Changes in Ecophysiology, Osmolytes, and Secondary Metabolites of the Medicinal Plants of Mentha piperita and Catharanthus roseus Subjected to Drought and Heat Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pot Experiments
2.2. Seedling Growth Measurements
2.3. Biochemical Assays
2.3.1. Total Soluble Proteins
2.3.2. Proline Content
2.3.3. Glycine Betaine
2.4. Phytochemical Assays
2.4.1. Total Soluble Sugars
2.4.2. Mannitol and Inositol Contents
2.4.3. Total Phenolic Content (TPC)
2.4.4. Total Flavonoid Content (TFC)
2.4.5. Saponins
2.4.6. Terpenoids
2.4.7. Tannins
2.4.8. Alkaloids
2.5. Antioxidant Assays
2.5.1. Preparation of the Aqueous and Methanolic Extracts
2.5.2. DPPH Scavenging Activities of M. piperita and C. roseus Extracts
2.6. Determination of Antimicrobial Activity
2.6.1. Antibacterial Activities of M. piperita and C. roseus Extracts
2.6.2. Antifungal Activities of M. piperita and C. roseus Extracts
2.7. Cytotoxic and Anticancer Activities of M. piperita and C. roseus Extracts
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effects of Drought and Heat Stress on the Growth and Physiological and Metabolomic Traits of M. piperita and C. roseus
3.2. Effects of Drought and Heat Stress on the Antibacterial, Antifungal, and Anticancer Activities of the Extracts of M. piperita and C. roseus
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jakada, B.H.; Aslam, M.; Fakher, B.; Greaves, J.G.; Li, Z.; Li, W.; Lai, L.; Ayoade, O.A.; Cheng, Y.; Cao, S.; et al. Identification of SWI2/SNF2-Related 1 Chromatin Remodeling Complex (SWR1-C) Subunits in Pineapple and the Role of Pineapple SWR1 COMPLEX 6 (AcSWC6) in Biotic and Abiotic Stress Response. Biomolecules 2019, 9, 364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Guo, C.; Ahmad, S.; Wang, Q.; Yu, J.; Liu, C.; Guo, Y. Systematic Analysis of MYB Family Genes in Potato and Their Multiple Roles in Development and Stress Responses. Biomolecules 2019, 9, 317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Esawi, M.A.; Al-Ghamdi, A.A.; Ali, H.M.; Ahmad, M. Overexpression of AtWRKY30 Transcription Factor Enhances Heat and Drought Stress Tolerance in Wheat (Triticum aestivum L.). Genes 2019, 10, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Esawi, M.A.; Alayafi, A.A. Overexpression of StDREB2 Transcription Factor Enhances Drought Stress Tolerance in Cotton (Gossypium barbadense L.). Genes 2019, 10, 142. [Google Scholar] [CrossRef] [Green Version]
- El-Esawi, M.A.; Alayafi, A.A. Overexpression of Rice Rab7 Gene Improves Drought and Heat Tolerance and Increases Grain Yield in Rice (Oryza sativa L.). Genes 2019, 10, 56. [Google Scholar] [CrossRef] [Green Version]
- El-Esawi, M.A.; Alaraidh, I.A.; Alsahli, A.A.; Alamri, S.A.; Ali, H.M.; Alayafi, A.A. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. Plant. Physiol. Biochem. 2018, 132, 375–384. [Google Scholar] [CrossRef]
- El-Esawi, M.A.; Al-Ghamdi, A.A.; Ali, H.M.; Alayafi, A.A. Azospirillum lipoferum FK1 confers improved salt tolerance in chickpea (Cicer arietinum L.) by modulating osmolytes, antioxidant machinery and stress-related genes expression. Environ. Exp. Bot. 2019, 159, 55–65. [Google Scholar] [CrossRef]
- Elkelish, A.A.; Alnusaire, T.S.; Soliman, M.H.; Gowayed, S.; Senousy, H.H.; Fahad, S. Calcium availability regulates antioxidant system, physio-biochemical activities and alleviates salinity stress mediated oxidative damage in soybean seedlings. J. Appl. Bot. Food Qual. 2019, 92, 258–266. [Google Scholar]
- Elkeilsh, A.; Awad, Y.M.; Soliman, M.H.; Abu-Elsaoud, A.; Abdelhamid, M.T.; El-Metwally, I.M. Exogenous application of β-sitosterol mediated growth and yield improvement in water-stressed wheat (Triticum aestivum) involves up-regulated antioxidant system. J. Plant. Res. 2019, 132, 881–901. [Google Scholar] [CrossRef]
- Ahmad, P.; Ahanger, M.A.; Egamberdieva, D.; Alam, P.; Alyemeni, M.N.; Ashraf, M. Modification of Osmolytes and Antioxidant Enzymes by 24-Epibrassinolide in Chickpea Seedlings under Mercury (Hg) Toxicity. J. Plant Growth Regul. 2018, 37, 309–322. [Google Scholar] [CrossRef]
- Bennett, R.N.; Wallsgrove, R.M. Secondary metabolites in plant defence mechanisms. New Phytol. 1994, 127, 617–633. [Google Scholar] [CrossRef]
- Yang, L.; Wen, K.S.; Ruan, X.; Zhao, Y.X.; Wei, F.; Wang, Q. Response of Plant Secondary Metabolites to Environmental Factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zandalinas, S.I.; Mittler, R.; Balfagón, D.; Arbona, V.; Gómez-Cadenas, A. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 2018, 162, 2–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alhaithloul, H.A.S. Impact of Combined Heat and Drought Stress on the Potential Growth Responses of the Desert Grass Artemisia sieberi alba: Relation to Biochemical and Molecular Adaptation. Plants 2019, 8, 416. [Google Scholar] [CrossRef] [Green Version]
- Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; Ali, H.M.; Elshikh, M.S.; Abdel-Salam, E.M.; El-Esawi, M.; El-Ansary, D.O. Bioactivities of traditional medicinal plants in Alexandria. Evid. Based. Complement. Altern. Med. 2018, 2018, 1463579. [Google Scholar] [CrossRef] [Green Version]
- El-Esawi, M.A.; Elkelish, A.; Elansary, H.O.; Ali, H.M.; Elshikh, M.; Witczak, J.; Ahmad, M. Genetic Transformation and Hairy Root Induction Enhance the Antioxidant Potential of Lactuca serriola L. Available online: https://www.hindawi.com/journals/omcl/2017/5604746/ (accessed on 9 January 2018).
