][Green Version] - Haug, H.; Jauho, A.P. Quantum Kinetics in Transport and Optics of Semiconductors; Springer: Berlin, Germany, 1998. [Google Scholar]
- Ryndyk, D. Theory of Quantum Transport at Nanoscale; Springer: Berlin, Germany, 2016. [Google Scholar]
- Kubar, T.; Woiczikowski, P.B.; Cuniberti, G.; Elstner, M. Efficient Calculation of Charge-Transfer Matrix Elements for Hole Transfer in DNA. J. Phys. Chem. B
**2008**, 112, 7937. [Google Scholar] [CrossRef] - Molenkamp, L.W.; Schmidt, G.; Bauer, G.E.W. Rashba Hamiltonian and electron transport. Phys. Rev. B
**2001**, 64, 121202. [Google Scholar] [CrossRef][Green Version] - Sánchez, D.; Serra, L. Fano-Rashba effect in a quantum wire. Phys. Rev. B
**2006**, 74, 153313. [Google Scholar] [CrossRef][Green Version] - Artacho, E.; Machado, M.; Sánchez-Portal, D.; Ordejón, P.; Soler, J.M. Electrons in dry DNA from density functional calculations. Mol. Phys.
**2003**, 101, 1587. [Google Scholar] [CrossRef][Green Version] - Díaz, E.; Malyshev, A.V.; Domínguez-Adame, F. Interband optical transitions in DNA-like systems. Phys. Rev. B
**2007**, 76, 205117. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**Energy dispersion relation of the helical system for ${\alpha}_{c}=-0.08$ and $\theta =\pi /6$ in (

**a**) the symmetric configuration with parameters ${t}_{A}={t}_{B}=0.1$ and ${\lambda}_{A}={\lambda}_{B}=0.01$, (

**b**) the quasi-symmetric configuration with parameters ${t}_{A}=-{t}_{B}=0.1$ and ${\lambda}_{A}={\lambda}_{B}=0.01$, and (

**c**) the asymmetric configuration with parameters ${t}_{A}=-2{t}_{B}=0.2$ and $2{\lambda}_{A}={\lambda}_{B}=0.02$.

**Figure 2.**Transport coefficients obtained for a symmetric molecule: ${\epsilon}_{A}={\epsilon}_{B}=0.0$, ${t}_{A}={t}_{B}=0.1$, ${\lambda}_{A}={\lambda}_{B}=0.01$, ${\alpha}_{c}=-0.08$, $\theta =0.66$, ${N}_{st}=10$, ${N}_{tr}=3$ and ${\Gamma}_{0}=1.0$. Transmission coefficients (

**a**) ${\mathcal{T}}_{\mu \uparrow ,\nu \uparrow}\left(\omega \right)$; (

**b**) ${\mathcal{T}}_{\mu \downarrow ,\nu \downarrow}\left(\omega \right)$; (

**c**) ${\mathcal{T}}_{\mu \downarrow ,\nu \uparrow}\left(\omega \right)$; (

**d**) ${\mathcal{T}}_{\mu \uparrow ,\nu \downarrow}\left(\omega \right)$; and (

**e**) spin polarization $P\left(\omega \right)$ as a function of energy.

**Figure 3.**Transport coefficients obtained for a quasi-symmetric molecules with the same parameters as in Figure 2 but ${t}_{A}=-{t}_{B}=0.1$ and ${\lambda}_{A}={\lambda}_{B}=0.01$. Transmission coefficients (

**a**) ${\mathcal{T}}_{\mu \uparrow ,\nu \uparrow}\left(\omega \right)$; (

**b**) ${\mathcal{T}}_{\mu \downarrow ,\nu \downarrow}\left(\omega \right)$; (

**c**) ${\mathcal{T}}_{\mu \downarrow ,\nu \uparrow}\left(\omega \right)$; (

**d**) ${\mathcal{T}}_{\mu \uparrow ,\nu \downarrow}\left(\omega \right)$; and (

**e**) spin polarization $P\left(\omega \right)$ as a function of energy.

**Figure 4.**Transport coefficients obtained for an asymmetric molecule with the same parameters as in Figure 2 but ${t}_{A}=-2{t}_{B}=0.2$ and $2{\lambda}_{A}={\lambda}_{B}=0.02$. Transmission coefficients (

**a**) ${\mathcal{T}}_{\mu \uparrow ,\nu \uparrow}\left(\omega \right)$; (

**b**) ${\mathcal{T}}_{\mu \downarrow ,\nu \downarrow}\left(\omega \right)$; (

**c**) ${\mathcal{T}}_{\mu \downarrow ,\nu \uparrow}\left(\omega \right)$; (

**d**) ${\mathcal{T}}_{\mu \uparrow ,\nu \downarrow}\left(\omega \right)$; and (

**e**) spin polarization $P\left(\omega \right)$ as a function of energy.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sierra, M.A.; Sánchez, D.; Gutierrez, R.; Cuniberti, G.; Domínguez-Adame, F.; Díaz, E. Spin-Polarized Electron Transmission in DNA-Like Systems. *Biomolecules* **2020**, *10*, 49.
https://doi.org/10.3390/biom10010049

**AMA Style**

Sierra MA, Sánchez D, Gutierrez R, Cuniberti G, Domínguez-Adame F, Díaz E. Spin-Polarized Electron Transmission in DNA-Like Systems. *Biomolecules*. 2020; 10(1):49.
https://doi.org/10.3390/biom10010049

**Chicago/Turabian Style**

Sierra, Miguel A., David Sánchez, Rafael Gutierrez, Gianaurelio Cuniberti, Francisco Domínguez-Adame, and Elena Díaz. 2020. "Spin-Polarized Electron Transmission in DNA-Like Systems" *Biomolecules* 10, no. 1: 49.
https://doi.org/10.3390/biom10010049