- Elkelish, A.A.; Soliman, M.H.; Alhaithloul, H.A.; El-Esawi, M.A. Selenium protects wheat seedlings against salt stress-mediated oxidative damage by up-regulating antioxidants and osmolytes metabolism. Plant Physiol. Biochem. 2019, 137, 144–153. [Google Scholar] [CrossRef]
- Abdel-Daim, M.M.; Abdou, R.H. Protective Effects of Diallyl Sulfide and Curcumin Separately against Thallium-Induced Toxicity in Rats. Cell J. 2015, 17, 379–388. [Google Scholar]
- Abdel-Daim, M.M.; El-Ghoneimy, A. Synergistic protective effects of ceftriaxone and ascorbic acid against subacute deltamethrin-induced nephrotoxicity in rats. Ren. Fail. 2015, 37, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Daim, M.M.; Zakhary, N.I.; Aleya, L.; Bungǎu, S.G.; Bohara, R.A.; Siddiqi, N.J. Aging, Metabolic, and Degenerative Disorders: Biomedical Value of Antioxidants. Oxidative Med. Cell. Longev. 2018, 2018, 2098123. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Tzvetkov, N.T.; El-Tawil, O.S.; Bungǎu, S.G.; Abdel-Daim, M.M.; Atanasov, A.G. Antioxidants: Scientific Literature Landscape Analysis. Available online: https://www.hindawi.com/journals/omcl/2019/8278454/ (accessed on 16 June 2019).
- Elkelish, A.A.; Alhaithloul, H.A.S.; Qari, S.H.; Soliman, M.H.; Hasanuzzaman, M. Pretreatment with Trichoderma harzianum alleviates waterlogging-induced growth alterations in tomato seedlings by modulating physiological, biochemical, and molecular mechanisms. Environ. Exp. Bot. 2019, 171, 103946. [Google Scholar] [CrossRef]
- Herro, E.; Jacob, S.E. Mentha piperita (peppermint). Dermatitis 2010, 21, 327–329. [Google Scholar] [CrossRef] [PubMed]
- Nair, B. Final report on the safety assessment of Mentha Piperita (Peppermint) Oil, Mentha Piperita (Peppermint) Leaf Extract, Mentha Piperita (Peppermint) Leaf, and Mentha Piperita (Peppermint) Leaf Water. Int. J. Toxicol. 2001, 20, 61–73. [Google Scholar] [PubMed]
- Diouf, B.; Crews, K.R.; Lew, G.; Pei, D.; Cheng, C.; Bao, J.; Zheng, J.J.; Yang, W.; Fan, Y.; Wheeler, H.E.; et al. Association of an inherited genetic variant with vincristine-related peripheral neuropathy in children with acute lymphoblastic leukemia. JAMA 2015, 313, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Troll, W.; Lindsley, J. A photometric method for the determination of proline. J. Biol Chem 1955, 215, 655–660. [Google Scholar]
- Grieve, C.M.; Grattan, S.R. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant. Soil 1983, 70, 303–307. [Google Scholar] [CrossRef]
- Irigoyen, J.J.; Einerich, D.W.; Sanchez-Diaz, M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants. Physiol. Plant. 1992, 84, 55–60. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total Phenol Analysis: Automation and Comparison with Manual Methods. Am. J. Enol Vitic. 1977, 28, 49–55. [Google Scholar]
- Julkunen-Tiitto, R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. J. Agric. Food Chem. 1985, 33, 213–217. [Google Scholar] [CrossRef]
- Jia, Z.; Tang, M.; Wu, J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar]
- Obadoni, B.O.; Ochuko, P.O. Phytochemical studies and comparative efficacy of the crude extracts of some haemostatic plants in Edo and Delta States of Nigeria. Glob. J. Pure Appl. Sci. 2002, 8, 203–208. [Google Scholar] [CrossRef]
- Ferguson, N.M. A Textbook of Pharmacognosy; Macmillan Company: New York, NY, USA, 1956. [Google Scholar]
- Amadi, B.A.; Agomuo, E.N.; Ibegbulem, C.O. Proximate analysis. In Research Methods in Biochemistry; Supreme Publishers: Owerri, Nigeria, 2004; pp. 105–115. [Google Scholar]
- Ezeonu, C.S.; Eboatu, A.N.; Ejikeme, C. Determination of Physical and Phytochemical Constituents of some Tropical Timbers Indigenous to nigerdelta area of nigeria. Eur. Sci. J. 2014, 10, 247–270. [Google Scholar]
- Harborne, A.J. Phytochemical Methods a Guide to Modern Techniques of Plant Analysis; Springer: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Espín, J.C.; Soler-Rivas, C.; Wichers, H.J. Characterization of the total free radical scavenger capacity of vegetable oils and oil fractions using 2,2-diphenyl-1-picrylhydrazyl radical. J. Agric. Food Chem. 2000, 48, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Romijn, J.C.; Verkoelen, C.F.; Schroeder, F.H. Application of the MTT assay to human prostate cancer cell lines in vitro: Establishment of test conditions and assessment of hormone-stimulated growth and drug-induced cytostatic and cytotoxic effects. Prostate 1988, 12, 99–110. [Google Scholar] [CrossRef]
- Cerrudo, D.; González Pérez, L.; Mendoza Lugo, J.A.; Trachsel, S. Stay-Green and Associated Vegetative Indices to Breed Maize Adapted to Heat and Combined Heat-Drought Stresses. Remote Sens. 2017, 9, 235. [Google Scholar] [CrossRef] [Green Version]
- Perera, R.S.; Cullen, B.R.; Eckard, R.J. Growth and Physiological Responses of Temperate Pasture Species to Consecutive Heat and Drought Stresses. Plants 2019, 8, 227. [Google Scholar] [CrossRef] [Green Version]
- Ahanger, M.A.; Agarwal, R.M. Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant. Physiol. Biochem. 2017, 115, 449–460. [Google Scholar] [CrossRef]
- Saleh, A.A.H.; Abdel-Kader, D.; El Kelish, A. Role of Heat Shock and Salicylic Acid in Antioxidant Homeostasis in Mungbean (Vigna radiata L.) Plant Subjected to Heat Stress. Am. J. Plant. Physiol. 2007, 2, 344–355. [Google Scholar]
- Sita, K.; Sehgal, A.; Bhandari, K.; Kumar, J.; Kumar, S.; Singh, S.; Siddique, K.H.; Nayyar, H. Impact of heat stress during seed filling on seed quality and seed yield in lentil (Lens culinaris Medikus) genotypes. J. Sci. Food Agric. 2018, 98, 5134–5141. [Google Scholar] [CrossRef]
- Sehgal, A.; Sita, K.; Bhandari, K.; Kumar, S.; Kumar, J.; Vara Prasad, P.V.; Siddique, K.H.; Nayyar, H. Influence of drought and heat stress, applied independently or in combination during seed development, on qualitative and quantitative aspects of seeds of lentil (Lens culinaris Medikus) genotypes, differing in drought sensitivity. Plant Cell Environ. 2019, 42, 198–211. [Google Scholar] [CrossRef] [Green Version]
- Sehgal, A.; Sita, K.; Kumar, J.; Kumar, S.; Singh, S.; Siddique, K.H.; Nayyar, H. Effects of Drought, Heat and Their Interaction on the Growth, Yield and Photosynthetic Function of Lentil (Lens culinaris Medikus) Genotypes Varying in Heat and Drought Sensitivity. Front. Plant. Sci. 2017, 8, 1776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francis-West, P.; Ladher, R.; Barlow, A.; Graveson, A. Signalling interactions during facial development. Mech. Dev. 1998, 75, 3–28. [Google Scholar] [CrossRef]
- Rymen, B.; Fiorani, F.; Kartal, F.; Vandepoele, K.; Inzé, D.; Beemster, G.T. Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes. Plant. Physiol. 2007, 143, 1429–1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slama, I.; Abdelly, C.; Bouchereau, A.; Flowers, T.; Savoure, A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 2015, 115, 433–447. [Google Scholar] [CrossRef] [Green Version]
- Pade, N.; Hagemann, M. Salt Acclimation of Cyanobacteria and Their Application in Biotechnology. Life 2014, 5, 25–49. [Google Scholar] [CrossRef]
- Sharma, A.; Shahzad, B.; Kumar, V.; Kohli, S.K.; Sidhu, G.P.S.; Bali, A.S.; Handa, N.; Kapoor, D.; Bhardwaj, R.; Zheng, B. Phytohormones Regulate Accumulation of Osmolytes under Abiotic Stress. Biomolecules 2019, 9, 285. [Google Scholar] [CrossRef] [Green Version]
- Hare, P.D.; Cress, W.A.; Van Staden, J. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 1998, 21, 535–553. [Google Scholar] [CrossRef]
- Parry, M.A.J.; Andralojc, P.J.; Scales, J.C.; Salvucci, M.E.; Carmo-Silva, A.E.; Alonso, H.; Whitney, S.M. Rubisco activity and regulation as targets for crop improvement. J. Exp. Bot 2013, 64, 717–730. [Google Scholar] [CrossRef]
- Akhtar, M.S. Salt Stress, Microbes, and Plant. Interactions: Mechanisms and Molecular Approaches; Springer: Singapore, 2019; ISBN 9789811388057. [Google Scholar]
- Kishor, P.K.; Sangam, S.; Amrutha, R.N.; Laxmi, P.S.; Naidu, K.R.; Rao, K.; Rao, S.; Reddy, K.J.; Theriappan, P.; Sreenivasulu, N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr. Sci. 2005, 88, 424–438. [Google Scholar]
- Spaans, S.K.; Weusthuis, R.A.; Van Der Oost, J.; Kengen, S.W.M. NADPH-generating systems in bacteria and archaea. Front. Microbiol. 2015, 6, 742. [Google Scholar] [CrossRef]
- Mohammadkhani, N.; Heidari, R. Drought-induced Accumulation of Soluble Sugars and Proline in Two Maize Varieties. World Appl. Sci. J. 2008, 6, 448–453. [Google Scholar]
- Iqbal, N.; Umar, S.; Khan, N.A. Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea). J. Plant. Physiol. 2015, 178, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Harsh, A.; Sharma, Y.K.; Joshi, U.; Rampuria, S.; Singh, G.; Kumar, S.; Sharma, R. Effect of short-term heat stress on total sugars, proline and some antioxidant enzymes in moth bean (Vigna aconitifolia). Ann. Agric. Sci. 2016, 61, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Kaushal, S.S.; Belt, K.T. The urban watershed continuum: Evolving spatial and temporal dimensions. Urban Ecosyst. 2012, 15, 409–435. [Google Scholar] [CrossRef]
- Giri, J. Glycinebetaine and abiotic stress tolerance in plants. Plant. Signal. Behav. 2011, 6, 1746–1751. [Google Scholar] [CrossRef]
- El-Esawi, M.A.; Al-Ghamdi, A.A.; Ali, H.M.; Alayafi, A.A.; Witczak, J.; Ahmad, M. Analysis of genetic variation and enhancement of salt tolerance in French pea. Int. J. Mol. Sci. 2018, 19, 2433. [Google Scholar] [CrossRef] [Green Version]
- El-Esawi, M.A.; Alaraidh, I.A.; Alsahli, A.A.; Ali, H.M.; Alayafi, A.A.; Witczak, J.; Ahmad, M. Genetic Variation and Alleviation of Salinity Stress in Barley (Hordeum vulgare L.). Molecules 2018, 23, 2488. [Google Scholar] [CrossRef] [Green Version]
- van Gelderen, K.; Kang, C.; Pierik, R. Light Signaling, Root Development, and Plasticity. Plant Physiol. 2018, 176, 1049–1060. [Google Scholar] [CrossRef] [Green Version]
- Ahanger, M.A.; Tomar, N.S.; Tittal, M.; Argal, S.; Agarwal, R.M. Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiol. Mol. Biol. Plants 2017, 23, 731–744. [Google Scholar] [CrossRef]
- Keunen, E.; Peshev, D.; Vangronsveld, J.; Van Den Ende, W.; Cuypers, A. Plant sugars are crucial players in the oxidative challenge during abiotic stress: Extending the traditional concept: Sugars and abiotic stress. Plant Cell Environ. 2013, 36, 1242–1255. [Google Scholar] [CrossRef]
- Abbas, F.; Ke, Y.; Yu, R.; Yue, Y.; Amanullah, S.; Jahangir, M.M.; Fan, Y. Volatile terpenoids: Multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta 2017, 246, 803–816. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, B.; Jahan, A.; Sadiq, Y.; Shabbir, A.; Jaleel, H.; Khan, M.M.A. Radiation-mediated molecular weight reduction and structural modification in carrageenan potentiates improved photosynthesis and secondary metabolism in peppermint (Mentha piperita L.). Int. J. Biol. Macromol. 2019, 124, 1069–1079. [Google Scholar] [CrossRef] [PubMed]
- Gharibi, N.; Kailass, K.; Beharry, A.A. Exploiting the Cellular Redox-Control System for Activatable Photodynamic Therapy. ChemBioChem 2019, 20, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Oba, S. Drought stress enhances nutritional and bioactive compounds, phenolic acids and antioxidant capacity of Amaranthus leafy vegetable. BMC Plant Biol. 2018, 18, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akula, R.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef] [PubMed]
- Franzoni, G.; Trivellini, A.; Bulgari, R.; Cocetta, G.; Ferrante, A. Chapter 10—Bioactive Molecules as Regulatory Signals in Plant Responses to Abiotic Stresses. In Plant Signaling Molecules; Khan, M.I.R., Reddy, P.S., Ferrante, A., Khan, N.A., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 169–182. ISBN 978-0-12-816451-8. [Google Scholar]
- Liu, Y.; Meng, Q.; Duan, X.; Zhang, Z.; Li, D. Effects of PEG-induced drought stress on regulation of indole alkaloid biosynthesis in Catharanthus roseus. J. Plant. Interact. 2017, 12, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Kleinwächter, M.; Selmar, D. New insights explain that drought stress enhances the quality of spice and medicinal plants: Potential applications. Agron. Sustain. Dev. 2015, 35, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Nantongo, J.S.; Odoi, J.B.; Abigaba, G.; Gwali, S. Variability of phenolic and alkaloid content in different plant parts of Carissa edulis Vahl and Zanthoxylum chalybeum Engl. BMC Res. Notes 2018, 11, 125. [Google Scholar] [CrossRef] [Green Version]
- Tholl, D. Biosynthesis and Biological Functions of Terpenoids in Plants. In Biotechnology of Isoprenoids; Schrader, J., Bohlmann, J., Eds.; Advances in Biochemical Engineering/Biotechnology; Springer International Publishing: Cham, Switzerland, 2015; pp. 63–106. ISBN 978-3-319-20107-8. [Google Scholar]
- Karlic, H.; Thaler, R.; Gerner, C.; Grunt, T.; Proestling, K.; Haider, F.; Varga, F. Inhibition of the mevalonate pathway affects epigenetic regulation in cancer cells. Cancer Genet. 2015, 208, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.A.; Maenpaa, M.; Hassinen, V.; Kontunen-Soppela, S.; Malec, L.; Rousi, M.; Pietikainen, L.; Tervahauta, A.; Karenlampi, S.; Holopainen, J.K.; et al. Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula. J. Exp. Bot. 2010, 61, 1583–1595. [Google Scholar] [CrossRef] [Green Version]
- Escandón, M.; Meijón, M.; Valledor, L.; Pascual, J.; Pinto, G.; Cañal, M.J. Metabolome Integrated Analysis of High-Temperature Response in Pinus radiata. Front. Plant. Sci. 2018, 9, 485. [Google Scholar] [CrossRef] [PubMed]
- Król, A.; Amarowicz, R.; Weidner, S. Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress. Acta Physiol. Plant 2014, 36, 1491–1499. [Google Scholar]
- Zainol, M.K.; Abd-Hamid, A.; Yusof, S.; Muse, R. Antioxidative activity and total phenolic compounds of leaf, root and petiole of four accessions of Centella asiatica (L.) Urban. Food Chem. 2003, 81, 575–581. [Google Scholar] [CrossRef]
- Rosicka-Kaczmarek, J. Polifenole jako naturalne antyoksydanty w zywnosci. Przegląd Piek. I Cukier. 2004, 6, 12–16. [Google Scholar]
- Singh, R.; Shushni, M.A.M.; Belkheir, A. Antibacterial and antioxidant activities of Mentha piperita L. Arab. J. Chem. 2015, 8, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Jirovetz, L.; Buchbauer, G.; Bail, S.; Denkova, Z.; Slavchev, A.; Stoyanova, A.; Schmidt, E.; Geissler, M. Antimicrobial Activities of Essential Oils of Mint and Peppermint as Well as Some of Their Main Compounds. J. Essent. Oil Res. 2009, 21, 363–366. [Google Scholar] [CrossRef]
- Aparna, L.M.; Aparna, S.; Sarada, I.; Ram, D. Assessment of Sputum Quality and Its Importance in the Rapid Diagnosis of Pulmonary Tuberculosis. Arch. Clin. Microbiol. 2017, 8. [Google Scholar] [CrossRef]
- Bupesh, G.; Amutha, C.; Nandagopal, S.; Ganeshkumar, A.; Sureshkumar, P.; Murali, K. Antibacterial activity of Mentha piperita L. (peppermint) from leaf extracts—A medicinal plant. Acta Agric. Slov. 2007, 89, 73–79. [Google Scholar] [CrossRef]
- Samarth, R.M.; Panwar, M.; Kumar, M.; Kumar, A. Protective effects of Mentha piperita Linn on benzo[a]pyrene-induced lung carcinogenicity and mutagenicity in Swiss albino mice. Mutagenesis 2006, 21, 61–66. [Google Scholar] [CrossRef]
- Adaszyńska-Skwirzyńska, M.; Dzięcioł, M. Comparison of phenolic acids and flavonoids contents in various cultivars and parts of common lavender (Lavandula angustifolia) derived from Poland. Nat. Prod. Res. 2017, 31, 2575–2580. [Google Scholar] [CrossRef]
- Spiridon, I.; Colceru, S.; Anghel, N.; Teaca, C.A.; Bodirlau, R.; Armatu, A. Antioxidant capacity and total phenolic contents of oregano (Origanum vulgare), lavender (Lavandula angustifolia) and lemon balm (Melissa officinalis) from Romania. Nat. Prod. Res. 2011, 25, 1657–1661. [Google Scholar] [CrossRef] [PubMed]
- Alexa, E.; Danciu, C.; Radulov, I.; Obistioiu, D.; Sumalan, R.M.; Morar, A.; Dehelean, C.A. Phytochemical Screening and Biological Activity of Mentha × piperita L. and Lavandula angustifolia Mill. Extracts. Anal. Cell. Pathol. 2018, 2018, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surendra, K.C.; Olivier, R.; Tomberlin, J.K.; Jha, R.; Khanal, S.K. Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renew. Energy 2016, 98, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Arora, R.; Malhotra, P.; Mathur, A.; Mathur, A. Anticancer Alkaloids of Catharanthus roseus: Transition from Traditional to Modern Medicine. In Herbal Medicine: A Cancer Chemopreventive and Therapeutic Perspective; Jaypee Brothers Medical Publishers (P) Ltd.: New Delhi, India, 2010; p. 292. ISBN 978-81-8448-841-8. [Google Scholar]
- Naz, S.; Haq, R.; Aslam, F.; Ilyas, S. Evaluation of antimicrobial activity of extracts of in vivo and in vitro grown Vinca rosea L. (Catharanthus roseus) against pathogens. Pak. J. Pharm. Sci. 2015, 28, 849–853. [Google Scholar] [PubMed]
- Fa, O.; Et, O.; Io, O.; Ef, O. Antimicrobial activity and phytochemical screening of leaf extracts of catharantus roseus against aspergillus niger. Int. J. Pure Appl. Zool. 2019, 7. [Google Scholar] [CrossRef]
- Raza, M.L.; Nasir, M.; Abbas, T.; Naqvi, B.S. Antibacterial activity of different extracts from the Catharanthus roseus. Clin. Exp. Med. J. 2009, 3, 81–85. [Google Scholar] [CrossRef]
- Moon, S.H.; Pandurangan, M.; Kim, D.H.; Venkatesh, J.; Patel, R.V.; Mistry, B.M. A rich source of potential bioactive compounds with anticancer activities by Catharanthus roseus cambium meristematic stem cell cultures. J. Ethnopharmacol. 2018, 217, 107–117. [Google Scholar] [CrossRef]
Plant | Treatments | Height (cm) | |
---|---|---|---|
7 Day | 14 Day | ||
M. piperitas | Control | 54.8 ± 0.42 a | 61.4 ± 0.61 a |
Drought | 44.9 ± 0.10 bc | 53.6 ± 0.26 b | |
Heat | 47.6 ± 0.19 b | 55.4 ± 0.30 b | |
Drought + Heat | 36.6 ± 0.28 d | 43.6 ± 0.02 c | |
C. roseus | Control | 35.2 ± 0.27 d | 43.8 ± 0.16 c |
Drought | 29.4 ± 0.40 ef | 34.3 ± 0.20 e | |
Heat | 31.7 ± 0.20 e | 39.5 ± 0.11 d | |
Drought + Heat | 19.3 ± 0.21 g | 22.5 ± 0.26 f |
Plant | Treatments | Shoot FW (g) | Root FW (g) | Shoot DW (g) | Root DW (g) | ||||
---|---|---|---|---|---|---|---|---|---|
7 Day | 14 Day | 7 Day | 14 Day | 7 Day | 14 Day | 7 Day | 14 Day | ||
M. piperita | Control | 20.4 ± 0.13 a | 26.6 ± 0.23 a | 8.4 ± 0.032 a | 9.1 ± 0.06 a | 1.2 ± 0.026 a | 1.7 ± 0.028 a | 0.6 ± 0.013 a | 0.7 ± 0.035 a |
Drought | 12.4 ± 0.31 c | 19.2 ± 0.84 b | 6.3 ± 0.012 b | 7.5 ± 0.02 c | 0.9 ± 0.017 c | 1.4 ± 0.126 b | 0.5 ± 0.017 b | 0.6 ± 0.024 c | |
Heat | 17.1 ± 0.24 b | 15.3 ± 0.85 c | 6.7 ± 0.14 b | 8.2 ± 0.03 ab | 1.1 ± 0.011 b | 1.3 ± 0.026 b | 0.4 ± 0.023 d | 0.6 ± 0.021 b | |
Drought + Heat | 10.3 ± 0.14 d | 14.7 ± 0.14 c | 5.7 ± 0.063 c | 6.4 ± 0.033 d | 0.7 ± 0.022 e | 0.9 ± 0.066 c | 0.5 ± 0.022 bc | 0.5 ± 0.023 d | |
C. roseus | Control | 11.4 ± 0.61 cd | 12.3 ± 0.18 d | 4.1 ± 0.044 d | 6.2 ± 0.02 d | 1.1 ± 0.051 b | 1.4 ± 0.44 b | 0.5 ± 0.016 b | 0.5 ± 0.012 d |
Drought | 7.2 ± 0.25 ef | 9.3 ± 0.13 f | 3.6 ± 0.033 e | 4.8 ± 0.01 e | 0.7 ± 0.028 e | 0.8 ± 0.026 d | 0.3 ± 0.024 d | 0.3 ± 0.024 f | |
Heat | 8.1 ± 0.61 e | 10.6 ± 0.07 e | 3.8 ± 0.065 e | 5.1 ± 0.05 e | 0.8 ± 0.028 d | 0.8 ± 0.031 d | 0.4 ± 0.023 d | 0.4 ± 0.014 e | |
Drought + Heat | 5.1 ± 0.45 g | 8.1 ± 0.06 fg | 2.8 ± 0.082 f | 3.2 ± 0.07 f | 0.7 ± 0.017 e | 0.8 ± 0.035 d | 0.3 ± 0.017 f | 0.3 ± 0.022 g |
Bacterial Strain | Plants | Treatment | Control | Drought | Heat | Drought + Heat | 0.2µg/mL Ampicillin | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
10% | 20% | 10% | 20% | 10% | 20% | 10% | 20% | ||||
P. aeruginosa | M. piperita | Aqueous | 13 ± 0.23 d | 18 ± 0.27 b | 11 ± 0.24 f | 15 ± 0.21 c | 10 ± 0.12 g | 12 ± 0.11 e | 12 ± 0.24 e | 11 ± 0.24 f | 32 ± 0.21 a |
MeOH | 15 ± 0.17 e | 20 ± 0.24 b | 14 ± 0.21 f | 18 ± 0.24 c | 12 ± 0.17 g | 17 ± 0.22 d | 11 ± 0.21 h | 17 ± 0.22 d | 36 ± 0.22 a | ||
C. roseus | Aqueous | 16 ± 0.25 e | 27 ± 0.21 a | 14 ± 0.22 f | 24 ± 0.24 b | 12 ± 0.21 g | 21 ± 0.22 c | 12 ± 0.21 g | 22 ± 0.21 c | 19 ± 0.24 d | |
MeOH | 14 ± 0.27 e | 31 ± 0.22 b | 12 ± 0.21 f | 27 ± 0.21 c | 9 ± 0.11 h | 24 ± 0.26 d | 10 ± 0.26 g | 23 ± 0.22 d | 37 ± 0.25 a | ||
S. aureus | M. piperita | Aqueous | 12 ± 0.31 f | 19 ± 0.29 b | 11 ± 0.25 g | 16 ± 0.22 c | 10 ± 0.21 g | 14 ± 0.25 d | 8 ± 0.22 h | 13 ± 0.24 e | 38 ± 0.22 a |
MeOH | 16 ± 0.18 e | 25 ± 0.27 b | 13 ± 0.24 f | 21 ± 0.23 c | 12 ± 0.24 g | 20 ± 0.21 c | 10 ± 0.21 h | 18 ± 0.21 d | 30 ± 0.21 a | ||
C. roseus | Aqueous | 23 ± 0.22 e | 36 ± 0.26 a | 20 ± 0.22 f | 32 ± 0.25 b | 17 ± 0.27 g | 29 ± 0.22 c | 15 ± 0.25 h | 27 ± 0.22 d | 27 ± 0.22 d | |
MeOH | 25 ± 0.27 f | 37 ± 0.22 a | 23 ± 0.27 g | 34 ± 0.24 b | 20 ± 0.21 h | 30 ± 0.25 d | 19 ± 0.22 i | 31 ± 0.25 c | 27 ± 0.21 e | ||
R. solanacearum | M. piperita | Aqueous | 18 ± 0.24 c | 23 ± 0.18 a | 15 ± 0.22 e | 20 ± 0.26 b | 14 ± 0.24 e | 18 ± 0.24 c | 14 ± 0.21 e | 17 ± 0.22 d | 24 ± 0.21 a |
MeOH | 19 ± 0.26 d | 26 ± 0.32 a | 18 ± 0.22 e | 24 ± 0.24 b | 16 ± 0.26 f | 21 ± 0.22 c | 17 ± 0.22 f | 22 ± 0.21 c | 27 ± 0.25 a | ||
C. roseus | Aqueous | 15 ± 0.21 f | 25 ± 0.33 b | 13 ± 0.21 g | 23 ± 0.22 c | 11 ± 0.25 h | 20 ± 0.21 d | 10 ± 0.21 i | 19 ± 0.22 e | 28 ± 0.14 a | |
MeOH | 22 ± 0.25 c | 26 ± 0.31 b | 20 ± 0.27 d | 22 ± 0.22 c | 17 ± 0.21 e | 23 ± 0.22 c | 15 ± 0.24 f | 20 ± 0.24 d | 28 ± 0.21 a |
Fungal Strain | Plants | Treatment | Control | Drought | Heat | Drought + Heat | Rhizolex-T | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.5% | 1.0% | 0.5% | 1.0% | 0.5% | 1.0% | 0.5% | 1.0% | ||||
F. oxysporum | M. piperita | Aqueous | 74 ± 0.92 e | 72 ± 0.46 f | 77 ± 0.76 c | 75 ± 0.65 d | 79 ± 0.87 b | 78 ± 0.77 b | 80 ± 0.43 a | 78 ± 0.76 b | 48.6 ± 0.55 |
MeOH | 58 ± 0.87 f | 53 ± 0.92 g | 64 ± 0.79 d | 61 ± 0.85 e | 67 ± 0.83 b | 63 ± 0.81 d | 69 ± 0.85 a | 65 ± 0.91 c | |||
C. roseus | Aqueous | 52 ± 0.68 e | 46 ± 0.64 f | 56 ± 0.92 d | 53 ± 0.86 e | 61 ± 0.91 b | 56 ± 0.66 d | 63 ± 0.72 a | 60 ± 0.86 c | ||
MeOH | 47 ± 0.54 e | 43 ± 0.86 f | 52 ± 0.75 d | 47 ± 0.83 e | 56 ± 0.85 c | 50 ± 0.73 c | 59 ± 0.91 a | 57 ± 0.74 b | |||
A. terreus | M. piperita | Aqueous | 63 ± 0.76 e | 60 ± 0.93 f | 68 ± 0.76 c | 64 ± 0.76 d | 70 ± 0.64 b | 67 ± 0.83 c | 74 ± 0.82 a | 70 ± 0.76 b | 26.6 ± 0.43 |
MeOH | 60 ± 0.73 d | 56 ± 0.38 f | 66 ± 0.67 c | 59 ± 0.65 e | 69 ± 0.97 b | 67 ± 0.86 c | 73 ± 0.59 a | 69 ± 0.92 b | |||
C. roseus | Aqueous | 64 ± 0.48 e | 53 ± 0.86 f | 68 ± 0.92 d | 64 ± 0.87 e | 71 ± 0.65 b | 69 ± 0.92 c | 73 ± 0.23 a | 71 ± 0.81 b | ||
MeOH | 60 ± 0.89 f | 56 ± 0.74 g | 67 ± 0.54 d | 64 ± 0.76 e | 69 ± 0.85 b | 67 ± 0.76 d | 71 ± 0.67 a | 68 ± 0.73 c |
Cell Lines | Plants | Treatment | Control | Drought | Heat | Drought + Heat | ||||
---|---|---|---|---|---|---|---|---|---|---|
50 µg/mL | 100 µg/mL | 50 µg/mL | 100 µg/mL | 50 µg/mL | 100 µg/mL | 50 µg/mL | 100 µg/mL | |||
PC3 | M. piperita | Aqueous | 56 ± 0.76 b | 64 ± 0.72 a | 48 ± 0.71 e | 53 ± 0.77 c | 43 ± 0.43 f | 50 ± 0.43 d | 44 ± 0.88 f | 48 ± 0.51 e |
MeOH | 50 ± 0.83 b | 65 ± 0.82 a | 44 ± 0.62 d | 47 ± 0.82 c | 41 ± 0.75 e | 43 ± 0.76 d | 38 ± 0.54 f | 41 ± 0.44 e | ||
C. roseus | Aqueous | 46 ± 0.59 c | 61 ± 0.81 a | 42 ± 0.73 e | 47 ± 0.77 b | 39 ± 0.73 f | 44 ± 0.83 d | 37 ± 0.77 g | 42 ± 0.54 e | |
MeOH | 38 ± 0.73 d | 56 ± 0.73 a | 35 ± 0.71 e | 42 ± 0.82 b | 33 ± 0.82 g | 38 ± 0.84 d | 34 ± 0.82 f | 39 ± 0.76 c | ||
MCF-7 | M. piperita | Aqueous | 63 ± 0.83 c | 81 ± 0.62 a | 57 ± 0.55 f | 65 ± 0.73 b | 53 ± 0.47 g | 61 ± 0.81 d | 51 ± 0.77 h | 59 ± 0.82 e |
MeOH | 53 ± 0.81 c | 72 ± 0.81 a | 50 ± 0.65 e | 56 ± 0.76 b | 47 ± 0.92 g | 52 ± 0.82 d | 49 ± 0.43 f | 49 ± 0.57 f | ||
C. roseus | Aqueous | 60 ± 0.73 d | 74 ± 0.62 a | 55 ± 0.82 e | 70 ± 0.82 b | 52 ± 0.82 f | 64 ± 0.65 c | 49 ± 0.76 g | 60 ± 0.74 d | |
MeOH | 45 ± 0.61 e | 67 ± 0.71 a | 41 ± 0.56 f | 62 ± 0.84 b | 37 ± 0.65 g | 57 ± 0.84 c | 36 ± 0.45 h | 54 ± 0.76 d |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhaithloul, H.A.; Soliman, M.H.; Ameta, K.L.; El-Esawi, M.A.; Elkelish, A. Changes in Ecophysiology, Osmolytes, and Secondary Metabolites of the Medicinal Plants of Mentha piperita and Catharanthus roseus Subjected to Drought and Heat Stress. Biomolecules 2020, 10, 43. https://doi.org/10.3390/biom10010043
Alhaithloul HA, Soliman MH, Ameta KL, El-Esawi MA, Elkelish A. Changes in Ecophysiology, Osmolytes, and Secondary Metabolites of the Medicinal Plants of Mentha piperita and Catharanthus roseus Subjected to Drought and Heat Stress. Biomolecules. 2020; 10(1):43. https://doi.org/10.3390/biom10010043
Chicago/Turabian StyleAlhaithloul, Haifa A., Mona H. Soliman, Keshav Lalit Ameta, Mohamed A. El-Esawi, and Amr Elkelish. 2020. "Changes in Ecophysiology, Osmolytes, and Secondary Metabolites of the Medicinal Plants of Mentha piperita and Catharanthus roseus Subjected to Drought and Heat Stress" Biomolecules 10, no. 1: 43. https://doi.org/10.3390/biom10010043
APA StyleAlhaithloul, H. A., Soliman, M. H., Ameta, K. L., El-Esawi, M. A., & Elkelish, A. (2020). Changes in Ecophysiology, Osmolytes, and Secondary Metabolites of the Medicinal Plants of Mentha piperita and Catharanthus roseus Subjected to Drought and Heat Stress. Biomolecules, 10(1), 43. https://doi.org/10.3390/biom10010043